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A necessary ingredient for a quantitative theory of neural coding is appropriate
“spike kinematics”: precise description of spike trains. While summarizing ex-
periments by complete spike time collections is clearly inefficient and probably
unnecessary, also the most common probabilistic model used in neurophysi-
ology, the inhomogeneous Poisson process, often seems too crude. Recently
a more general model was considered, the inhomogeneous Markov interval
model (Berry & Meister 1998, Kass & Ventura 2001), which takes into ac-
count both the current experimental time and the time from the last spike.
Several techniques were proposed to estimate the parameters of these models
from data. Here we propose a direct method of estimation which is easy to
implement, fast, and conceptually simple. The method is illustrated with an
analysis of sample data from the cat superior colliculus.

1 Introduction

The problem of information coding in sensory systems is one of the outstanding problems of
neuroscience (Rieke et al. 1999, van Hemmen & Sejnowski 2006). It is particularly striking
posing the variability of neural responses against the stability of our percepts. A natural
approach to the problem of coding is through the theory of probability and information
theory (Rieke et al. 1999). Even if the changes of membrane potential can be considered
deterministic (Hodgkin & Huxley 1952) and if we neglect the synaptic noise (Faisal et al.
2008), still the multitude of synaptic contacts usually requires statistical approach in the
description of spike trains.
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A natural framework for the description of spiking responses is provided by the point
process theory (Cox & Isham 1980, Daley & Vere-Jones 2003). It has been used in neu-
roscience for a long time (Perkel et al. 1967), however, two simplified approaches were
most popular. Renewal processes, which could account for refractory properties of the
membrane, were used to describe stationary processes. Nonstationarity has usually been
described with inhomogeneous Poisson processes (Tuckwell 1988). Only in the last two
decades other models started to come into use for the description of non-stationary spike
trains, such as inhomogeneous renewal processes (Gerstner & Kistler 2002), inhomoge-
neous Markov interval (IMI) processes (Berry & Meister 1998, Kass & Ventura 2001), or
time-rescaled renewal processes (Brown et al. 2002).

To estimate models from data one must balance the flexibility of the model versus
estimation precision given available data. Two-parameter processes, in particular multi-
plicative IMI models, seem especially suitable in the neurophysiological context. They are
flexible enough to account for both the structure of the receptive fields and membrane
properties, yet simple enough to be reasonably estimated from typically available data.
Several approaches were proposed for estimation of IMI models (Berry & Meister 1998,
Kass & Ventura 2001, Truccolo et al. 2005). We propose here a simple approach which
we found conceptually intuitive, easy to implement and efficient, even if not as general
as the techniques based on the generalized additive models (Kass & Ventura 2001) or the
generalized linear models (Truccolo et al. 2005). It is based on a direct estimation of the
part of the model describing history-dependent properties of spike generation under the
assumption of a constant rate followed by an estimation of the modulatory part describing
the response properties.

In this note we first introduce the formal model to be estimated in the framework
of general point processes (Section 2). We then discuss our estimation method and a
class of experiments where it is applicable in Section 3. The technique is illustrated with
analysis of sample data from the cat superior colliculus cells in Section 4. The results are
summarized in Section 5.

2 Multiplicative inhomogeneous Markov interval

models

Consider an experiment where a spike train is recorded from a neuron observed in time
t ∈ (0, T ]. We can describe the process locally in time with the conditional intensity λ,
also called the hazard function (Cox & Isham 1980, Johnson 1996, Gerstner & Kistler
2002). It describes the probability density of generating a spike at time t given the whole
history of the process up to t, that is

{

Pr[1 event in (t, t + ∆t] | spikes at t1, t2, . . . , s∗(t)] = λ(t; t1, t2, . . . , s∗(t)) ∆t
Pr[more than 1 events in (t, t + ∆t] | spikes at t1, t2, . . . , s∗(t)] = o(∆t)

Here tk are times of consecutive spikes in a single realization of the process, s∗(t) is the
last spike time before t in this realization, and o(∆t) denotes terms of higher order than
linear in ∆t.

To estimate λ from data one is forced to assume memory of no more than the last
few spikes. In the simplest case of intensity depending on time only, λ(t), this is the
inhomogeneous Poisson process. If we relax the constraint and assume dependence of
hazard function on the current time t and time from the previous spike τ = t − s∗(t) we
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obtain the inhomogeneous Markov interval or inhomogeneous renewal process (Berry &
Meister 1998, Kass & Ventura 2001, Gerstner & Kistler 2002). We shall further restrict
ourselves to the multiplicative variant of the model of the form

λ(t, τ) = λ1(t) · λ2(τ). (1)

Berry & Meister (1998) proposed a simple method of estimation of these factors from
data. They assumed λ2(τ) = 0 for τ less than the time of absolute refraction tabs, and
λ2(τ) = 1 for τ greater than the time of relative refraction, trel. The intermediate values
were obtained from the probability distribution of all interspike intervals (ISI). Having thus
obtained λ2(τ) they used it to estimate λ1(t) from the mean firing rate. The apparent
simplicity of this approach is hampered by several assumptions which in general need not
be satisfied. For example, the assumption of the special form of λ2(τ) = 0 for τ < tabs and
1 for τ > trel, while physiologically very natural, in general is unjustified. In fact, λ2(τ)
can even be unbounded; cf. the typical hazard functions (Tuckwell 1988).

In response to that, alternative, more general procedures were proposed by Kass &
Ventura (2001) and Truccolo et al. (2005), based on, respectively, generalized additive
models and generalized linear models. There the idea is to span λ1(t) and λ2(τ) on a
spline basis with appropriately chosen knots and fit the spline parameters from data.
These methods are much more universal but can be slow for large amounts of data due to
substantial optimization needs.

In our analysis of data from the cat superior colliculus cells we observed that the data
did not satisfy the assumptions of Berry & Meister (1998) procedure and the application of
the approaches of Kass & Ventura (2001) and Truccolo et al. (2005) led to computationally
intensive analysis. We found a simple variant of Berry & Meister (1998) approach which
proved easy to implement, efficient, and conceptually natural, but it can only be applied
to a class of experiments including recordings of stationary activity. We discuss it in the
next section.

3 Estimation of IMI process from data

Consider an experiment where a stimulus s is presented N times during intervals of length
T . Assume also a control recording with no stimulus and stationary activity during time
Tstationary. Thus we have N spike trains of duration T and an additional spike train
of duration Tstationary. We assume that the data are described by the multiplicative IMI
model (1). There is an undetermined constant in the two factors and we set it by requiring
λ1 = 1 for stationary activity with no stimulus. An alternative natural normalization is
to require λ1 equal to the mean rate in this region. Thus we can easily obtain λ2(τ) using
the standard approach for stationary renewal processes (Cox & Lewis 1966, Perkel et al.
1967). We estimate the probability density of interspike intervals P (τ) from the control
recording of background activity. From P (τ) we obtain λ2 as

λ2(τ) =
P (τ)

S(τ)
=

P (τ)

1 −
∫ τ

0
dτ ′ P (τ ′)

, (2)

where S(τ) = 1−
∫ τ

0
dτ ′P (τ ′) is the survival function. In practice we used either nonpara-

metric or parametric methods which have different advantages and trade-offs (Hastie et al.
2001). In the nonparametric approach we used Gaussian kernel smoothing with optimal
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or scaled kernel width1 and with positive support (Bowman & Azzalini 1997). In the
parametric variant we fitted gamma distribution. The analysis was done using Matlab

(The Mathworks).
Having obtained the factor describing refractory properties of the membrane, λ2(τ),

we can evaluate the modulatory factor λ1(t) describing response properties of the cell. We
divide the time of experiment, (0, T ], into bins of length ∆t short enough that there would
be at most one spike per bin. The probability to generate a spike in trial j in bin k is
approximately pj

k = λ1(tk)λ2(τ
j

k)∆t, where tk = (k − 1/2)∆t, τ j

k = tk − sj
∗
(tk), and sj

∗
(t)

is the time of the last spike before t on j-th trial. If no history of spike train is known
before t = 0 we assume τ = t until the first spike, tj1. The possible error introduced by
inexact timing was usually negligible for typical spike statistics. Over N repetitions, the
mean probability to observe a spike in bin k is

pk = 〈pj

k〉j =
1

N

∑

j

pj

k = λ1(tk)∆t
1

N

N
∑

j=1

λ2(τ
j

k).

But pk is essentially time dependent rate pk = rk∆t = Nk/N, where Nk is the number of
trials on which we observed a spike in bin k, and the rate rk = (1/∆t)(Nk/N). Since we
already know λ2, we obtain an estimate for λ1 as

λ1(tk) =
Nrk

∑N

j=1 λ2(τ
j

k)
. (3)

In practice we obtained the rate by either smoothing the PSTH with a Gaussian kernel
or by spreading each individual spike with a Gaussian kernel with σ = 5 or 10 ms and
averaging the sum (Nawrot et al. 1999). Usually, the results were equivalent. Since the
mean λ2(τ) was rather variable, to stabilize the resulting λ1 we also smoothed the time-
dependent function

∑N

j=1 λ2(τ
j

k) with Savitzky-Golay filter of order 3 and width 31 ms.
The whole scheme easily generalizes to a situation where a set of stimuli si, i = 1, . . . , K

is presented repeatedly, ni times each. We discuss a simple example of experimental data
analysis in such a case in the next section.

4 Results

To illustrate our estimation method we used data of the single unit recording from the
cat’s superior colliculus. Conventional experimental methods for animal preparation and
extracellular single unit recording were used (Waleszczyk et al. 1999). In the experiment,
spike trains of single neurons were recorded during movements of a bar of light on a screen
with a fixed velocity along one axis of the receptive field and waiting periods, when the
stimulus was held outside of the receptive field for 1 second between the sweeps in both
directions. Single cell data consisted of multiple recordings of responses to stimuli of
different velocities. Velocities ranged from 2 to 1000 degrees per second. For short sweeps
with high velocities we could see the response extending to the first part of the waiting
period. However, it was never noticeable during the last 0.5 s of the waiting period. We
pooled all the intervals from all such periods following sweeps into a single collection of

1We first used ksdensity function with Gaussian kernel to evaluate optimal window width u. Then

we used it to calculate the cdf and pdf with window width 0.5u, u, and 1.5u.
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ISIs. This procedure was equivalent to analysis of a single long recording of background
activity advocated in the previous section.

The probability distribution of ISI sampled by this collection was used to estimate
λ2(τ). Thus we assumed λ1(t) = 1 in the second half of each waiting period. We used
both parametric and non-parametric methods for estimation of λ2(τ), as mentioned in the
previous section.

Given λ2, we analyzed responses to every stimulus separately using the procedure
detailed in the previous section. On Figure 1 we show example results of such analysis.
These are data from a single cell and a single stimulus (v = 1000 deg/s moving left
to right). Figure 1A shows the distribution of all the ISI from the background activity
(empirical data; bar plot), the non-parametric estimate (solid line), and the parametric
fit (gamma distribution; dashed line) of the probability distribution P (τ). The main plot
in log-normal coordinates shows the differences in the tails while the inset in normal-log
coordinates emphasizes the differences for small intervals. Panel B shows the estimate
of λ2(τ) obtained from data of panel A. There is a striking difference between the non-
parametric and parametric estimates for τ > 0.1 s as the hazard function for gamma
distribution is monotonic while the non-parametric estimate is more flexible. To test the
stability of estimates we calculated λ2 on different parts of data. We separated waiting
periods following stimuli moving left to right from those following stimuli moving right to
left. We also analyzed separately the intervals from the first half of the recordings and
those from the second half of the recordings. In all cases for these data the obtained results
were quantitatively very similar to the result obtained from all of the data (not shown). In
Fig. 1C we show λ1(t) estimated from data as described in Section 3 using non-parametric
(solid line) and parametric approach (dashed line). To compare these results with the
inhomogeneous Poisson model (dash-dotted curve) they have all been normalized so that
their mean value during the waiting period is equal to 1. There is an enhancement of the
response profile in both IMI models as compared to the Poisson model, particularly strong
for the non-parametric model, which corroborates well with the previous findings (Berry
& Meister 1998, Kass & Ventura 2001). The last panel (Fig. 1D) compares the quality
of different models using the Kolmogorov-Smirnov (K-S) plots (Brown et al. 2002). Each
curve was obtained by appropriate rescaling of spike times (Brown et al. 2002) using
conditional intensity estimated with either inhomogeneous Poisson model (dash-dotted
curve), parametric IMI model (dashed curve), or nonparametric IMI model (thick solid
line). Perfect model of data corresponds to diagonal (thin solid line), two parallel thin
dashed lines demark 95% confidence band. We interpret the distance from the diagonal
as a measure of the quality of the model. Clearly, the inhomogeneous Poisson model is
describing the data rather poorly. The gamma IMI gives a much better description of the
data, with non-parametric IMI model leading to the K-S curve almost within the 95%
confidence band.

5 Summary

The common model of spike trains, inhomogeneous Poisson process, is very useful in
its simplicity and often adequate for the description of experimental data, especially for
relatively low firing rates. To account for the membrane mechanisms, such as refraction,
one must go beyond the Poisson processes and the inhomogeneous Markov interval models
seem good candidates for modeling spike train data. We proposed a direct method useful in
the description of experimental recordings where apart from responses to repeated stimuli
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Figure 1: Estimation of IMI models from sample data: a single cell and a single stimulus
(v = 1000 deg/s moving left to right). (A) Distribution of all the ISI from the back-
ground activity (bar plot), the non-parametric estimate (solid line), and the parametric
fit (gamma distribution; dashed line). The main plot in log-normal coordinates shows the
difference in the tails. The inset in normal-log coordinates emphasizes the differences for
small intervals. (B) The estimate of λ2(τ) obtained from the distribution shown in (A).
(C) The modulatory factor λ1(t) estimated from data as described in Section 3 using non-
parametric (solid line) and parametric approach (dashed line). To compare these results
with the inhomogeneous Poisson model (dash-dotted curve) they have been normalized so
that their mean value during the waiting period is equal to 1. (D) The quality of different
models using the Kolmogorov-Smirnov plots. Each curve was obtained by appropriate
rescaling of spike times using conditional intensity estimated with either inhomogeneous
Poisson model (dash-dotted curve), parametric IMI model (dashed curve), or nonpara-
metric IMI model (thick solid line). Perfect model of data corresponds to diagonal (thin
solid line), two parallel thin dashed lines demark 95% confidence band.
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also background activity was recorded. Our proposition was to use the stationary data
from the background activity to estimate the factor of intensity describing the membrane
properties, λ2(τ). An estimate of λ2(τ) can then be used to extract the modulatory factor
taking into account the response properties of the cell, λ1(t). We have demonstrated a
practical use of our method on data from example cell from the cat superior colliculus and
showed with K-S plots the superiority of IMI model over inhomogeneous Poisson model for
these data. A complete physiological analysis of the full dataset from these experiments
is in preparation. We believe that the simplicity of our estimation method will make it a
viable alternative to other approaches wherever it can be applied.
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