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Classical Multibaker Maps are deterministic models of classical random walks. Quantum
Multibaker Maps are their quantum versions. As such, they can be naturally consid-
ered quantum random walks. In this review we discuss the construction and properties
of quantum multibaker maps and related, more general models, in the context of the
recent results in dynamical systems approach to nonequilibrium statistical mechanics.
Properties of other models of quantum walks are also discussed.
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1. Introduction

Dynamical systems theory from its conception found most applications in low-
dimensional mechanical systems40,51,154. Since the reduction of Lorentz gas on reg-
ular lattice to a billiard problem27,181,211 methods of chaos theory have pervaded
nonequilibrium statistical mechanics. In the course of last fifteen years we have seen
growth of interest in the connections between the two fields as new results were
discovered46,74,121,174,185.

The impetus came from two directions. One was from molecular dynamics sim-
ulations of transport processes, where one has to deal with the problem of particle
heating. To overcome it a number of dynamical thermostatting mechanisms were
invented57,102,120,146,168. The thermostats are implemented through changes in the
equations of motion which are done in such a way as to eliminate the heat, for
instance by constraining the total or kinetic energy, while at the same time pro-
ducing results consistent with the experiments. In certain cases it was possible to
show that in the limit of small driving fields original dynamics is recovered and
the numerically obtained transport coefficients are equivalent to those given by the
usual linear response theory57,102.

The thermostatted equations of motion are typically dissipative and chaotic66. It
turns out that the transport coefficients of thermostatted systems can be connected
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to their Lyapunov spectrum. For instance, electrical conductivity σ of Gaussian
thermostatted 2D Lorentz gas is given by σ = −kBT 〈λ+ + λ−〉/E2, where E is the
driving field, T is the ambient temperature, λ± are the Lyapunov exponents of the
system30,31.

Another remarkable outcome of the studies of thermostatted systems is the
fluctuation theorem56,65,66, which quantifies the probability of observing states de-
viating from what is expected from nonequilibrium thermodynamics. An example
of such state is provided by a charged particle bouncing from a scatterer in the
Lorentz gas against the direction of the driving field. Since the original formula-
tion of the theorem a number of related results has appeared8,58,59,112,130,133,139.
The study of various fluctuation theorems as well as of related38 free energy rela-
tions28,37,110,111,166, both theoretical and experimental35,48,67,135,202, is flourishing.
While most of the results in this field were obtained for molecular type systems,
often low dimensional, there are attempts to understand the role of dynamical in-
stabilities as expressed by the Lyapunov exponents and of different “dynamical
ensembles” in the description of spatiotemporal systems, such as fluids64,68.

Second approach which turned out very productive in connecting dynamical sys-
tems theory with nonequilibrium statistical mechanics was through transient chaos
and the study of escape processes13,20,114,115,190. Here, formulas for transport coeffi-
cients were found in terms of Lyapunov exponents and Kolmogorov-Sinai entropy on
the repeller83. The amazing discovery of fractal character of the microscopic hydro-
dynamic modes of diffusion47,72,80,90,187 shed new light on the properties of entropy
production in nonequilibrium systems. The incomplete van Hove functions72,80,196

probing the diffusion processes at different wave numbers k are fractal functions of
Takagi type212 whose fractal dimension DH(k) = 1+ D

λ k2 +O(k4) is given in terms
of the diffusion coefficient D and the largest Lyapunov exponent λ80,90.

Conceptually important development concerned understanding and extraction
of Pollicott-Ruelle resonances158,159,171,172,173 which determine the exponential de-
cay of certain correlation functions in time-reversible hyperbolic systems. With this
concept it was possible to describe macroscopic breaking of time-reversal for micro-
scopically reversible systems49,69,74,76,78,119,203.

Most of these phenomena are the results of nonlinear and nonintegrable character
of typical spatially extended classical systems. The linearity of quantum mechanics
makes one wonder if any of the remarkable results obtained for the classical systems
survive in the quantum regime? While quantum fractals can be constructed15,207

they are not expected as nonequilibrium steady states of quantum nonequilibrium
systems.

It turns out that the importance of Pollicott-Ruelle resonances extends to quan-
tum mechanics where they rule the relaxation of the quantum correlation functions
and survival probability in the semiclassical regime1,75,78,85,86,87,137,143,155,204. This
regime is sometimes called the “Lyapunov regime”106,107 because the leading reso-
nance is often given by the largest Lyapunov exponent, especially in simple systems
with uniform stretching, such as baker map. Different regions of relaxation have



March 17, 2006 17:7 WSPC/INSTRUCTION FILE qmb.review.clean

Quantum maps with space extent 3

recently been studied in the connection with the so-called problem of Loschmidt
echoes or fidelity decay39,92,106,107,109,157,162,205. Here the main objective was the
quantification of quantum instability against small perturbations of the system un-
der study.

In many-body quantum systems with continuous spectra, such as spin-boson82

or other systems coupled to infinite heat reservoirs108, or other many-body sys-
tems55,161, the quantum analogues of Pollicott-Ruelle resonances are the poles of
analytic continuation of von Neumann operator. There is also a huge body of lit-
erature devoted to the applications of random matrix theory to mesoscopic sys-
tems14,52,94,104 for quantum dots4, quantum wires14 and for antidot lattices61.
However, most of these works are not much concerned with the connections to
classical instability and rather explore the random properties of spectra of the dis-
ordered systems.

Important model systems for which many of the classical results were tested
are classical multibaker maps69,74. They are area-preserving deterministic models
of one-dimensional random walks. We briefly review their construction and proper-
ties in Section 2. To obtain a simple, intuitive model, useful for the studies of the
signatures of classical chaos in the quantum transport we have quantized the clas-
sical multibaker map208,209,210. We review the construction of the obtained model
which we called quantum multibaker map, in Section 3. A more general framework
of quantum maps with space extent, which we call quantum multiplexer maps, is
also presented there. Properties of several versions of quantum multiplexer maps are
discussed in Section 4. As quantizations of deterministic models of random walks
on a lattice, quantum multibaker maps can be considered a paradigm for quantum
random walks. We review some of the recent studies of quantum walks conducted in
the context of quantum information theory in Section 5. We summarize this review
with some open questions and perspectives in Section 6.

2. Classical multibaker maps

Classical multibaker maps were introduced into statistical mechanics by Pierre Gas-
pard69 as translationally invariant extensions of Elskens-Kapral model of chemical
reactions53. Since then, many variants of the model were considered, the simplest
of which, dyadic multibaker map187, was in fact considered already in 1930’s by
Eberhard Hopf103 as an example of a mixing system with infinite measure.

The model can be introduced in several different ways. One approach is to take
the suspension of the flow in a periodic, quasi one-dimensional Lorentz channel72,77.
That is, consider the separation of the flow into three components: a volume preserv-
ing mapping in Birkhoff coordinates17 on the circular scatterer, a mapping between
consecutive scattering times, and a function describing jumps on a lattice72,74. If
we disregard the precise information about scattering times and approximate the
nonlinear Poincare-Birkhoff map by a piecewise linear baker map, the simplified
suspension flow becomes dyadic multibaker map.
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Fig. 1. Quasi one-dimensional Lorentz channel. Simplification of dynamics of a particle in the
channel leads to the classical multibaker map.

An alternative derivation comes from the considerations of one-dimensional ran-
dom walks on a lattice. Imagine a particle jumping on a lattice and assume the
mechanism of jump is deterministic. In every jump the particle can go right or left
to one of its nearest neighbors. If the only variable determining its state is the po-
sition on the lattice and we require translational invariance of the dynamics then
the only type of motion possible is shift in one direction. To allow for less trivial
dynamics we must assume that the particle has some internal degrees of freedom
which determine the direction of motion and which are altered during the jump in
a deterministic way (e.g. due to an external field or coupling with lattice degrees
of freedom). If we want the resulting motion to be random this requires a degree
of chaoticity. A simple possibility is to model the internal state of the particle by
a point in a compact phase space and decompose the dynamics into a jump to the
neighboring site followed by a local transformation of the internal state. Modelling
the internal dynamics by the classical baker map, with the appropriate identification
of the states going left or right, the full system evolves according to the classical
multibaker map. The advantage of using baker map over other local chaotic maps
is the immediate isomorphism between trajectories of the multibaker map and the
standard one-dimensional random walk on the lattice.

The need for considering such models stems from considerations of the Brownian
motion. Since the erraticity of the Brownian particle is due to a large number of
deterministic collisions with fluid molecules one may wonder if there are traces of
this determinism to be found in macroscopic description of the model79. This is
easiest to answer in the simplified Brownian motion, one-dimensional random walk,
which in turn can be modeled deterministically by a multibaker map.

The simplest dyadic version of multibaker map103,187 is defined by

M(n, x, y) =
{

(n + 1, 2x, y/2), for 0 ≤ x < 1/2,

(n− 1, 2x− 1, (1 + y)/2), for 1/2 ≤ x < 1.
(1)

It can be written as a composition of two maps M = B ◦ T , where T moves the
phase point to a neighboring cell

T (n, x, y) =
{

(n + 1, x, y), for 0 ≤ x < 1/2,

(n− 1, x, y), for 1/2 ≤ x < 1,

and the baker map, B, which acts locally in every cell n

B(n, x, y) =
{

(n, 2x, y/2), for 0 ≤ x < 1/2,

(n, 2x− 1, (1 + y)/2), for 1/2 ≤ x < 1.
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Thus it is a two-dimensional lattice system where the phase space at each lattice
site is a square (or a torus). The dynamics is a combination of transport of the phase
space densities to neighboring cells, which models the free flight, followed by a local
baker map evolution within a square, modeling a collision with a fixed scatterer.
The multibaker map is a time-reversible, measure preserving, chaotic (Bernoulli)
transformation.

The complete solvability of this model and its variants makes them ideal for
testing and deriving connections between macroscopic transport properties and the
characteristics of dynamical instability. Thus exact Pollicott-Ruelle resonances were
obtained for these maps69,187 as well as the escape rate, Lyapunov exponent, KS
entropy and the information dimension. The escape-rate formula83

D = lim
L→∞

(
L

π

)2

[λ− hKS ] (2)

connecting the diffusion coefficient D with the Lyapunov exponent λ and the KS
entropy hKS on the repeller was verified and the PR resonances were shown to be
approximated well by the spectrum of macroscopic diffusion equation69,74.

Generalized eigenstates of the Frobenius-Perron operator for multibaker map
are given by fractal de Rham functions71 just like for an associated one-dimensional
maps70,99,100. This fractality shows up as well in the cumulative functions describing
the stationary states47,186,187. The singularity of the invariant measures describing
steady states with respect to the Liouville measure was claimed to be the rea-
son for positivity of entropy production in steady states73,76,88,89,189. A different
approach to entropy production, through the Kullback information loss for coarse-
grained phase space densities, was intensely studied by Breymann, Matyas, Tél, and
Vollmer23,24,198,199,201 as reviewed in191,197,200. The applicability of these concepts
to nonequilibrium statistical mechanics of more general systems has been a matter
of some controversy36,84,169,193. In our opinion, as long as extending these results for
fluid systems, where one will be able to compare the usual thermodynamic formulas
with the Gaspard-Gilbert-Dorfman entropy production, seems viablea, one should
wait for further developments. Definitely, the studies of entropy production from dy-
namical systems perspective where one of the important topics in nonequilibrium
statistical mechanics explored with the help of multibaker models.

Multibaker maps are very flexible models. Several hamiltonian (area-preserving)
versions were used69,187,188,189, mostly in the framework of the escape rate theory,
dissipative variants were considered23,88,140,141,170,192,198,201 for testing the results
of thermostatted approach to nonequilibrium thermodynamics. These models were
used to model diffusion in usual69,187 and biased88 random walks, diffusion-reaction
processes81, diffusion in the Lorentz gas in the presence of electric field188,189,192,
to test global and local fluctuation theorems for steady states170, thermodynamic
cross effects140,141,201 as well as shear flow and viscous heating142. For detailed

aJ. R. Dorfman, private communication.
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reviews of the properties of different variants of classical multibaker maps and asso-
ciated models we recommend the monographs by Pierre Gaspard74 and by Jürgen
Vollmer197 as well as the reviews by Tel, Vollmer and Breymann191,200.

3. Quantum maps with space extent

Quantum multibaker maps208,209,210 were introduced as quantizations of the Tasaki-
Gaspard classical multibaker model187. They are simple models of quantum particle
jumping on a lattice. Depending on its internal state the particle jumps one step left
or one step right. This is interpreted dynamically as resulting from scattering on an
obstacle. The scattering of the particle is modeled by the quantum baker map. Quan-
tum baker maps form a two-parameter family parametrized by two phases44,177. In
the construction of quantum multibaker map these phases can be set identical at
every lattice site which leads to a translationally invariant model. It is characterized
by coherent transport of probability amplitudes left and right resulting in ballistic
motion209,210. Choosing the two phases at every lattice site randomly from some
prescribed distribution one can obtain a disordered model characterized by local-
ization of the wave functions208. Therefore, the quantum multibaker maps in their
original formulation are a rich family of models parametrized by the number of
internal quantum states N , which plays the role of the inverse Planck constant, by
the length of the chain L, and by the distribution of phases. The large N limit is
the semiclassical limit in which we recover the classical properties. Large L limit
corresponds to thermodynamic limit.

These maps can be further generalized to more dimensions, other local operators
can be used instead of quantum bakers, and the range of interaction can be longer.
We call these generalized models quantum multiplexer maps. Appropriate choice
of boundary conditions allows one to study closed and open systems as well as
stationary states in systems connected to particle reservoirs. In this section we
review the construction and properties of quantum multibaker maps and some of
these generalizations.

3.1. Quantum baker map

Quantization of an area-preserving map consists of specification of the Hilbert
space (prequantization) and constructing a unitary operator acting on that space.
Construction of Hilbert spaces associated with the two-torus is by now well-
understood11,22,41,42,44,97,176. Assume the fundamental square has sides of length
a in position and b in momentum. Then periodicity in position representation
Ψ(q + a) = eiαq Ψ(q) requires that momentum representation takes non-zero val-
ues only at a discrete set of momenta pk = h

a (k + ϕp), where αq = 2πϕp. Similarly,
periodicity in momentum representation Ψ̃(p+b) = eiαpΨ̃(p) requires ql = h

b (l+ϕq),
where αp = −2πϕq. Here ϕq, ϕp ∈ [0, 1) are phases parametrizing quantization and
define the boundary conditions on the torus. Since a must be an integer multiple
of h/b one obtains Bohr-Sommerfeld quantization condition 2π~N = ab. Choosing
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units so that a = b = 1 one arrives at a relation between the Planck constant and
the dimension of Hilbert space h = 1/N .

Since the space of double periodic wave functions is N -dimensional Hilbert
space we represent wave functions by N -dimensional vectors. The space and mo-
mentum representations are connected by a discrete Fourier transform 〈pk|ql〉 =
[GN (ϕq, ϕp)]k,l := N−1/2 exp(−i2πNpkql). The discrete positions and momenta
are ql = (l+ϕq)/N , pk = (k +ϕp)/N , respectively; l, k = 0, . . . N −1. The structure
of the classical baker map requires us to take N even. We label the quantum states
in coordinate space by j = 0, 1, . . . , N − 1. We call the first N/2 position states
j = 0, . . . N/2 − 1 the “left” states, with collective wave function, ΨL, while the
remaining position states, j = N/2, . . . , N − 1 are called the “right” states, with
wave function ΨR.

Equipped with the Hilbert space we look for a family of unitary propagators
parametrized by N = 1/h which approach the classical map in semi-classical limit.
There is no general quantization procedure for area-preserving maps but in cases
where a generating function exists one can use it to construct such a family10,41.
Such a quantization of baker map using a mixed generating function was performed
by Saraceno and Voros177. The quantum baker operator11,44,176,177 is given by a
combination of two operations. The first operation transforms the N/2 “left” states
into momentum states labeled k = 0, 1, . . . , N/2 − 1, which we call “bottom” mo-
mentum states, by means of the N/2×N/2 Fourier transform matrix GN/2(ϕq, ϕp).
The “right” coordinate states are transformed to “top” momentum states in the
same way. Thus the N spatial states are transformed into N momentum states in
a way that mimics the classical baker’s map. One has to now express the N new
states in coordinate representation by means of the inverse Fourier transform G−1

N .
Thus the quantum baker transformation, B, in the position representation, is given
by the unitary matrix

B := G−1
N (ϕq, ϕp)

[
GN/2(ϕq, ϕp) 0

0 GN/2(ϕq, ϕp)

]
. (3)

3.2. Quantum multibaker maps

Quantum multibaker map is a model of quantum particle transport on the lattice.
Thus the Hilbert space of the model is the tensor product of the lattice Hilbert
space HL with the Hilbert space of internal dynamics HI . For the quantum baker
map HI is the Hilbert space for the torus described above. For one-dimensional
model on a lattice of length L the Hilbert space of the model is CL ⊗ CN , where
N = 1/h is the number of internal states.

We denote the basis states by |n, ε, i〉 ≡ |n〉 ⊗ |ε〉 ⊗ |i〉, where n is the lattice
site, ε = ±1 denotes these states which will be transported to site n + ε in one time
step, and i = 0, . . . , N/2− 1 enumerates the states corresponding to a given half of
the classical square in position representation. Thus the Hilbert space of the system
is a simple sum of spaces Hε(n) span by the states |n, ε, i〉 which are moved in one
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time unit from lattice site n to site n + ε. Then the general wave function for the
multibaker chain can be written as

|Ψ〉 =
∑

n

∑
ε

∑

i

Ψn,ε,i|n, ε, i〉 ≡
∑

n

∑
ε

|n〉 ⊗ |ε〉 ⊗ |Ψε(n)〉, (4)

where |Ψε(n)〉 is N/2 dimensional vector describing the internal states of the particle
at site n which will move in one time-step to site n + ε. The inner product takes
form

〈Φ|Ψ〉 =
∑

n

∑
ε

∑

i

Φ∗n,ε,iΨn,ε,i ≡
∑

n

∑
ε

〈Φε(n)|Ψε(n)〉. (5)

The dynamics is composed of two operations. First, depending on the internal
state, the particle moves one step left or right so that Ψε(n) → Ψε(n + ε). Then its
internal state is randomized according to local quantum baker dynamics. The first
operation models the free flight in the Lorentz gas while the local randomization of
states resulting from an application of a quantum baker map models scattering on
an obstacle. The result, in the position representationb, is given by

[
Ψ+(n, t + 1)
Ψ−(n, t + 1)

]
= B(n) ·

[
Ψ+(n− 1, t)
Ψ−(n + 1, t)

]
, (6)

where

B(n) = G−1
N (n) ·

[
GN/2(n) 0

0 GN/2(n)

]
, (7)

and GN (n) ≡ GN (ϕq(n), ϕp(n)) is the discrete Fourier transform defined in the
previous section

(GN (n))kj =
1√
N

e−2πi(k+ϕp(n))(j+ϕq(n))/N . (8)

The quantum multibaker operator defined by Eq. (6) will be denoted by M. The
evolution of states is given by |Ψ′〉 = M|Ψ〉, and the time dependence of observables
Ω in this system is given by

Ω(t) = M† tΩMt. (9)

The two-step construction of the Floquet propagator allows the decomposition of M
into two operators M = BT. Here T governs the transport of states to neighboring
lattice sites and B is the block-diagonal operator where each block contains the local
quantum baker operator. Thus T reflects the structure of the lattice and range of
particle jumps while B represents the scattering processes at every site.

To specify the model completely we still have to choose the phases ϕq(n), ϕp(n).
If we make them the same at every lattice site we obtain translationally invariant
model which we call regular or uniform quantum multibaker. If we choose them

b“Position” and “momentum” representation refer to representations of the internal dynamics on
the quantum torus.
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T

B

M

Fig. 2. Schematic representation of the multibaker model M as a composition of particle jumps
to neighboring cells T depending on the internal state followed by local randomization of the
internal state by the (quantum) baker map B.

randomly from a prescribed, non-trivial distribution we obtain a disordered model.
Depending on the distribution the obtained models will have different properties,
e.g. different localization length, but since this is a one-dimensional system, we
expect all of them to exhibit localization. The models which we find particularly
attractive for studies are:

(1) Uniform: ϕq(n) = ϕ0
q, ϕp(n) = ϕ0

p.
(2) Random: ϕq(n), ϕp(n) chosen randomly from a uniform distribution on the

intervals [ϕ0
q, ϕ

0
q +ε], [ϕ0

p, ϕ
0
p +δ], especially the cases a) ε = δ = 1, and b) δ = 0

with small ε.
(3) Diluted: {ϕq(n), ϕp(n)} = {ϕ0

q +ε, ϕ0
p +δ} with probability p, {ϕq(n), ϕp(n)} =

{ϕ0
q, ϕ

0
p} with probability 1− p.

Some of their properties will be discussed in later sections of this work.
Currently, no implementation of quantum multibaker maps is available in the

literature (apart from N = 2 case, see Section 5). We expect that an optical realiza-
tion of quantum multibaker maps for arbitrary N can be obtained by combining the
Bouwmeester et al.21 implementation of quantum Hadamard walk with the Han-
nay et al98 optical implementation of quantum baker map. The implementation of
different distributions of phases ϕq(n), ϕp(n) should also be possible with the ease
of shifting phase in optical systems.

3.3. Quantum multiplexer maps

To avoid specificity of a single model it is useful to consider more general family
of models, where the scatterers are modeled with other local operators than the
quantum baker map, interaction range is varied, and lattice has a different structure.
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The most general models we are interested in here are those maps on d-dimensional
lattices for which the propagator M can be decomposed into the product of two
operators T and B such that T is homogeneous, B is block-diagonal, and there is a
well-defined semi-classical limit of each of the non-zero blocks of B operator. Such
models will be called quantum multiplexer maps.

To be more specific consider a d-dimensional lattice span by the lattice vectors
a1, . . . , ad. Let the k neighbors of site l =

∑d
i=1 liai ≡ (l1, . . . , ld) be defined by

lattice vectors v1, . . . ,vk. By this we mean that a particle coming to site l can be
scattered into one of the sites l + vε. Let the number of scattering channels from l
into l+vε be sε. Then the Hilbert space of the system H is the simple sum of Hilbert
spaces connected with individual sites H = ⊕nH(n) which are copies of the particle
internal Hilbert space. Each space H(n) is the simple sum of sε-dimensional spaces
Hε(n). We will refer to the basis states as |n, ε, i〉 ∈ Hε(n), where i = 0, 1, . . . , sε−1.
If reference to the internal structure is not needed we will write |n, i〉 ∈ H(n), where
i = 0, 1, . . . , N − 1, N =

∑
ε sε. We have |n, j〉 ≡ |n, ε, i〉 if j =

∑ε−1
α=1 sα + i. Then

the operator T in basis |n, ε, i〉 is given by

T(m,ε̃,j),(n,ε,i) ≡ 〈m, ε̃, j|T|n, ε, i〉 = δε̃,εδi,jδm,n+vε . (10)

Thus the operator T defines only to which sites the incoming particle can be scat-
tered.

T

B

M

Fig. 3. Schematic representation of an example multibaker model M. A particle jumps to one
of its two nearest neighbors or remains at site depending on its internal state. After a jump the
internal state is changed by local action of some operator, in this case (quantum) cat map. Particle
jumps to neighboring cells are induced by operator T, local randomization of the internal state is
induced by operator B.

The scattering process itself is described by operator B which is block diagonal
B(m,j),(n,i) ≡ 〈m, j|B|n, i〉 = δm,nB(n)i,j . Local scattering operators B(n) are arbi-
trary unitary operators of dimension N . In the previous section they were quantum
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baker maps. We will usually be interested in diffusive processes so we need a way to
randomize dynamics. Thus we will often assume that B(n) is a quantum map with
well-defined classical limit, e.g. perturbed cat map, kicked top, or other, which will
often be classically chaotic, but can also be mixed, or regular (integrable).

To study how the internal instability (chaos) reflects on the transport properties
of the extended system we need to consider a family of such maps parametrized by
the dimension of the scattering operator N . To obtain this family we take the same
lattice structure and neighbors but we assume the number of scattering channels
into neighbor vi is s̃i = msi. Thus the dimension of the internal Hilbert space is
Ñ =

∑
i s̃i = mN and the non-zero blocks of B̃ are given by the quantum map

B(n) in the dimension Ñ .
Let us consider some examples to clarify the notations.

(1) Original quantum multibaker described in the previous section. This is a one-
dimensional model, there are just two neighbors defined by vectors v1 = +1 and
v2 = −1. There are N/2 scattering channels outgoing to each of the neighbors,
thus the only non-zero elements of T are T(l+ε,ε,i),(l,ε,i) for i = 0, 1, . . . , N/2−1,
ε = ±1. Local scattering operators B(n) are the quantum baker maps, eq. (7).

(2) Consider a square lattice with transport to four nearest neighbors and a non-zero
probability of remaining at site. The lattice is spanned by vectors a1 = (1, 0) and
a2 = (0, 1), the neighbors are defined by vectors v1,2 = ±a1,v3,4 = ±a2,v5 =
(0, 0). Assume sε = N/6 for ε = 1, 2, 3, 4, s5 = N/3, and take N = 6s0. Then
the only non-zero elements of T are of the form T(l+vε,ε,i),(l,ε,i) for ε = 1, 2, 3, 4
and i = 0, 1, . . . , s0 − 1 or T(l,5,i),(l,5,i) for i = 0, 1, . . . , 2s0 − 1. Local scattering
operators are N -dimensional quantum maps, one can take for instance regular
quantum baker maps or triadic quantum baker maps.

(3) For a hexagonal lattice spanned by a1 = (1/2,
√

3/2),a2 = (1, 0) with 12 neigh-
bors we may take si = 2s0 for the six nearest neighbors ±a1,±a2,±(a1 − a2).
For second-order neighbors ±(a1 + a2),±(2a1 − a2),±(2a2 − a1) we may take
si = s0. Thus the internal Hilbert space is of dimension N = 18s0.

For every choice of lattice structure we can consider many different scattering
operators. We may choose the same operator for every site, e.g. a quantum baker
map with fixed phases. We may also choose a family of operators differing from
site to site but converging to the same classical map, as in the random quantum
multibaker, where every local scattering operator is a quantum baker map with dif-
ferent phases which however all converge to the same classical baker map. One may
consider other distributions of the local operators, for instance placement of quan-
tum baker map with fixed phases at a site with probability p and identity operator
with probability 1 − p. This leads to a model of diluted scatterers since identity
operator in place of a local scatterer plays the role of empty space: it propagates
incoming particles further which follows from the translationally invariant structure
of T operator (Section4.4.3).

The types of scatterers worth considering depend on the problem of study. We
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are mostly interested in the influence of the local instability on the global transport
properties. A natural choice for local scatterers are quantum baker maps, since the
classical multibaker maps and the quantum baker maps are very well studied. It is
also easily tractable, moreover, the classical baker map is equivalent to a coin toss
which makes classical multibaker map immediately and apparently a deterministic
version of simple random walk. Thus the quantum multibaker map becomes a nat-
ural candidate for a model of quantum random walk. One may also consider other
variants of quantum baker maps, which share the advantages and disadvantages of
the original, but may be adapted to the structure of transfer matrix T. For instance
one can use a triadic map in dimension N = 3s0

G−1
N (n) ·




GN/3(n) 0 0
0 GN/3(n) 0
0 0 GN/3(n)




or for N = 4s0

G−1
N (n) ·




GN/4(n) 0 0
0 GN/2(n) 0
0 0 GN/4(n)




with the two outer stripes connected with transfer to the two nearest neighbors in
1D case, and the middle stripe with the states remaining at site. The last case leads
to classical probability of remaining at site 1/2 and probabilities of 1/4 of jumping
to one of the two neighbors.

The disadvantages of the baker map as a paradigm for the study of quantum
chaos are its discontinuity and the impossibility of introducing regular islands in
the phase space. Thus in the quantum multibakers one cannot study the changes
in transport when the character of local dynamics changes from regular, through
mixed, to chaotic. To avoid these problems one may consider locally dynamics of
other maps, such as perturbed cat maps19,43 or quantum kicked top95,96.

When completely random scatterers are needed it may be useful to take as local
operators completely random matrices from CUE or COE ensembles. This approach
is viable both numerically and analytically.

4. Properties of quantum multiplexer models

4.1. Regular and random case with periodic boundary conditions

The structure of eigenstates and of spectrum depends crucially on the distribution
of local scattering operators B(n). For regular quantum multiplexer maps, where
the scattering operator is the same at every site, the eigenstates are extended and
the spectrum is banded. Thus on d-dimensional lattice of length L in every direction
an eigenstate Ψ is of the form Ψε(n) = exp(iκ · n)Ψ̃ε. Here Ψ̃ε is an eigenvector of
N -dimensional modified operator B̃κ defined by

B̃κ;ε2,ε1 := Bε2,ε1e
−iκ·vε1 (11)
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where κ has the form 2π
L (k1, k2, . . . , kd). The spectrum of the whole system consists

of the spectra of all the B̃ operators.
In a specific example of a regular dyadic quantum multibaker map on one-

dimensional lattice with periodic boundary conditions208 every eigenstate has a
Bloch form

Ψ±(n) = exp(iκn)Ψ̃±/
√

L, (12)

where
[

Ψ̃+

Ψ̃−

]
is the normalized eigenstate of a modified quantum baker operator

G−1
N

[
GN/2e

−iκ 0
0 GN/2e

iκ

]
. (13)

Periodic boundary conditions imply eiκL = 1, which leads to κk = 2πk/L, k =
0, 1, . . . , L − 1. For every κk there are N eigenstates, which gives together NL

eigenstates. For N = 2 internal states208 the eigenvalues are given by

λ±,k =
eiβ

√
2

[
cos(α + 2kπ/L)± i

√
1 + sin2(α + 2kπ/L)

]
, (14)

with

α = (1 + ϕq + ϕp)π/2, β = (1 + ϕq + ϕp − 2ϕqϕp)π/2 = α− πϕqϕp. (15)

Clearly, λ = eiω lie on the unit circle and the “quasi-energies” ω lie in two bands of
length π/2 symmetric with respect to the center of the unit circle. The exact location
depends upon the phases ϕq, ϕp and is given by ω − β ∈ [π/4, 3π/4] ∪ [5π/4, 7π/4].
When α is an integer multiple of π/L the spectrum is doubly degenerate. This non-
generic case happens for instance for the most common choices of phases (ϕq =
ϕp = 1/2 for every lattice, or ϕq = ϕp = 0 for even lattices).
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Fig. 4. Eigenspectra of closed quantum multibaker maps for chains of length L = 101 cells with
periodic boundary conditions. (a) Periodic case with phases ϕq = ϕp = 1/2, α = π, β = 3π/4. (b)
One realization of the random case with ϕq(n) = ϕp(n) ∈ [0, 1[.

To analyze the spectrum and the structure of eigenstates of open systems and
of the disordered case it is convenient to rephrase the eigenvalue problem in terms
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of transfer matrices12,150,182,208. We will restrict ourselves to the dyadic quantum
multiplexer map to balance between generality and clarity.

Dyadic quantum multiplexer is defined locally by
[

Ψ+(n, t + 1)
Ψ−(n, t + 1)

]
= B(n)

[
Ψ+(n− 1, t)
Ψ−(n + 1, t)

]
, (16)

where the local scattering operators B(n) can be decomposed as

B(n) =
[

B+
+(n) B+

−(n)
B−

+(n) B−
−(n)

]
.

Symbol Bα
β(n) denotes the N/2×N/2 block of the operator B in the basis |n, α, i〉

consisting of elements B(n,α,i),(n,β,j) ≡ 〈n, α, i|B|n, β, j〉. Similarly Ψα(n) is the N/2
vector consisting of elements 〈n, α, i|Ψ〉. The notation is motivated by the fact that
Ψα(n) is transferred in one time step into Ψ±(n + α). We write ± for ±1. Thus the
eigenvalue equation for the system can be written as

λ

[
Ψ+(n)
Ψ−(n)

]
=

[
B+

+(n) B+
−(n)

B−
+(n) B−

−(n)

] [
Ψ+(n− 1)
Ψ−(n + 1)

]
. (17)

We can rewrite this equation in terms of transfer matrix Tλ(n) so that
[

Ψ+(n)
Ψ−(n + 1)

]
= Tλ(n) ·

[
Ψ+(n− 1)

Ψ−(n)

]
(18)

with

Tλ(n) =
[ {B+

+(n)−B+
−(n)[B−

−(n)]−1B−
+(n)}/λ B+

−(n)[B−
−(n)]−1

−[B−
−(n)]−1B−

+(n) λ[B−
−(n)]−1

]
. (19)

With the help of transfer matrices we can rewrite the equation for eigenvalues for
general dyadic quantum multiplexer map with periodic boundary conditions (but
not necessarily regular) as

det(I−
L−1∏
n=0

Tλ(n)) = 0, (20)

where I is the N ×N identity matrix.
For a regular system where Tλ(n) ≡ Tλ this is equivalent to the statement that

one of the eigenvalues of Tλ is L-th root of 1. In the special case of N = 2 quantum
multibaker208

B(n) =
1√
2

[
e−iπϕqϕp eiπϕq(1−ϕp)

eiπϕp(1−ϕq) eiπ(1+ϕq+ϕp−ϕqϕp)

]
(21)

the transfer matrix takes form

Tλ(n) =
[√

2e−iπϕqϕp/λ −e−iπϕp

e−iπϕq
√

2λe−iπ(1+ϕq+ϕp−ϕqϕp)

]
. (22)
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The eigenvalues χ of T satisfy equation

χeiα +
1

χeiα
=
√

2
(

λ

eiβ
+

eiβ

λ

)
. (23)

Then, the condition (20) implies χL = 1. Solving (23) for λ we obtain (14) again.

The structure of eigenstates reflects the periodicity of the lattice:
[

Ψ+(0)
Ψ−(1)

]
for

k-th eigenstate is the eigenvector of Tλ corresponding to χk = exp(i2πk/L), and
Ψ±(n) = χn

kΨ±(0).
In random system, where the phases ϕq, ϕp defining the map are chosen ran-

domly from a uniform distribution on unit interval at each cell, one has to consider
the distribution of all the possible products.The numerically obtained quasi-energy
spectrum for one example realization is illustrated in Figure 4 (b) and can be com-
pared with that for the uniform case. In this case it is of interest to rewrite the
eigenequations in yet another form to separate the Ψ+ from Ψ− states. The result
is similar in form to the Anderson model7,208. For Ψ+ we obtain[

Ψ+(n)
Ψ+(n− 1)

]
=

[
K(n, n− 1) L(n, n− 1)

I O

]
·
[

Ψ+(n− 1)
Ψ+(n− 2)

]
, (24)

where

K(n, n− 1) = λ−1B+
+(n)− λ−1B+

−(n)[B−
−(n)]−1B−

+(n)

+λB+
−(n)[B−

−(n)]−1[B+
−(n− 1)]−1,

L(n, n− 1) = −B+
−(n)[B−

−(n)]−1[B+
−(n− 1)]−1B+

+(n− 1).

In the case N = 2 we can evaluate these expressions as

K =
√

2e−iα

[
1
λ

eiβ + λe−iγe−i(β̃−γ̃)

]

L = −e−i(γ+α)ei(γ̃−α̃)

where γ = (ϕp − ϕq)π/2, and the variables with tilde are defined in terms of the
phases from cell n − 1, ϕq(n − 1), ϕp(n − 1). We rewrite this equation so that it
takes the form a dynamical problem, where the cell index n plays the role of the
time step

Ψ+(n) = 2
√

2eiϕ1 cos(ϕ3)Ψ+(n− 1)− eiϕ2Ψ+(n− 2),

or, using transfer matrices,
[

Ψ+(n)
Ψ+(n− 1)

]
=

[
2
√

2eiϕ1 cos(ϕ3) −eiϕ2

1 0

] [
Ψ+(n− 1)
Ψ+(n− 2)

]
. (25)

The phases are given by

ϕ1 = −α + (β − γ)/2− (β̃ − γ̃)/2,

ϕ2 = −(γ + α) + (γ̃ − α̃),

ϕ3 = ω − (β + γ)/2− (β̃ − γ̃)/2.
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The transfer matrix can also be written as
[

eiϕ1 0
0 1

] [
2
√

2 cos(ϕ3) −1
1 0

] [
1 0
0 eiϕ2

]
(26)

to make the similarity with Anderson model more apparent.
As expected, the eigenstates are localized with localization becoming more pro-

nounced with increasing length L of the system. Figure 5 shows three sample eigen-
states of a realization of the quantum random multibaker of length L = 101 with
periodic boundary conditions on logarithmic (a) and regular (b) scale. Absolute
values of Ψ+(n) are shown. Absolute values of Ψ−(n) are not shown because they
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Fig. 5. Three examples out of 202 eigenstates of a realization of the quantum random multibaker
of length L = 101 and N = 2 with periodic boundary conditions on logarithmic (a) and regular
(b) scale. Absolute values of Ψ+(n) are shown.

are almost identical (the difference is on the order of less than 10−6). To understand
this phenomenon let us investigate the currents associated with the eigenstates.

From the evolution equation (16) and unitarity of B(n) we can calculate the
change in the probability density at a given lattice site due to the flow between the
site and its neighbors

%(n, t + 1)− %(n, t) = Jn−1|n − Jn|n+1, (27)

where %(n, t) = %+(n, t) + %−(n, t), %ε(n, t) = Ψε(n, t)†Ψε(n, t), for ε = ±, and the
current

Jn−1|n(t) = %+(n− 1, t)− %−(n, t) (28)

is the difference between the probability incoming from site n− 1 to site n and the
probability outgoing from n to n− 1.

For stationary solutions such as eigenstates and steady states discussed later

on the current is independent of time. Moreover, since T †n

[−1 0
0 1

]
Tn =

[−1 0
0 1

]
,

the current between every two neighbors is the same for a given eigenstate. The
distribution of the current values for different eigenstates for systems of length
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L = 128, 256, 512, 1024 superimposed for regular and random QMBs with N = 2
is shown at Figure 6(a). We observe that the distribution of currents is scaling
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Fig. 6. (a) Distribution of the current values for different eigenstates for systems of length L =
128, 256, 512, 1024 superimposed for regular and random QMBs with N = 2. (b) The mean current
for the same systems where the average has been taken over all the states for the given system.

inversely with the system size L, in both random and regular case. However, the
difference in values between the two cases is six orders of magnitude. To take this
into account each distribution in Figure 6 (a) is multiplied by system length and
rescaled to fit in the interval [0, 1]. Figure 6 (b) shows the mean current with average
taken over all the states. It shows how the system properties dramatically change
with the increase of its size.

4.2. Regular case with absorbing boundary conditions: escape rate

To study the properties of quantum multiplexer maps with absorbing boundary
conditions we find it most convenient to use the formulation of dynamics in terms
of transfer matrices (18). Here we consider dyadic quantum multiplexer maps with
open boundaries. In the classical case, open boundaries are important for the appli-
cation of the escape-rate formalism of Gaspard and Nicolis83 which relates the rate
of decay of the initial number of particles on a large, open chain to the diffusion
coefficient, and then to the Lyapunov exponents and the Kolmogorov-Sinai entropy
of trajectories on a fractal repeller, i.e. the set of initial points for trajectories that
never leave the chain46,74.

Let us consider dyadic quantum multiplexer defined locally by eq. (16) in the
cells n = 1, 2, . . . , L − 2. At the boundary the states which would be transmitted
out of the chain are absorbed, that is we require

[
Ψ+(0, t + 1)
Ψ−(0, t + 1)

]
= B(0)

[
ON

2 ×1

Ψ−(1, t)

]
, (29)
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and
[

Ψ+(L− 1, t + 1)
Ψ−(L− 1, t + 1)

]
= B(L− 1)

[
Ψ+(L− 2, t)
ON

2 ×1

]
. (30)

This way the probability to remain in the system decays since nothing enters the
system from the outside and |Ψ−(0, t)|2 + |Ψ+(L− 1, t)|2 are absorbed. Due to the
escape of probability density, the eigenvalues which determine the time dependence
of the probability density in each cell move to the interior of the unit circle.

If λ is an eigenvalue of the system and Ψ the corresponding eigenstate then (18) is
satisfied with Tλ(n) given by (19). Taking into account the boundary conditions (29)
and (30) we obtain

[
Ψ+(L− 1)

0 N
2 ×1

]
= Tλ(L− 1) · . . . · Tλ(1) · Tλ(0) ·

[
0 N

2 ×1

Ψ−(0)

]
. (31)

Therefore, the condition defining the spectrum and the eigenstates can be phrased
as follows: λ is an eigenvalue if det V = 0, where

V = [ON
2 ×N

2
IN

2 ×N
2

] · Tλ(L− 1) · . . . · Tλ(1) · Tλ(0) ·
[
ON

2 ×N
2

IN
2 ×N

2

]
, (32)

and Ψ−(0) is the eigenstate of V belonging to its kernel.
In case of regular dyadic quantum multibaker map in the deep quantum regime,

i.e. for B(n) ≡ B a quantum baker map with fixed phases and for N = 2, one can
get more analytical insight208. In this case B and T are given by the equations (21)
and (22). The eigenvalues χ± of T and λ of the whole system satisfy eq. (23). If we
set u = χeiα, v = λ/eiβ we obtain the relation between u and v

v +
1
v

=
1√
2

[
u +

1
u

]
, (33)

The two solutions u+, u− satisfy u+u− = 1, and u+ + u− =
√

2[v + 1/v]. Since
|v| = |λ| < 1, it follows that u+, u− do not lie on the unit circle. In particular, they
must be different and so the matrix T is non-degenerate. We take |u+| > 1 > |u−|
to define them uniquely, and use u± = χ±eiα. If we set u± = e±iκ, and then solve
for v we obtain

v± =
1√
2

[cos κ± i
√

1 + sin2 κ]. (34)

Interesting solutions are those where κ is not purely real, that is, κ ∈ C \ R. Then
the product TL is given by

TL =
χL

+ − χL
−

χ+ − χ−
T − χ−χL

+ − χ+χL
−

χ+ − χ−
I

=
e−iαL

sin κ

{
sin LκT eiα − sin(L− 1)κ I

}

=
e−iαL

sin κ

{
sin(Lκ)

[ √
2/v −ei(α−πϕp)

ei(α−πϕq)
√

2v

]
− sin((L− 1)κ)

[
1 0
0 1

]}
(35)
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Therefore det V = 0 implies
√

2v sin Lκ− sin(L− 1)κ = 0.

With the help of (33) we obtain a very simple equation

sin2 Lκ + sin2 κ = 0. (36)

The only real solutions of this equation are κ = kπ, k ∈ Z, but, as mentioned above,
they must be discarded. If we write Eq. (36) as

sin Lκ = iδ sin κ, (37)

where δ = ±1, we can solve it perturbatively expanding κ in powers of δ about
κ = kπ/L, k = 1, . . . , L− 1 at the end setting δ = ±1. This approach gives results
which quickly converge numerically, for all allowed values of k. In the second order
of approximation we obtain208

λ =
eiβ

√
2

(
a + iδ

√
1 + b2

)
exp

{
− b2

L
√

1 + b2

}
exp

{
− iδab2

(
2 b2 + 3

)

2L2 (1 + b2)3/2

}
, (38)

where a = cos(kπ/L) and b = sin(kπ/L). The non-exponential factor on the right
hand side is the unperturbed solution. Figure 4.2 shows the absolute value of v (in
the fourth order approximation).
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Fig. 7. Amplitude versus argument of the eigenvalues of an open quantum multibaker chain of
length L = 101, N = 2 in the fourth order of approximation.

Another estimate of the eigenvalues nearest to the unit circle (k ∈ {1, L−1, L+
1, 2L− 1}) in the large-size limit can be obtained through an expansion of Eq. (37)
in powers of L−1. While this leads to an asymptotic solution for v which quickly
diverges for most k, it gives us a faster converging approximation for the leading
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order behavior of k ¿ L

v(k) ≈ exp
[
±i

(
π

4
+

k2π2

2L2

)]
exp

−k2π2

L3
. (39)

The escape of probability density from an open system asymptotically is dominated
by the eigenvalue closest to the unit circle. Therefore the escape rate

γ := − lim
t→∞

log P (t)
t

(40)

of the regular quantum multibaker map is given by

γ = − log |v(1)|2 ≈ 2π2

L3
. (41)

Thus even though the motion inside the quantum multibaker is faster (ballistic)
than in the corresponding classical system (diffusive), the effusion (decay of prob-
ability density) is slower than that for the corresponding classical system74

γclass =
π2

2L2
. (42)

In their study of quantum scattering resonances for an open, periodic chain of
scatterers, in high energy limit Barra and Gaspard12 found that the logarithms of
the magnitudes of the eigenvalues can be bounded above and below by functions
that scale as 1/L. They expect that the lower bound, given by the eigenvalues in
the middle of the band, should hold also for lower energiesc. On the other hand, the
upper bound, which gives the escape rate, is given by the resonances near the edges
of the bands which are harder to estimate at low energies. Therefore this bound is
more difficult to control.

This reasoning is consistent with our findings. In our case, the eigenvalues of the
smallest magnitude are those for which to k ≈ ±L/2 (the middle of the band; see
Figure 4.2). Thus their magnitude can be estimated from (38) setting a = 0, b = 1
and therefore their logarithms scale as 1/L. On the other hand, the eigenvalues of
largest magnitude, which give the escape rate, lie at the edges of the band.

The discrepancy between our results is not surprising because the high-energy
limit corresponds to semi-classical limit for our system, while here we consider the
extreme quantum case.

4.3. Regular case with flux boundary conditions:

steady states, continuity equation, and the current

Let us now consider transmission through a dyadic quantum multiplexer. We
take the system of length L and couple it at both ends to infinitely conducting
leads69,187,208. We model the leads by a local operator proportional to identity and
assume traveling waves in the leads moving to the right and to the left. Thus to the

cP. Gaspard, private communication
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time t+1
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Fig. 8. Scattering from a quantum multibaker. Local scattering operators B(n) in cells 0 to L−1
are given by quantum baker maps. Local dynamics in the leads is trivial, B(n) ∝ I.

left of the chain, n < 0, we have a traveling wave

Ψ+(n, t) = Aei(ωt−kn), (43)

Ψ−(n, t) = Bei(ωt+kn), (44)

and to the right of the chain, n > L− 1, the wave is given by

Ψ+(n, t) = Cei(ωt−kn), (45)

Ψ−(n, t) = Dei(ωt+kn). (46)

Here A, D, are the amplitudes of the incoming waves, while B, C, are the amplitudes
of the outgoing waves. Such solutions are consistent with the quantum multiplexer
framework as described in Section 3.3 with local operators B(n) given by ei(ω−k)I

for n > L− 1 and n < 0.
The dynamics inside the system is again given by eq. (16) with the boundary

conditions induced by the incoming currents:

Ψ+(−1, t) = Aei(ωt+k), (47)

Ψ−(L, t) = Dei(ωt+Lk). (48)

We will use a scattering approach to find the outgoing amplitudes, B,C, for the
steady state solution, as well as to solve the problem of the relaxation of some initial
state to a steady state. First we consider the steady state solution for the quantum
multibaker chain with conducting leads.

The steady state solution is defined by the condition that the time dependence
of the wave function can be incorporated in a time dependent phase factor. This
is consistent with the boundary conditions only when Ψ±(n, t + 1) = eiωΨ±(n, t)
which implies Ψ±(n, t) = eiωtΨ±(n), where we write Ψ±(n) ≡ Ψ±(n, 0). Therefore,
the steady state equation has the same form as the eigenvalue equation for a closed
system (17) with eiω replacing λ:

eiω

[
Ψ+(n)
Ψ−(n)

]
=

[
B+

+(n) B+
−(n)

B−
+(n) B−

−(n)

] [
Ψ+(n− 1)
Ψ−(n + 1)

]
. (49)
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The transmission and reflection coefficients for the chain can be expressed in
terms of the scattering S-matrix, given by

[
Ψ−(0)

Ψ+(L− 1)

]
= S0,L−1

[
Ψ+(−1)
Ψ−(L)

]
, (50)

where the elements of S-matrix are

S0,L−1 =
[

r0,L−1 t′0,L−1

t0,L−1 r′0,L−1

]
. (51)

Here the unprimed coefficients refer to waves incident on the left end of the chain,
while the primed quantities refer to the waves incident on the right side of the
chain. The transmission and reflection coefficients, T, T ′, R,R′ respectively, are then
obtained from the elements of S by

T = |t0,L−1|2, R = |r0,L−1|2, (52)

and similarly for the primed quantities. Unitarity of S implies T = T ′, R = R′.
In order to calculate the S-matrix, S0,L−1, for the chain, we proceed as for the
absorbing case, by looking at the transfer and scattering matrices for one cell, and
building up the matrices for the chain by iteration, cell by cell. Consider the cell
labelled by the index n. The S-matrix for the n-th cell is given by

[
Ψ−(n)
Ψ+(n)

]
= Sn

[
Ψ+(n− 1)
Ψ−(n + 1)

]
, (53)

and the transfer T -matrix is[
Ψ+(n)

Ψ−(n + 1)

]
= Tn

[
Ψ+(n− 1)

Ψ−(n)

]
. (54)

Each of the matrices can be given in terms of the other, thus,

S =
[

r t′

t r′

]
⇒ T =

[
t− r′t′−1

r r′t′−1

−t′−1
r t′−1

]
, (55)

T =
[

α γ

β δ

]
⇒ S =

[ −δ−1β δ−1

α− γδ−1β γδ−1

]
. (56)

From the dynamical equations (17) we obtain the S-matrix immediately
[

Ψ−(n)
Ψ+(n)

]
= e−iω

[
B−

+(n) B−
−(n)

B+
+(n) B+

−(n)

] [
Ψ+(n− 1)
Ψ−(n + 1)

]
. (57)

which leads to the transfer matrix (19)

T (n) =
[

e−iω{B+
+(n)−B+

−(n)[B−
−(n)]−1B−

+(n)} B+
−(n)[B−

−(n)]−1

−[B−
−(n)]−1B−

+(n) eiωB−
−(n)

]
. (58)

Specializing to the case N = 2 these matrices take the form

Sn =
e−iω

√
2

[
eiπϕp(1−ϕq) eiπ(1+ϕq+ϕp−ϕqϕp)

e−iπϕqϕp eiπϕq(1−ϕp)

]
(59)
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and

Tn =
[√

2e−iωe−iπϕqϕp −e−iπϕp

e−iπϕq
√

2eiωe−iπ(1+ϕq+ϕp−ϕqϕp)

]
. (60)

which is equivalent to (22) if we replace λ with eiω.
The scattering matrix for the whole multibaker S0,L−1 can easily be derived

from T0,L−1 := TL−1 · . . . · T1 · T0. Its unitarity can also be verified. For the regular
system

T0,L−1 = TL =
χL

+ − χL
−

χ+ − χ−
T − χ−χL

+ − χ+χL
−

χ+ − χ−
I (61)

where χ± are roots of characteristic polynomial of T

χ± = e−iα[
√

2 cos(β − ω)±
√

cos 2(β − ω)], (62)

and α, β are given by Eq. (15). Depending on the sign of cos 2(β − ω) there are
two types of solutions: if the frequency of the incident wave falls in one of the
quasi-energy bands

cos 2(β − ω) < 0 ⇔ ω − β ∈ [π/4, 3π/4] ∪ [5π/4, 7π/4], (63)

we have the oscillatory case with some interesting structure. Otherwise, when the
frequency of the incident wave falls in the gap, we observe almost total reflection
of particles coming from the leads to the chain, becoming total as L → ∞ (the
exponential case).

(1) If cos 2(β − ω) < 0 (oscillatory case), the characteristic roots are:

χ± = e−iα[
√

2 cos(β − ω)± i
√
− cos 2(β − ω)], (64)

thus |χ±|2 = 1. Set χ± = e−iαe±iκ. Then the scattering matrix for the chain
becomes,

S0,L−1 =
1
zL

[− sin Lκ ei(α−πϕq) sin κ eiαL

sin κ e−iαL − sin Lκ ei(α−πϕp)

]
. (65)

To simplify the formulas we introduce symbol

zn ≡ rneiϕn :=
√

2 sin nκe−i(β−ω) − sin κ(n− 1) (66)

= cos κn sin κ− iε sin nκ
√

1 + sin2 κ,

where ε = ± is the sign of sin(β − ω). Some of its properties are given in Ap-
pendix A. Then the transmission and reflection coefficients are

R =
sin2 Lκ

sin2 κ + sin2 Lκ
=

1
1 + sin2 κ

sin2 Lκ

, (67)

T =
sin2 κ

sin2 κ + sin2 Lκ
=

1
1 + sin2 Lκ

sin2 κ

. (68)

Some interesting special cases occur when:
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(a) κ = mπ + π/2, L odd: T = 1/2,
(b) κ = mπ + π/2, L even: T = 1 ,
(c) κ = mπ: T = 1/(1 + L2) ,
(d) κ = mπ/L: T = 1,

for integer m. We will refer to the cases when T = 1 as transmission resonances.
They occur when sin Lκ = 0. On the other hand, one can see from Eq. (65)
that the S-matrix has poles when Eq. (36) is satisfied. Hence the poles of the
S-matrix determine the eigenstates of the open system.

(2) In the exponential case, when cos 2(β−ω) > 0, we have |χ±|2 ≥ 1, and χ+χ∗− =
1, so that |χ−| = 1

|χ+| . Then the transmission and reflection coefficients are

R =
(|χ+|L − |χ−|L)2

(|χ+|L − |χ−|L)2 + (|χ+| − |χ−|)2 (69)

≈ 1− |χ−|2(L−1) ≈ 1, (70)

T =
(|χ+| − |χ−|)2

(|χ+|L − |χ−|L)2 + (|χ+| − |χ−|)2 (71)

≈ |χ−|2(L−1) ≈ 0. (72)

4.3.1. Density profile in the steady state

As mentioned above, the oscillatory case provides some interesting structures, illus-
trating the interference between waves traveling to the right and left along the chain.
The algebra is tedious but straightforward, and we don’t reproduce it here, merely
stating the final results. Appendix A contains some formulas involving expression
zn useful for the following calculations.

The wave function in the steady state is

Ψ+(n) =
e−iα(n+1)

zL
[zL−n−1Ψ+(−1)− eiαLei(α−πϕp) sin(n + 1)κ Ψ−(L)],

Ψ−(n) =
eiα(L−n)

zL
[−e−iαLei(α−πϕq) sin κ(L− n) Ψ+(−1) + znΨ−(L)].

We introduce the probability densities, %L and %R from the left and right leads,
respectively, in terms of the corresponding wave functions, by writing Ψ+(−1) =√

%L, Ψ−(L) =
√

%Reiη, where η denotes a relative phase between the wave functions
at the two ends. Then, introducing the angle ϕ = π(ϕq−ϕp)/2 +αL+ η, we obtain
the total probability density at cell n

%(n) =
sin2(L− n− 1)κ + sin2(L− n)κ + sin2 κ

|zL|2 %L +
sin2 κn + sin2 κ(n + 1) + sin2 κ

|zL|2 %R

+i

√
%L%R

|zL|2
{

sin(L− n)κ [zneiϕ − z∗ne−iϕ]− sin(n + 1)κ [z∗L−n−1e
iϕ − zL−n−1e

−iϕ]
}

=
sin2(L− n− 1)κ + sin2(L− n)κ + sin2 κ

|zL|2 %L +
sin2 κn + sin2 κ(n + 1) + sin2 κ

|zL|2 %R
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+2
√

%L%R

|zL|2 {sin(L− n)κ rn sin(ϕ + ϕn) + sin(n + 1)κ rL−n−1 sin(ϕ + ϕL−n−1)} .

At resonance (κ = mπ/L) it takes form

%(n) =
(

1 +
sin2 κn + sin2 κ(n + 1)

sin2 κ

)
(%L + %R) (73)

+2
√

%L%R

sin2 κ
cos mπ[sin(n + 1)κ rn+1 sin(ϕ + ϕn+1) + sin nκ rn sin(ϕ + ϕn)].

Figure 9 shows this solution (crosses) together with the probability density of the
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Fig. 9. Profile of the probability density in the steady state for the smallest and the fourth
resonances κ = kπ/L with k = 1, 4 (stars). Also shown is the probability density of the bottom
(full boxes) and the top states (open circles). We took %L = 0.1, %R = 0.9, η = 0. The horizontal
axis range is [−5, 105].

“plus” states (open circles) and the “minus” states (closed squares). For the smallest
resonance (k = 1) the probability distribution achieves maximum around n = L/2
where it is approximately 2L2/π2 for ϕ = π/2.

These results are clearly connected to the slow probability escape ∝ 1/L3. To
understand them consider a plane wave coming from the left with a resonant fre-
quency going through the open quantum multibaker. Thus at every time step we
inject the same density inside. The wave travels ballistically inside and when it
reaches the end is mostly reflected, partially transmitted. Due to the fast motion
inside and slow decay the density accumulates in the multibaker and reaches the
steady state when the escape on the right balanced the injection on the left. The
probability density of the resulting standing wave is given by Eq. (73). This result
is very striking in comparison with the linear profile of probability density observed
in the classical case69,74,187.

Finally let us observe that in the steady state the current (28) is given by

Jn−1|n =
1

|zL|2
{

sin2 κ(%L − %R) + 2
√

%L%R sin ϕ sin κ sin Lκ
}

.

Thus it is independent of the position in the chain, as for the eigenstates. In the
resonant case, when κ = mπ/L this further simplifies to Jn−1|n = %L − %R.
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4.3.2. Relaxation to steady states

The approach to the steady state can be conveniently studied as a spectral problem:
the evolution equations for the quantum multibaker with two waves scattering from
left and right can be written as

Ψ̂(t) = M̂LΨ̂(t− 1) + Φ, (74)

where Ψ̂(t) := e−iωtΨ(t). M̂L is the matrix representation of the open multibaker
propagator satisfying[

Ψ̂+(n, t + 1)
Ψ̂−(n, t + 1)

]
= e−iω

[
B+

+(n) B+
−(n)

B−
+(n) B−

−(n)

][
Ψ̂+(n− 1, t)
Ψ̂−(n + 1, t)

]
, (75)

for 1 ≤ n ≤ L− 2, while at the boundary

Ψ̂+(0, t + 1) = e−iωB+
−(0)Ψ̂−(1, t),

Ψ̂−(0, t + 1) = e−iωB−
−(0)Ψ̂−(1, t),

Ψ̂+(L− 1, t + 1) = e−iωB+
+(L− 1)Ψ̂+(L− 2, t),

Ψ̂−(L− 1, t + 1) = e−iωB−
+(L− 1)Ψ̂+(L− 2, t).

Vector Φ denotes the steady state boundary conditions:
Φ = [Φ+(0), Φ−(0), . . . , Φ+(L− 1), Φ−(L− 1)]T , where

Φ+(0) = e−iωB+
+(0)Φ+(−1),

Φ−(0) = e−iωB−
+(0)Φ+(−1),

Φ+(L− 1) = e−iωB+
−(L− 1)Φ−(L),

Φ−(L− 1) = e−iωB−
−(L− 1)Φ−(L),

Φ±(n) = 0 otherwise. The solution to this simple affine problem is

|Ψ̂(t)〉 =
∑

λk

1− λt
k

1− λk
|ϕk〉〈ϕk|Φ〉+

∑

λk

λt
k|ϕk〉〈ϕk|Ψ̂(0)〉, (76)

where λk are the ω-dependent eigenvalues of M̂L and the |ϕk〉 are the corresponding
eigenvectors. In particular, if at time 0 the system is empty, Ψ̂(0) = 0, then the
solution is

|Ψ̂(t)〉 =
∑

λk

1− λt
k

1− λk
|ϕk〉〈ϕk|Φ〉. (77)

The steady state is the time invariant part of the above solution

|Ψ̂〉 =
∑

λk

1
1− λk

|ϕk〉〈ϕk|Φ〉. (78)

The approach to the steady state is given by the eigenvalues of the open multi-
baker (38), thus it is as slow as the escape of probability density, which is consistent
with the accumulation of large probability density in the system. Note that the
distribution of the absolute values of the eigenvalues of M̂L is ω independent, yet
the steady state solution does depend on ω.
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4.4. Mean square displacement

4.4.1. Introduction

The usual approach to classical and quantum transport is through the linear re-
sponse theory129,163,213 where one considers the response of the system to a small
perturbation of the dynamics due to the external field. This leads to the formulas
for transport coefficients involving integrals of various autocorrelation functions. We
have used a similar approach to study the transport of a quantum particle mov-
ing on a lattice according to a “potential” which classically leads to random walk
type of motion. In this case there is no external field, thus we cannot use linear
response approach directly. Instead, we proceed analogously as in the classical case.
To measure the diffusion of an ensemble of classical particles we use the mean square
displacement, which is 〈(xt − x0)2〉%, where % is the initial ensemble which can be
localized or uniform (equilibrium ensemble). Since it is not meaningful to speak of
a trajectory of a quantum particle, we use the formula (∆x)2t := 〈Ψ|(x̂t − x̂0)2|Ψ〉
for the mean square displacement (MSD) of the quantum particle. Here x̂t is the
position operator in Heisenberg representation. In Schrödinger representation this
formula takes the form

(∆x)2t = 〈x2〉t + 〈x2〉0 − 2<
∫

dΦ 〈Ψt|x|Φt〉〈Φ|x|Ψ〉, (79)

where 〈A〉t := 〈Ψt|A|Ψt〉. To get a better feeling for this quantity and to compare
it to other measures of “spread” which are used to characterize the dynamics of
quantum walks, consider a simple example. Take a Gaussian wave-packet initially
localized at ξ with spread ∆x moving with average momentum κ:

Ψ(x, t) =
[√

2π

(
∆x +

i~t
2m∆x

)]− 1
2

exp

[
− (x− ξ − κt

m )2

4∆x(∆x + i~t
2m∆x )

+
iκ

~

(
x− κt

2m

)]
.(80)

Thus 〈x〉0 ≡ 〈Ψ0|x|Ψ0〉 = ξ, 〈p〉0 = κ, 〈x2〉0 − 〈x〉20 = (∆x)2, 〈(∆p)2〉0 =
( ~

2∆x

)2
.

Since the motion is free, the center of motion moves with the average velocity
〈x〉t ≡ 〈Ψt|x|Ψt〉 = ξ + κt/m, or 〈x〉t−〈x〉0 = κt/m. On the other hand, due to the
spread in momenta, the wave-packet spreads ballistically: (∆xt)2 ≡ 〈x2〉t − 〈x〉2t =
(∆x)2 + ( ~t

2m∆x )2 = (∆x)2 + ( ∆p
2m t)2. It is straightforward to evaluate formula (79)

for the wavepacket (80):

(∆x)2t = |zt − z0e
−iωt|2 + |xt − x0e

−iωt|2,
where zt = ∆x + i~t

2m∆x , xt = 〈x〉t = ξ + κt/m, and ω = κ2

2m~ . Therefore, the mean
square displacement indicates the summary effect of transport due to the motion
of the center of the wavepacket and of the spread of the wave-packet due to the
distribution of momenta. For large times we have

(∆x)2t ≈
(

κt

m

)2

+
(

~t
2m∆x

)2

.

Both contributions are ballistic but the coefficients are different because of their
different causes.
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4.4.2. Mean square displacement for quantum multiplexer maps

To calculate the mean square displacement for the quantum multiplexer map we
use the operators r and v := M†rM−r, which represent the position of the particle
on the lattice and its velocity, respectively. Explicitly,

r =
∑
n,ε

nIsε ⊗ |n, ε〉〈n, ε|, (81)

v =
∑
n,ε

εIsε
⊗ |n, ε〉〈n, ε|, (82)

(see Appendix B). We use here periodic boundary conditions, therefore we make the
velocity operator periodic, so that (81) and (82) holds also for the sites n = 0, L−1.
An identical form for the velocity occurs in the classical multibaker map as well46.

Then the mean square displacement takes form

〈(∆r)2(t)〉Ψ = 〈(
t−1∑
τ=0

vτ )2〉Ψ =
t−1∑

τ1,τ2=0

〈vτ1vτ2〉Ψ, (83)

where 〈A〉Ψ := 〈Ψ|A|Ψ〉 = Tr (|Ψ〉〈Ψ|A). The result depends on the initial state.
To characterize the distribution of possible results we calculate its average over all
the initial states. This average is our central quantity of interest, the equilibrium
mean square displacement

〈(∆r)2(t)〉 =
t−1∑

τ1,τ2=0

〈vτ1vτ2〉, (84)

where 〈A〉 := Tr (%eqA) = Tr (A)/LN . Time invariance of the equilibrium state
%eq = INL/(LN) implies invariance of the velocity autocorrelation function Cτ1,τ2 :=
〈vτ1vτ2〉 = Cτ1−τ2,0 = C0,τ1−τ2 ≡ Cτ1−τ2 . Thus we can write

〈(∆r)2(t)〉 =
t−1∑
τ=0

C0 + 2
t−1∑

τ1>τ2=0

Cτ1−τ2 = C0t + 2
t−1∑
τ=1

(t− τ)Cτ . (85)

where now

Cτ := 〈vτv0〉 = 〈M†τvMτv〉. (86)

Therefore the mean square displacement can be written as the sum of time correla-
tions of the velocity, just as in the classical case, but the difference in dynamics will
lead to important differences in its time development. Using the eigenstates of the
quantum multibaker we can further write the velocity autocorrelation function as

Cτ =
1

LN

∑

j,k

|vjk|2ei(ϕj−ϕk)τ . (87)

We can now write the mean square displacement as

〈(∆r)2(t)〉 = C0t + t(t− 1)
1

LN

∑

j

|vjj |2 +
4

LN

∑

j>k

|vjk|2
t−1∑
τ=1

τ<ei(ϕj−ϕk)(t−τ) (88)
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=
1

LN

∑

j,k

|vjk|2
sin2 (ϕj−ϕk)t

2

sin2 ϕj−ϕk

2

. (89)

Whenever two eigenphases ϕj , ϕk are equal, the contribution to the sum from
sin2 (ϕj−ϕk)t

2

sin2 ϕj−ϕk
2

must be replaced by t2.

4.4.3. General properties of equilibrium mean square displacement

Using formulas (88) and (89) it is easy to see that the time-dependent mean square
displacement for any quantum multiplexer map has to satisfy

(1) 〈(∆r)2(0)〉 = 0,
(2) 〈(∆r)2(1)〉 = C0,
(3) 0 ≤ 〈(∆r)2(t)〉 ≤ C0t

2.

In fact, these results are true in both quantum and classical case. Moreover, it is
possible to find local dynamics which realize both of the extremal cases classically
and quantum mechanically. As an example consider dyadic multiplexers. As the
local scattering map take a right-left exchange operator, defined classically by

B(n, x, y) :=
{

(n, x + 1/2, y), for 0 ≤ x < 1/2,

(n, x− 1/2, y), for 1/2 ≤ x < 1,

and quantum mechanically by

B :=
[
O I
I O

]
.

Then the particle jumps between two neighboring sites, which leads to the mean
square displacement having values 0 for even and 1 for odd times.

On the other hand, taking identity for the local operator, we induce trivial
ballistic motion: particle starting in the state going initially to the right will keep
on going to the right, which leads to ballistic transport:

〈(∆r)2(t)〉 = t2.

Therefore, we see that translational invariance of the coupling operator T allows,
in principle, for large asymptotic freedom:

〈(∆r)2(t)〉 ∝ tα,

where 0 ≤ α ≤ 2 d. An interesting question is, what behavior can be realized
in practice. While no constraints seem to be imposed on the classical level, the
structure of the quantum mean square displacement, Eq. (89), suggests that for fixed
~ only α = 0 or α = 2 are viable. One of the questions it raises is what conditions

dA more precise statement is: there exists a constant α ∈ [0, 2] such that limt→∞〈(∆r)2(t)〉/tβ =
∞ for β < α, and limt→∞〈(∆r)2(t)〉/tβ = 0 for β > α.
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need to be imposed on the internal dynamics so that the semi-classical limit leads to
anomalous diffusion α 6= 1. Can such behavior be obtained for infinite length regular
quantum multiplexer maps? Random Matrix Theory results for regular quantum
multiplexer maps209,210 (Section 4.4.4) suggest that internal fully chaotic dynamics
(mixing) of the classical map implies generically diffusion. We are thus led to believe,
that anomalous diffusion can arise in semi-classical limit in systems with partially
chaotic, partially integrable internal dynamics. Similar observations were made often
before in the context of different types of systems and transport in phase space as
opposed to the transport in real space, which we discuss here. More precise results
require further study.

For a related classical discrete dynamical system one can show the diffusive
character of the dynamics in a rather general case134e. Consider dynamics generated
by ϕ : R → R, and an observable f : R → R, for instance coarse position r ≡ [x].
The spectral function

S(ω) =
1

2π

+∞∑
t=−∞

e−iωtC(t)

is the Fourier transform of the correlation function C(t) = 〈(f ◦ ϕt − 〈f〉)(f − 〈f〉)〉.
Then the variance of the displacement can be written as

σ2
n =

〈[
n−1∑

k=0

f(ϕkX0)− n〈f〉
]2〉

=
∫ +π

−π

(
sin ωn

2

sin ω
2

)2

S(ω) dω.

One can show, that if
∑

t |tC(t)| < ∞, then σ2
n = 2πnS(0) + O(n0), that is the

mean square displacement grows diffusively.

4.4.4. Mean square displacement in the regular multiplexer map

In case of the regular quantum multiplexer map we can simplify the calculations of
the velocity autocorrelation function reducing it to the trace over states in a single
cell (Appendix C)

Cτ =
1

LN
Tr [M†τvMτv] =

1
N
〈Tr [B̃†τvB̃τv]〉∼, (90)

where v =
∑

ε εIsε ⊗ |ε〉〈ε| is the velocity operator v reduced to a single cell and
〈f(B̃)〉∼ := 1

L

∑L−1
k=0 f(Bk) is the average over all the modified local operators (11)

for the given length. Let us denote the spectrum of a modified local operator B̃ by
ϕj and its eigenvectors by |j〉, that is B̃|j〉 = exp(iϕj)|j〉. The matrix elements of v

in this basis satisfy
∑

j,k

|vjk|2 = Tr v2 =
∑

ε

ε2sε =
∑

j

|vjj |2 +
∑

j>k

2|vjk|2. (91)

eWe are grateful to P. Gaspard for bringing this result to our attention.
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With these results we can simplify formula (87) for the velocity autocorrelation as

Cτ =
1
N
〈
∑

j,k

|vjk|2ei(ϕ̃j−ϕ̃k)τ 〉∼. (92)

and formulas (88) and (89) for the mean square displacement

〈(∆r)2(t)〉 = C0t +
t(t− 1)

N
〈
∑

j

|vjj |2〉∼ +
4
N
〈
∑

j>k

|vjk|2
t−1∑
τ=1

τ<ei(ϕj−ϕk)(t−τ)〉∼(93)

=
1
N
〈
∑

j,k

|vjk|2
sin2 (ϕ̃j−ϕ̃k)t

2

sin2 ϕ̃j−ϕ̃k

2

〉∼. (94)

We see that there is typically a ballistic contribution coming from diagonal and
possibly some degenerate terms. The other contributions are oscillatory and usually
negligible in the long time limit. The final result depends on the particular local
quantum operator B employed.

In general, it is not easy to evaluate expression (94) analytically, especially for
large N , and one has to resort to numerical methods. If we ask what are generic
transport properties of quantum multiplexers we may imagine choosing operator B

randomly from some ensemble of unitary operators satisfying appropriate symmetry
constraints95,144,164,183. Averaging out Eq. (94) over an appropriate ensemble we
obtain a result characterizing typical systems from a given symmetry class209,210.
We assume the distribution of matrix elements is independent of the distribution of
elements of eigenvectors95,131). Using Eq. (91) one sees that the ensemble average
of the mean square displacement takes the form

〈〈(∆r)2〉〉 = t + t(t− 1)〈|vjj |2〉+ 2(N − 1)〈|vj 6=k|2〉
t−1∑
n=1

(t− n) 〈eiαn〉. (95)

Straightforward calculation210 gives 〈|vjj |2〉 = k/(N + k), where k = 1 for CUE,
and 2 for COE. Averaging Eq. (91), we obtain 〈|vjj |2〉 + (N − 1)〈|vj 6=k|2〉 = 1 and
thus 〈|vj 6=k|2〉 = N/[(N + k)(N − 1)].

Calculation of the average value of the exponential factor exp[i(ϕj − ϕk)n] in-
volves the expression for the pair correlation function R(ϕj , ϕk) in the two ensembles

〈e[i(ϕi−ϕk)n]〉 =
∫ 2π

0

∫ 2π

0

dϕj dϕk e[i(ϕi−ϕk)n] R(ϕj , ϕk)
N(N − 1)

.

Using the known formulas for correlation functions144 one obtains

〈e[i(ϕj−ϕk)n]〉CUE =





1 for n = 0
n−N

N(N−1) for n < N,

0 for n ≥ N.

(96)
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for the unitary ensemble, and

〈e[iατ ]〉COE =





1 for τ = 0
1

N(N−1) [−N + 2τ [f(N
2 + τ)− f(N

2 )]] for 0 < τ < N,
1

N(N−1) [−N + 2τ [f(N
2 + τ)− f(τ − N

2 )]] for τ ≥ N.

(97)

for the orthogonal ensemble. Here f(T ) is defined by

f(T ) :=
T∑

k=1

1
2k − 1

= 1 +
1
3

+ . . . +
1

2T − 1
. (98)

This function has at most a logarithmic dependence on its upper limit for large T .
Then the evaluation of 〈〈(∆r)2(t)〉〉 is straightforward and can be written as

〈(∆r)2(t)〉 =





t +
t(t− 1)
N + k

[
k − 1 +

t− 2
3(N − 1)

]
+ (k − 1)δ< for t ≤ N,

k

N + k
t2 +

N

3
− N(k − 1)

3(N + k)
+ (k − 1)δ> for t > N.

(99)

Here δ<,> are small corrections to the explicit formulae that have to be evaluated
numerically; note that they disappear in the CUE result. Note that the “super-
ballistic” t3 term only occurs for t ≤ N , where it is typically less than or on the
order of the linear term, t.

These results are shown in Figure 10 for N = 200. The COE results are two
close curves, where the higher is the result given in Eq. (99) for k = 2, while in the
lower curve the corrections δ<,> have been neglected. Three asymptotic estimates
t, t2/N, 2t2/N are also plotted. Inset shows the region t = 100 to t = 300 where
the differences between the two COE results are most pronounced. We observe that
RMT average leads to classical diffusion as the short-time prediction in both cases,
the CUE average being “more classical”. It is worth emphasizing that the classical
behavior persists up to the Heisenberg times ∼ h−1 = N rather than the Ehrenfest
time ∼ ln h−1 = ln N . On the other hand, for times longer than the Heisenberg time
we observe ballistic motion. The ballistic coefficient is proportional to the effective
Planck constant therefore it disappears in the semi-classical limit.

In other words, fixing the time and performing semi-classical limit (h → 0 ≡
N → ∞) we obtain 〈(∆r)2(t)〉 = t, which is the classical result relevant for both
the classical multi-baker and the 1D random walk modeled by the classical system.
Fixing the Planck constant (N = const) and performing long time limit we observe
〈(∆r)2(t)〉 = kt2/N , which is reflection of the crystal-like structure of the system.

Figure 11 shows the comparison of these predictions with numerical results.
For every choice of phases ϕq, ϕp defining the quantization we have checked, for
sufficiently large N and L (N > 100 and L > 10 seems already good enough)
the evaluated formula (93) gives results between the COE and CUE predictions.
Figure 11 shows the results for the Balazs-Voros phase11s (ϕq = ϕp = 0) (in the
Saraceno case152,176 (ϕq = ϕp = 0.5) they are almost identical), and for an example
“generic” phases (ϕq = 0.61, ϕp = 0.13). The observed deviation from strict RMT
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N = 200. Both CUE and COE results are plotted. The COE results are the two close curves, where
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Fig. 11. Comparison of RMT estimates with the numerical evaluation of the formula (93) for
the regular m.s.d. in case of quantum multibakers with a) Balazs-Voros phases, b) “generic” case
(ϕq = 0.61, ϕp = 0.13). Plots are in double logarithmic scale; N = 200, L = 100.

predictions is the result of the spectral properties of quantum baker maps which
are not exactly consistent with random matrix theory132,152.
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4.5. Velocity autocorrelation functions for quantum multiplexer

maps

Let us look closer at the connection between the velocity autocorrelation function
Cτ and the mean square displacement (92). Writing

〈(∆r)2(t)〉 = (C0 + 2
t−1∑
τ=1

Cτ )t− 2
t−1∑
τ=1

τCτ

we observe that

〈(∆r)2(t + 1)〉 − 〈(∆r)2(t)〉 = C0 + 2
t∑

τ=1

Cτ =
t∑

τ=−t

Cτ (100)

Therefore, the cumulative sum of velocity autocorrelation function determines the
properties of the mean square displacement. In particular the following statements
are equivalent for times t > t0

(1) localization 〈(∆r)2(t)〉 ∼ const is equivalent to
∑t

τ=−t Cτ ∼ 0,
(2) diffusion 〈(∆r)2(t)〉 ∼ Ct is equivalent to

∑t
τ=−t Cτ ∼ C > 0,

(3) ballistic transport 〈(∆r)2(t)〉 ∼ Ct2 is equivalent to
∑t

τ=−t Cτ ∼ Ct or in other
words Cτ ∼ C.

In regular quantum multibaker maps we observe that the velocity autocorrela-
tion functions, depending on the phases ϕq, ϕp, oscillate wildly around curves lying
between the RMT averages (Figure 12). These RMT estimates of Cτ can easily be
calculated. Assuming independence of the distributions of eigenvectors and eigen-
values as before and using (92) we obtain

Cτ =
1
N

[N〈|vjj |2〉+ N(N − 1)〈|vj 6=k|2〉〈ei(ϕj−ϕk)τ 〉] (101)

=
N〈eiατ 〉+ k

N + k
. (102)

With the help of (96) and (97) we immediately arrive at the RMT estimates of
correlation functions

Cτ,CUE =





1 for n = 0
τ−1

N2−1 for n < N,
1

N+1 for n ≥ N,

(103)

for the unitary ensemble, and

Cτ,COE =





1 for τ = 0
N−2+2τ [f( N

2 +τ)−f( N
2 )]

(N−1)(N+2) for 0 < τ < N,
N−2+2τ [f( N

2 +τ)−f(τ−N
2 )]

(N−1)(N+2) for τ ≥ N,

(104)

for the orthogonal case. Figure 12 shows the plots of COE and CUE estimates for
N = 200. The value at 0 (C0 = 1) is not shown since the difference C0−C1 is much
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Fig. 12. Velocity autocorrelation functions Cτ : estimates from random matrix theory for COE
and CUE ensembles and the numerically obtained Cτ for regular quantum multibaker maps with
ϕq = ϕp = 0; N = 200, L = 10000. Short time (a) and long time (b) behavior.

greater than the changes in Cτ for τ ≥ 1. Substituting these results into (92) leads
to previously obtained formulas for the mean square displacement, eq. (99).

Since f(N
2 + τ)− f(τ − N

2 ) for large τ consists of N terms each of order (2τ)−1

the COE correlation function tends to 2/N . From the perspective of equation (85),
as observed above, the asymptotic residuals Cτ ≈ k/N give rise to the ballistic
transport. The ballistic coefficient is given by C∞. Indeed, for large times we can
take Cτ approximately constant and the mean square displacement 〈(∆r)2(t)〉 is
dominated by Cτ t2 = kt2/N .

For disordered quantum multibaker maps we observe that the velocity autocor-
relation functions Cτ (Figure 13 (a)) can be split into two parts Cτ = C1

τ +C2
τ with

the following properties:

(1) C1
τ = 0 for τ > t0,

(2)
∑t0

τ=−t0
C1

τ = 0 which together with (1) implies
∑t

τ=−t C1
τ = 0 for t > t0,

(3) C2
τ = (−1)τC.

Numerically, assuming this decomposition and the oscillating form of C2
τ we observe

that C1
τ oscillates around 0 for t > t0 (Figure 13 (b)) and the variance of the os-

cillations decays with the increase of the size of the system or with the number of
realizations of finite systems over which we average. This observed structure of Cτ

leads to localization. Figure 13 (c) shows the behavior of
∑t

τ=−t Cτ as a function of
time, Figure 13 (d) shows the mean square displacement obtained from this correla-
tion function by application of formula (92). The effect of the observed oscillations
of the sum

∑t
τ=−t C1

τ is visible in the plot of the mean square displacement in the
slightly non-zero slope of its long-time behavior.

5. Other quantum walks

Quantum multibaker maps were proposed as models for the study of the signatures
of microscopic classical chaos in quantum transport. As quantizations of classical
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Fig. 13. (a) Velocity autocorrelation function Cτ for random quantum multibaker map with
N = 2. The size of the system was L = 1000 and average over 32 realizations is shown. (b) Velocity
autocorrelation function C1

τ renormalized by subtraction of the oscillating part C2
τ = (−1)τ C, C

was taken as the average of |Cτ | over times τ > 20. (c) Behavior of
Pt

τ=−t Cτ as a function
of time. (d) Mean square displacement obtained from this correlation function by application of
formula (92).

multibaker maps, hamiltonian models of one-dimensional random walks on the lat-
tice, they are natural representations of quantum random walks. The studies of
quantum walks2,91, quantum cellular automata16,125 or quantum lattice gases184

in recent years are gaining on popularity. While the simplest of these models are
close in spirit to Krönig-Penney model128, the first quantum random walk, often
called Hadamard walk, was obtained by S. Godoy and S. Fujita91 by approximating
the evolution of special wave packets in Krönig-Penney type potential. Formally
similar model was discussed by D. Aharonov, et al.2, who considered the motion
of spin- 1

2 particles in one dimension, and proposed experimental realization of the
walk in the framework of quantum optics.

The same year S. Suzzi and R. Benzi observed184 that the lattice Boltzman
equation can be transformed so as to describe non-relativistic quantum mechan-
ics. Also in 1993 M. Kostin proposed125 a cellular automaton which in the limit
of diminishing spatial and temporal scales reduced to Dirac equation, which was,
however, nonunitary. Improved unitary models, which are examples of quantum
lattice walks, were proposed a year later by I. BiaÃlynicki-Birula16, as discrete ver-



March 17, 2006 17:7 WSPC/INSTRUCTION FILE qmb.review.clean

Quantum maps with space extent 37

sions of Weyl, Dirac, and Maxwell equations. In a way, one can consider Feynman’s
studies of path integrals for Dirac equation another predecessor of lattice quantum
walks62,178.

These models inspired D. Meyer who, in his studies of quantum cellular automata
for their possible applications to quantum computing, obtained a model essentially
equivalent to the Hadamard walk145. This model was later discussed by A. Nayak
and A. Vishwanath149 and — in various veins, for different boundary conditions
— by others6,9,18,122,124,126,156,165. An early review of these results from quantum
algorithmic perspective can be found in116.

Other variants of lattice quantum walks were also considered, some inspired
by optical networks of Törma194 and including phase shifts in the dynam-
ics26,101,127,206, some with generalized dynamics (different local operators, or
“coins”) or in more dimensions63,93,105,123,138. Several implementations of quantum
walks were proposed using ion traps195, neutral atoms trapped in optical lattices50,
classical optical systems21,113, and optical cavities45,122,175.

Most of these studies were conducted in the framework of quantum information
theory, therefore the emphasis was often on possible applications in quantum com-
puting and development of new quantum algorithms. For instance, several quantum-
walk based search algorithms were proposed33,34,180. Also, since noise, decoherence
and measurements disturb the evolution of the system, potentially preventing its
intended computational use, the influence of these effects on dynamics and on wave
packet transport in quantum walks were studied25,54,113,117,118,136,167,179.

An interesting application of quantum walks was recently discussed by Oka et
al.153 who studied dielectric breakdown of an electron system driven by strong elec-
tric field. The authors mapped the Landau-Zener transition dynamics to a quantum
walk with a reflecting boundary corresponding to the ground state and observed a
delocalization transition with increasing external field.

While time-discrete quantum walks on lattices dominate the recent literature
there are some interesting studies of discrete walks on more general graphs3,29,180

as well as of continuous time quantum walks3,32,60,147,148.
Much of the work on lattice quantum walks can easily be reformulated in terms

of the multibaker or multiplexer maps. In particular, the map corresponding to
the largest possible value of Planck’s constant, h = 1/2, or equivalently, N = 2.
To appreciate this connection let us recall the definition of the simplest Hadamard
walk.

Here one considers a particle walking on a one-dimensional lattice. With every
lattice site one associates a state |n〉, where n ∈ Z is the site number. To allow for
jumps to neighboring cells the Hilbert space must be enlarged145. This is achieved
by adding another degree of freedom (a “spin” or a “quantum coin”) which can take
one of two values, d = r, l. Depending on the state of the coin the particle jumps
one step right or left. The Hilbert space consists of the product states |n〉⊗ |d〉 and
the evolution is described in two steps. One “throws a quantum coin”, that is acts
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with a unitary operator H on the “coin” degrees of freedom
( |n, r′〉
|n, l′〉

)
= H

( |n, r〉
|n, l〉

)
=

1√
2

(
1 1
1 −1

)
·
( |n, r〉
|n, l〉

)
. (105)

This step is now coupled to a translation, T of |n, r′〉 one unit to the right and,
similarly, |n, l′〉 one unit to the left, as

T|n, r〉 = |n + 1, r〉,
T|n, l〉 = |n− 1, l〉. (106)

H is called the Hadamard gate in quantum computing literature151,160, which gives
rise to the name Hadamard walk . Finally the two operations are combined to form
the operator T ◦H = W, which describes one step of the Hadamard walk,

|n, r, t〉 =
1√
2

[|n− 1, r, t− 1〉+ |n + 1, l, t− 1〉] ,

|n, l, t〉 =
1√
2

[|n− 1, r, t− 1〉 − |n + 1, l, t− 1〉] . (107)

These equations are identical to Eq. (6) for N = 2 for the special case that the
Balazs-Voros phases11, ϕq = ϕp = 0, are used. Therefore, the multi-baker map and
the Hadamard walk are identical, for the Balazs-Voros phases and N = 2.

Formally, quantum lattice walks and quantum multiplexer maps discussed in the
present article have large overlap. The difference is in the emphasis: in the studies of
quantum multibaker maps we are interested in the properties of the whole families of
systems parametrized by the dimension of the “coin” Hilbert space with a common
semiclassical limit, and in the quantum signatures of chaos of the limiting classical
system. The freedom of choice of a particular quantization of local scattering map in
the transformation equations allows one to consider a variety of systems including
uniform, periodic, quasi-periodic, and random systems, all of which can share the
same semiclassical limit. This is typically not considered in the studies of quantum
walks. Thus one can find a range of phenomena in quantum multiplexer maps
ranging from localization to ballistic motion. Such phenomena show up in many
condensed matter systems. Further, the use of a variable Planck constant allows for
several channels of motion to be taking place at once, and allows us to treat semi-
classical as well as strong quantum versions of these maps. This is what makes the
multiplexer maps so appealing for studying exact transport properties of condensed
quantum systems.

6. Conclusions and open questions

Recent developments in dynamical systems theory together with the increasing
computational power made possible new developments in nonequilibrium statis-
tical mechanics. Two approaches were particularly fruitful, the escape-rate theory
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of Gaspard and Nicolis83 for open hamiltonian systems, and the dynamical ther-
mostats57,102,174 methods which led to the studies of Sinai-Ruelle-Bowen measures
describing extended dissipative systems.

As most of these developments happened for classical systems it was natural to
ask if these new results have their counterpart in the quantum case. To carry out
such inquiries a new family of systems was introduced208 called quantum multibaker
maps. These models are quantizations of the classical multibaker maps which are
deterministic models of simple random walks on the lattice187. The understanding of
the classical limit as well as of the quantum components (quantum baker maps11,176)
was very helpful in the analysis of the quantum multibaker maps.

In this article we have reviewed the construction and properties of these quantum
maps with space extent presenting a slightly more general framework, which we
call quantum multiplexer maps (Section 3.3). To help the reader understand the
context of these studies as well as to provide him with some relevant background
literature, we have reviewed broadly these new results in nonequilibrium statistical
mechanics (Section 1) with special emphasis on the construction and properties of
classical multibaker maps (Section 2). In Section 3 we discussed the quantum maps
and described the framework of general quantum multiplexer maps. Some known
properties of these systems were recalled in Section 4. Since these systems can be
considered paradigmatic quantum walks we have also provided some information
about the recent developments of related quantum walk models in Section 5.

There are many questions one would like to answer with the help of quan-
tum multiplexer maps. We know that the Pollicott-Ruelle resonances determine
the relaxation properties of the classical extended systems to equilibrium or to
steady states (Section 1). The resonances for classical multibaker maps are well-
known71,187. On quantum level the resonances correspond to the poles of analytic
continuation of quantum evolution operator. Since quantum multibaker maps come
in many variants, notably translationally invariant and completely disordered, with
very different transport properties, the question is what are the properties of these
poles and how does one recover the Pollicott-Ruelle resonances in the semiclassical
limit?

It is conjectured for the classical systems that the source of positive entropy
production is the fractality of the measures describing steady states80,89. Quantum
mechanically steady states cannot be fractals15,207 for any finite N . Moreover, all
the quantum entropies corresponding to Kolmogorov-Sinai entropy are zero for fi-
nite systems5. This leads to the question if one can define entropy production for
quantum systems so that it would be positive, at least semiclassically, and how does
one regain the classical result. Also, how does one recover the classical fractality of
nonequilibrium steady states?

To go in this direction one needs semiclassical description of models considered
here. However, there are no semiclassical studies of quantum multibaker (or other
multiplexer) maps yet. Such theory should be possible given the good understanding
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of semiclassics of simple quantum maps19,43,95,96,177. Can one take into account the
lattice distribution of phases parametrizing local quantization?

Many variants of quantum multibaker maps are unexplored, for instance the ver-
sion with diluted scatterers (Section 3). When the density of the scatterers changes
from 1 to 0 we expect a transition from ballistic motion to localization. How does
this transition occur? Is it smooth or shall we see a phase transition?

We believe that the models presented in this review can be very useful for un-
derstanding the quantum transport and the changes of its character in semiclassical
limit from dynamical perspective. We hope that this work will stimulate further
research in this direction.
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Appendix A. Properties of zn

We list here some useful formulas for expressions involving zn, eq. (66),

zn =
√

2 sin nκe−i(β−ω) − sin κ(n− 1).

(1) zn = cos κn sin κ− iε sin nκ
√

1 + sin2 κ, where ε is the sign of sin(β − ω),
(2) z∗k = z−k,
(3) zk+n sin κ = zkzn + sin kκ sin nκ,
(4) sin(k + n)κ sin κ = sin kκ z∗n + sin nκ zk,
(5) |zn|2 = sin2 κ + sin2 nκ.

Proof:

(1) From eq. (64) we have

eiκ =
√

2 cos(β − ω) + i
√
− cos 2(β − ω).

Thus
√

2 cos(β − ω) = cos κ and
√

2 sin(β − ω) = ε
√

1 + sin2 κ, where ε is the
sign of sin(β − ω). The new formula is obtained upon substitution.

(2) From definition.
(3) From Tn+k = TnT k.
(4) From Tn+k = TnT k.
(5) From (1).
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Appendix B. Velocity operator in the general case

Let us write the quantum multiplexer operator in the position basis

M =
∑

n

∑
ε1,ε2

Bε1
ε2

(n + ε2)|n + ε2, ε1〉〈n, ε2|.

Then its inverse is

M† =
∑
m

∑
ε3,ε4

Dε4
ε3

(m)|m− ε4, ε4〉〈m, ε3|.

Here Dε4
ε3

(m) are blocks of the inverse local scattering operator D(n) ≡ B†(n) so
that

∑
ε

Bε2
ε (n)Dε

ε1
(n) = δε2,ε1 |n, ε2〉〈n, ε1|.

To obtain velocity operator we need the formula for M†rM, where r is given by
Eq. (81)

M†rM =
∑
n,m

∑
ε1,ε2,ε3,ε4

(n + ε2)Dε4
ε3

(m)Bε1
ε2

(n + ε2)|m− ε4, ε4〉〈m, ε3||n + ε2, ε1〉〈n, ε2|

=
∑
n,m

∑
ε1,ε2,ε3,ε4

(n + ε2)Dε4
ε3

(m)Bε1
ε2

(n + ε2)δm,n+ε2δε1,ε3 |m− ε4, ε4〉〈n, ε2|

=
∑

n

∑
ε1,ε2,ε4

(n + ε2)Dε4
ε1

(n + ε2)Bε1
ε2

(n + ε2)|n + ε2 − ε4, ε4〉〈n, ε2|

=
∑

n

∑
ε2,ε4

(n + ε2)δε2,ε4 |n + ε2 − ε4, ε4〉〈n, ε2|

=
∑
n,ε2

(n + ε2)|n, ε2〉〈n, ε2|.

Therefore

v = M†rM− r =
∑
n,ε

(n + ε)|n, ε〉〈n, ε| −
∑
n,ε

n|n, ε〉〈n, ε| =
∑
n,ε

ε|n, ε〉〈n, ε|.

The above calculation is clearly incorrect at the boundary, however, we use peri-
odic boundary conditions and so we make the velocity operator periodic requiring
translational invariance on the circle

v =
L−1∑
n=0

∑
ε

ε|n, ε〉〈n, ε|.

Observe that the form of the velocity operator is independent of the local oper-
ators B(n), as well as of the number of ε subspaces, as long as the multiplexer
structure (Section 3.3) is preserved.
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Appendix C. Reduction of the calculation of the mean square
displacement in translationally invariant case to a
single cell

Let us calculate the velocity autocorrelation function of the translationally invariant
dyadic quantum multibaker map (16):

Cτ =
1

LN
Tr[M†τvMτv]

=
1

LN

L−1∑

k,l=0

N−1∑

α,β=0

〈k, α|M†nvMn|l, β〉〈l, β|v|k, α〉

=
1

LN

L−1∑

k,l=0

N−1∑

α,β=0

ei(ϕl,β−ϕk,α)τ |〈l, β|v|k, α〉|2,

where |k, α〉 are the eigenstates of quantum multibaker operator M corresponding
to the wavenumber κ = 2πk/L. Thus M |k, α〉 = eiϕk,α |k, α〉 and

|k, α〉 =
∑
n,ε

ei2πkn/LΨ̃k,α
ε ⊗ |n, ε〉,

where Ψ̃k,α
ε is an eigenvector of the modified quantum baker map (13) for this

wavenumber. Therefore,

v|k, α〉 =
∑
n,ε

εei2πkn/LΨ̃k,α
ε ⊗ |n, ε〉,

and

〈l, β|v|k, α〉 =
∑
n,ε

εei2π(k−l)n/LΨ̃l,β †
ε Ψ̃k,α

ε = Ψ̃l,β †vΨ̃k,αδk,l.

Therefore

Cτ =
1

LN

L−1∑

k=0

Tr[B̃†τ
k vB̃τ

kv], (C.1)

where B̃k is the modified quantum baker map (13) for κ = 2πk/L and v is the
velocity operator v restricted to a single cell.

This simplification can also be performed for other dyadic quantum multiplexer
maps and can easily be generalized to more dimensional systems as long as the
translational invariance of the lattice is preserved (of course, in more dimensions
velocity becomes a vector operator).
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112. C. Jarzynski and D. K. Wójcik. Classical and quantum fluctuation theorems
for heat exchange. Phys. Rev. Lett., 92:230602, 2004.

113. H. Jeong, M. Paternostro, and M. S. Kim. Simulation of quantum random
walks using the interference of a classical field. Phys. Rev. A, 69(1):012310,
2004.

114. Kadanoff, L. P., and T. C. Escape from strange repellers. Proc. Natl. Acad.
Sci. USA, 81:1276, 1984.

115. H. Kantz and P. Grassberger. Repellers, semi-attractors, and long-lived chaotic
transients. Physica D, 17:75–86, 1985.

116. J. Kempe. Quantum random walks: an introductory overview. Cont. Phys.,
44(4):307–327, 2003.

117. V. Kendon and B. C. Sanders. Complementarity and quantum walks. Phys.
Rev. A, 71(2):022307, 2005.

118. V. Kendon and B. Tregenna. Decoherence can be useful in quantum walks.
Phys. Rev. A, 67(4):042315, 2003.



March 17, 2006 17:7 WSPC/INSTRUCTION FILE qmb.review.clean

REFERENCES 49

119. M. Khodas and S. Fishman. Relaxation and diffusion for the kicked rotor.
Phys. Rev. Lett., 84:2837–2840, 2000.

120. R. Klages. Microscopic chaos, fractals, and transport in nonequilibrium steady
states, 2004. habilitation theses, TU Dresden.

121. R. Klages, P. Gaspard, H. van Beijeren, and J. R. Dorfman, editors. Micro-
scopic chaos and transport in many-particle systems, volume 187 of Physica
D. Elsevier, 2004.

122. P. L. Knight, E. Roldan, and J. E. Sipe. Quantum walk on the line as an
interference phenomenon. Phys. Rev. A, 68(2):020301, 2003.

123. N. Konno, K. Mistuda, I. Soshi, and H. J. Yoo. Quantum walks and reversible
cellular automata. Phys. Let. A, 330(6):408–417, 2004.

124. N. Konno, T. Namiki, T. Soshi, and A. Sudbury. Absorption problems for
quantum walks in one dimension. J. Phys. A, 36(1):241–253, 2003.

125. M. D. Kostin. Cellular automata for quantum systems. J. Phys. A, 26:L209–
L215, 1993.
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