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Abstract

Estimation of the continuous current-source density in bulk tissue from a finite
set of electrode measurements is a daunting task. Here we present a methodology
which allows such a reconstruction by generalizing the one-dimensional inverse CSD
method. The idea is to assume a particular plausible form of CSD within a class
described by a number of parameters which can be estimated from available data,
for example a set of cubic splines in 3D spanned on a fixed grid of the same size as
the set of measurements. To avoid specificity of particular choice of reconstruction
grid we add random jitter to the points positions and show that it leads to a correct
reconstruction. We propose different ways of improving the quality of reconstruction
which take into account the sources located outside the recording region through ap-
propriate boundary treatment. The efficiency of the traditional CSD and variants
of inverse CSD methods is compared using several fidelity measures on different test
data to investigate when one of the methods is superior to the others. The meth-
ods are illustrated with reconstructions of CSD from potentials evoked by whisker
stimulation recorded in a slab of the rat forebrain on a grid of 4x5x7 positions.



Introduction

One of the standard methods of analyzing extracellularly recorded local field potentials
(LFPs) in neural tissue is the estimation of the current-source density (CSD) which gen-
erated them (Nicholson and Freeman, 1975; Freeman and Nicholson, 1975). The connec-
tion between the electric potential ¢ and the current-sources of density C' is, under as-
sumption of quasi-static regime, (Mitzdorf, 1985]) given by the equation:

V(eVe) =-C, (1)

where o is the electrical conductivity tensor ([Plonsey, 1969)). In general, ¢ not only
depends on position but is also anisotropic (Ueno and Sekino, 2005)). Since we do not
know the properties of ¢ in the studied tissue in this work we assume that it is a constant
scalar. This means that the electrical conductance of the tissue is assumed homogeneous
and isotropic.

The CSD is usually calculated in one dimension, for example if a laminar multielectrode
is used to record evoked potentials in the cerebral cortex. In this case Eq. () reduces to

¢
02 = —C(z) . (2)

Let us assume that ¢ is measured at n equidistant electrode points with interelectrode
distance h. The traditional method of estimating C(z) at the interior points z;, i =

2,...,n—11is to use the numerical second derivative (Mitzdort, 1985)). This leads to
P(zi +h) —2¢(z1) + d(zi — h)
C(z) =—0o 2 : (3)

To calculate the CSD at the extreme points one may follow the suggestion of|Vaknin et al. (1988)|
which is to assume that the potentials do not vary for z < z; and z > z,, that is
d(2) = ¢(z1) for z < z; and @(2) = ¢(z,) for z > z,.

Recently, [Pettersen et al. (2006)] proposed a general framework called inverse CSD
method (iCSD) which explicitly takes into account the assumptions made about the form
of the sources. They observed that given the distribution of currents in the tissue it is
formally a simple matter to evaluate the potentials measured at any point in space. One
has to add up the contributions from every point source I(xg, yo, 20,t) which are of the
form

I("L‘Oa Yo, 20, t)
Ao/ (x — 20)? + (y — 10)? + (2 — 20)?
Taking current-source distribution parameterized with parameters C = [C}, ..., C)] one
gets a functional relation

QS(xaya Zat) =

P = [p(x1)...¢(xn)] = F(C)

which can usually be inverted if the number of parameters, M, is equal to the number of
measurement points, x; = (z;,v;, 2;), ¢ = 1..N. Inverting this relation leads to the values
of parameters C for a given set of measured potentials ®. This is particularly convenient
for parameterizations leading to F' linear in C.

The Inverse Current Source Density method is a generalization of the traditional Cur-
rent Source Density method described above. Assume the potentials measured at equidis-
tant points z; through the cortex, z;,; — 2z; = h. Consider current sources distributed



uniformly on infinitely extended and infinitely thin parallel planes passing through the
measurement points and perpendicular to the electrode. Let C; be the value of planar
current source density at z; divided by A, which would be the value of volume current-
source density at this point if the current was distributed in the slice of thickness h instead.
Then the potentials ¢(z;) are connected with the current-source parameters C; by Eq. (),
see (Pettersen et al., 2000).

Once the framework connecting C' with ¢ is established it is natural to consider other
distributions of current which would be more plausible than uniformly charged, infinitely
thin, and infinitely extended planes in the brain. Pettersen et al. considered three differ-
ent, choices of distributions leading to three variants of iCSD which they called “d-source
iCSD”, “step iCSD”, and “spline iCSD” method. In the first case they assumed current
sources distributed in infinitely thin discs of radius R passing through z;. “Step iCSD”
assumes current distribution in cylinders of radius R and height h centered at measure-
ment points. The last method assumes a continuously varying in z but constant in the
x,1y plane profile of current-source density. In all these cases the CSD distribution is pa-
rameterized by its values at the measurement points. Let us stress that all these methods
were developed for a one-dimensional problem of a multielectrode passing through the
cortex perpendicularly to its surface.

Recently we performed experiments in which LFPs were measured at a three-dimen-
sional array of 4 x 5 x 7 points in order to reveal the dynamics and specificity of rat
diencephalic activation which follows vibrissal stimulation. The simplest approach for
examining three-dimensional CSD would be to generalize the numerical second derivative
and use an approximation to Laplacian:

Cwi, yi, 2i) = _%[¢(xi + ho iy zi) + (@ — by yi, 2)
h

+ &(@s, yi + hy 2i) + (i ys — b, 23) (4)
+ &(2s, yi, 2 + h) + (i, Yi, 2 — h) — 66(2)]

This formula (in two dimensions) was used for example in (Novak and Wheeler, T989)),
(Shimono et al., 2000) and (Lin et al., 2002)). However, the traditional approach implies
the exclusion of all the boundary points. In a typical one-dimensional recording the loss
of two points out of 15-20 may be acceptable. In our case the boundary consists of
110 out of 140 measurement points. The procedure suggested by Vaknin (to assume the
potentials do not change outside the grid) seemed not well justified in our experiments
therefore we decided to generalize the inverse CSD method to three-dimensional case.
An early attempt to get information about the three-dimensional distribution of the field
in the cortex by [Sukov and Barth (1998) combined analysis of measurements on 8 x 8
epipial electrode grid with laminar multielectrode depth recordings. The 16-point multi-
electrode was placed in the point which exhibited highest surfacial activity. Second order
approximation to Laplacian with the Vaknin condition was used to obtain CSD at the
measurement points. Other points in the bulk tissue were not probed hence the obtained
CSD had a product structure and could not resolve the 3D structure of sources and sinks
in the studied tissue.

All the figures and all the numerical examples in the subsequent sections use the grid
4 x 5 which was also used in the experiment. The validity of the methods, however, is
independent of the size of the grid.
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Figure 1: The assumed distribution of current-sources (two-dimensional analog). Circles
denote the grid points. We usually assume that the electrodes are located at, or very close
to, the knots of the grid spanning CSD. (a) CSD at any point is an interpolation (linear
or spline) of the values at the nodes. (b) In step method we assume constant CSD in a
box around each node.

Methods

The Inverse CSD method in three dimensions

Let us start with a three-dimensional cubic grid of n,,n, and n, points in respective
directions so that each recording site (z;,y;, ;) is close to one of the grid pointsﬂ We
assume that the total number of electrodes is the same as the number of grid points
and is equal to n = nynyn.. We then consider some class of current-source distributions
with n free parameters. Such distributions can be parameterized by the n values of CSD
at the grid points. One example is a piecewise constant (step) distribution: current-
source density is constant in cubes of unit edge length centered on the grid points. Next
we calculate the potentials at the electrodes locations generated by the assumed CSD
distribution. This leads to a linear formula for each ¢ in terms of the n parameters of C'
of the form & = F'C, where C stands for all the parameters organized in a vector. We
finally invert this relation to calculate the n unknown parameters C (hence the whole
CSD distribution) from the measured potentials. The exact form of this linear operator
depends on the assumed form of the current sources distribution f

We consider a number of different CSD distributions. One is the step distribution
described above. Another is based on linear approximation: we assume that the CSD is
piecewise linear, that is the CSD between the grid points is calculated from the values at
the nearest nodes via linear interpolation. The third case we study is the CSD distribution
in the form of three-dimensional cubic splines with knots at grid points. We consider two
types of splines, “natural” and “not-a-knot”, differing with a normalization condition (see
the appendices). We also considered variants of above distributions to deal with boundary
effects. They are described in the following sections.

In the case of linear and spline distributions we assumed that the current-sources are
localized inside the grid. In case of the step distribution the CSD is nonzero in a slightly
larger cuboid span by all the unit-size boxes centered at grid points (see Figure [T]).

Tt is convenient to work with unit spacing and to include the true edge length h at the very end of
the calculations, this is done simply by dividing the resulting CSD by h2.

2Depending on the form of the assumed distribution and on the chosen parameterization the functional
dependence ¢ = F(C) need not be linear. We consider here only the cases where this relation is linear,
however.



The calculation of the linear operator [’ for step distribution is quite simple. Let us
denote the position of i-th electrode by (Z;, 9;, Z;) and the coordinates of the j-th grid
node by (x;,y;,%;). In general they need not be the same. Then the potential at i-th
electrode location is given by

O, = O(74,7:, %) = Z

where

C; = C(zj,y5, 2) -

The matrix element Fj; is the contribution of the uniform CSD of unit density located
at box centered at point j to the potential at point i. Thus, for the step distribution of
CSD, it is given by

i

x;+1/2 /y]+1/2 /z]+1/2 dZdyd[L‘
47“’ z-1/2 %-1/2 — )+ (Ui —y) + (5 - 2)?

(5)

;—1/2

This integral is easy to evaluate numerically, although one must be careful because of
the singularity of the 1ntegrandﬁ Once we have the matrix F' we can use its inverse to
estimate the CSD at grid points from known potentials:

Cj = i(Fl
=1

These values define the whole CSD distribution.

The operator F' for linear and spline methods is calculated similarly, although the
calculations get much more complicated, especially for the cubic splines. For details of
the calculations we refer the reader to Appendices.

Boundary effects and distant sources

In the linear and spline distributions described in the previous section it is assumed
that CSD is non-zero only inside the cuboid enclosing the grid, which was chosen to
approximate the distribution of electrode locations. In real tissue this assumption is not
fulfilled: the array of electrodes covers only a small area of the brain and there are many
sources outside that area. If we used the Laplacian to calculate CSD, then the influence
of the outlying sources could be neglected For example, if there was an additional distant
point source then there would be a ; term in observed potentials, but Al = 0 [ which
gives no contribution to the calculated CSD. The situation is different Wlth the inverse
method. Here we have one-to-one correspondence (via operators F' and F~') between
sources and potentials, hence any additional term in the potentials (like %) will produce
spurious sources. Nevertheless it is possible to modify the inverse method in such a way
that we can profit from its advantages over traditional CSD and at the same time limit
the impact of the above mentioned effect.

To accommodate the sources located outside the electrode grid we extend the grid
by one point in each direction, therefore an additional layer of non-zero CSD is created.

3We dealt with the singularity by simply excising a ball of radius ¢ = 1078 or ¢ = 107%. The numerical
error introduced by such an excision is smaller than £2.
4Except at r = 0, but this is not the case here because the source is “distant”.



The CSD at additional grid points is either zero, which we denote with the letter “B”,
or a duplication of the boundary layer of the original grid, which is denoted by “D”
(see Figure Bl). Therefore we have “linear”, “linear B” and “linear D” methods, similarly
for splines. At the practical level the difference between these methods is that we use
different matrices F'. The modified linear operator F' is constructed in 3 steps. First we
act on a vector of n CSD values with a matrix B, which produces a larger vector (of size
N = (ng +2)(ny + 2)(n, +2)) of CSD values on a larger grid. There are two different B
matrices, B” and B”, for B and D boundary conditions respectively. Then we apply the
matrix F' calculated for the larger (n, 4+ 2) x (n, +2) x (n, + 2) grid. In the final step
we discard the values of potential at the boundary to get a vector of size n; this is done
by applying a matrix R. Summarizing, we have the following formula for the F'® matrix
(superscripts indicate the size of the grid for which the F' matrix is calculated):

an,ny,nzB — RF(nx+2),(ny+2),(nz+2)BB ’

analogously for F'P. Note that there is no point in considering “step B” method because
it is the same as “step”, however, we may consider “step D”.
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Figure 2: Comparison of “standard” vs. B or D distribution of sources. In standard
distribution (a) the CSD is non-zero only inside the grid of the same size as the number of
electrodes, while in B or D distribution (b) there is an additional layer of non-zero CSD.

The B and D boundary conditions are motivated by the following heuristics. We know
that the sources we deal with in real-world situations are not restricted to lie within the
space spanned by the grid. Suppose therefore that there is a source outside, for example
near a corner of the cuboid. This source will affect the potentials, especially in the corner.
The inverse CSD method will then generate a current-source distribution inside the grid
such that the resulting potential will match the one measured at the recording points.
In other words, the method will try to imitate the outlying source with sources located
inside the grid. This will lead to errors in CSD reconstruction, for example a false source
in the corner may appear. Consider now the same potentials processed with a method
using B boundary condition. One expects that the B method may also generate a spurious
source in the corner, but the magnitude of the source will be smaller. This is because
a larger CSD value in the corner means also larger CSD in the additional layer and the
iCSD B method may place a smaller source in the corner than standard iCSD to obtain
the same potential. Summarizing, we expect the B methods to limit the magnitudes of
the spurious sources at the boundary. In case of D methods this attenuation should be
even stronger. We test both B and D variants because it is hard to tell a priori which
boundary treatment leads to better reconstructions.



Jittering

The iCSD method allows us to calculate N unknown parameters of CSD distribution
from N measured potentials. So far we assumed that the N unknowns were the values
of CSD at the nodes placed next to the electrode positions, however, such an assumption
is not the only possible. In fact, it leads to some constraints on the calculated CSD. For
example, in the linear method the maxima and minima of the obtained current source
density are always located at the nodes. One way to avoid this particular limitation is to
use a different distribution, such as cubic spline approximation. Another way is to use an
approach which we call “spatial jittering”. In this variant we assume that the grid spanning
CSD is slightly displaced with respect to the distribution of the electrodes (maximally
by half of the cube size), see Figure Bl The CSD obtained in this way is a valid solution
of the inverse problem, that is, it also produces the measured potentials. We can now
randomly choose many displaced grids, calculate the CSD and then take the average. This
method produces “smoother” CSD distributions, especially for step and linear methods.
Due to the linearity of this procedure the average obtained by jittering also generates
experimentally obtained potentials and is an equivalent solution of the inverse problem.

The jittering is implemented by altering the F matrix. Let d = (dy,dy,d,) be a
displacement vector, that means the CSD grid is shifted by d with respect to potentials
(electrodes) grid. Then the elements of F' (in case of “step” distribution) are given by the
formula:

F.— v / e dzdy dx
Y 47TCT 1o —dy — )+ (g — dy — y)? + (2 — d. — 2)?

We always use jittering in combination with a B or D boundary condition, which we

Figure 3: The idea of spatial jittering. (a) The CSD distribution as in B or D method.
(b) Jittering, grid spanning the sources (empty circles) is displaced with respect to the
array of electrodes (the black dots).

denote by J and K respectively. The number of displacement vectors used in the tests
varied from 12 to 46.

Results

Reconstruction fidelity for test data

To compare quantitatively the different variants of iCSD method in three dimensions
we have to decide on a measure of the quality of the method. We chose the recon-
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struction error of a given current-source distribution. To obtain it we take an artificial
current-source distribution C' and calculate the potentials which would be measured by
the three-dimensional array of electrodes. Then we use the potentials at the nodes to re-
construct CSD. The total reconstruction error is then the total square difference between
the original, C', and the reconstructed, C,., densities

e:/x/y/ (O = Cr)?dzdy de
1 1 1

Other measures of reconstruction error we used are: squared maximal error (max|C —
Crec|2) and 0.95/0.99 errors. We define the p-error as the smallest value § such that the
probability to find |C'—Cye.|? < 4 is p. This is easy to find from the cumulative distribution
function of square errors cdf (|C' — Ciee|* < §). On the graph of cdf one draws a horizontal
line at y = p and reads off the x axis the value of § (see Figure @ (b)). These measures
help to differentiate between the reconstructions of comparable mean square error but
with different smoothness properties.

The different measures of reconstruction error are presented in Tables [ to @l Each
table collects the results for various reconstruction methods applied to given sets of test
data. The reconstruction errors can only be compared between different methods applied
to the same data-set as we did not attempt to normalize the results with respect to
different source intensities.
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Figure 4: Example of distribution (a) and cumulative distribution (b) of the reconstruction
error for step and step J iCSD methods. Vertical lines define 0.95/0.99 errors.

We compared all the iCSD methods presented in the previous section, that means
all combinations of the assumed distributions (step, linear, natural spline, not-a-knot
spline) and the boundary conditions (standard, B, D, jittering J, jittering K). The direct
comparison with the “traditional” CSD is not possible because then we do not have the
reconstructed CSD at the boundary nodes. In order to have a “traditional” method for
comparison we generalize the Vaknin procedure to three dimensions, although it does not
seem well justified. We extend the potentials grid by adding one point in each direc-
tion and duplicating the potential values. Then we calculate the approximate Laplacian,
Eq. (@), and interpolate the CSD values using splines. This method is denoted by “trad
V7.

It appears from our analysis that the relative utility of the methods depends on the
type of the chosen test data. This is not surprising: if the test distribution was of the



Method Reconstruction error
Total‘ Max ‘ 0.95 ‘ 0.99

Traditional V 3.0 | 2.1e—3 | 1.8¢—4 | 6.8¢—4
iCSD step 5.8 | 1.8e—3 | 3.5e—4 | 7.1e—4
iCSD linear 0.25 | 3.6e—4 | 1.7e—5 | 4.1e—5

iCSD spline (natural) 0.091 | 6.1e—5 | 5.3e—6 | 1.2e—5
iCSD spline (not-a-knot) | 0.28 | 1.3e—4 | 1.6e—5 | 4.2e—5

Table 1: The reconstruction errors for test data shown in Figure

same type as the one assumed in the given iCSD variant then this (and only this) method
would reconstruct the test data exactly. Therefore an important question is what test
data are “natural”, that means resembling the CSD in actual tissue. We used five types
of test data. The first four types were Gaussian sources with CSD given by the formula

O(F) = Aexp (_ z

There were between 4 and 8 such sources and the parameters A, [, 7y were chosen ran-
domly. In the first type of data we assumed that CSD outside the electrodes array was
strictly zero and we truncated the distribution accordingly. In the second type we assumed
that the CSD is non-zero in one additional layer of unit thickness, in the third type there
were 2 additional layers. The fourth type was similar to the second but there was an
additional strong point-like source located outside the grid. The fifth type of the test
data were homogeneous spherical sources with sharp cut-off. For the tests we assumed
the same configuration of electrode locations as in the motivating experiment which was
a grid of size 4 x 5 x 7.

First we compared the reconstruction fidelity of four different forms of assumed dis-
tributions (see Figure B and Table [M). The test data were of the first type, that is the
sources were only inside the grid. The results are as expected: the step method is the
worst, the linear approximation of the distribution is an order of magnitude better, the
natural splines are even better. The not-a-knot splines do not work very well on such data,
they are worse than natural splines and even slightly worse than linear approximation.
The “traditional V” method performs here rather poorly.

Next we tested different boundary conditions (see Figure Bl and Table ] the splines
used here are “not-a-knot”). As the boundary conditions are devised to deal with sources
outside the grid, the test data here are of the second type (non-zero CSD also in an addi-
tional layer). For such test data the “standard” iCSD method produces spurious sources
at the boundary and the reconstruction error is very high. The quality of the method
improves substantially if we use any of the variants pushing boundary away. We also
considered other forms of distributions but in the case at hand the appropriate treatment
of the boundary seems much more important than the choice of the interpolation method.
The traditional method is quite good here, with the error only about thirty percent larger
than iCSD.

The distortions present in iCSD spline (second row in Figure ) form a distinctive pat-
tern. We observed very similar patterns in experimental rat data (when processed without
taking into account the boundary effects) and it seems to us that they can be classified as
artifacts resulting from the sources located outside the grid. In the experimental situation
these can be, for example, sources in the neighboring cortex.
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Figure 5: Reconstruction of CSD from potentials (arbitrary units). Each row is a plot
of a three-dimensional volume. From test sources (the first row) potential at the nodes
is calculated (second row) and then passed on to various CSD methods. The traditional
CSD (third row) allows the reconstruction on a smaller grid only. Test data were random
Gaussian sources of comparable strength and different signs truncated at the boundary

of the grid, see text for details. The values of the reconstruction errors are presented in
Table [

It is even more important to choose suitable boundary treatment if we add a strong
source to our data (the fourth type), see Figure[d and TableB For such data the methods
ignoring the boundary are simply useless (cf. the second row in Figure [). The best
method here is the traditional V method, but the iCSD not-a-knot spline K also performs
well, although distortions are visible at the edges of the grid.

Method Reconstruction error
Total‘ Max ‘ 0.95 ‘ 0.99

Traditional V. | 0.23 | 4.6e—4 | 9.3e—6 | 7.1e—5
iCSD spline 7.9 0.25 | 1.7e—3 | 1.7e—3
iCSD spline B | 0.18 | 2.7e—4 | 9.0e—6 | 4.9e—5
iCSD spline D | 0.19 | 3.2e—4 | 6.5e—6 | 5.0e—5
iCSD spline J | 0.18 | 2.6e—4 | 9.0e—6 | 4.5e—5
iCSD spline K | 0.18 | 3.2e—4 | 6.6e—6 | 4.6e—5

Table 2: The reconstruction errors for test data shown in Figure
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Figure 6: Reconstruction of CSD from potentials, comparison of different treatments of
the boundary (arbitrary units). Test data were random Gaussian sources truncated at the
boundary of the grid extended by one layer in each direction, see text for details. Table
contains the values of reconstruction errors for this test.

Method Reconstruction error
Total‘ Max ‘ 0.95 ‘ 0.99

Traditional V. | 0.97 | 4.4e—4 | 4.4e—5 | 9.0e—5
iCSD spline 3.9e2 1.8 0.012 0.11

iCSD spline B | 3.2 | 1.6e—3 | 1.6e—4 | 4.7e—4
iCSD spline D | 1.6 | 5.5e—4 | 7.7e—5 | 1.7e—4
iCSD spline J 3.1 | 1.5e—3 | 1.be—4 | 4.4e—4
iCSD spline K | 1.6 | 5.4e—4 | 7.6e—5 | 1.6e—4

Table 3: The reconstruction errors for test data shown in Figure [1

Our experience shows that the iCSD method (with appropriate boundary conditions)
is usually better and never much worse than “trad V”. The inverse methods seem to work
comparably to “trad V” in case of compact sources, such as shown in Figures @l and [, but
are usually an order of magnitude better if we allow the sources to be larger, of the size
observed in our experimental data, see Table Hl for two examples. The Vaknin procedure
in one dimension is reported (Pettersen et al., 2006) to work better in case of balanced
CSD, that means when the integral of the CSD over the region at hand is zero. Our
study confirms this observation. If we first calculate the errors for a balanced current-
source distribution and then change the sign of the sources so that they are all positive

11
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Figure 7: Reconstruction of CSD from potentials. Test data were random Gaussian
sources truncated at the boundary of the grid extended by one layer in each direction,
plus an additional strong point source outside the grid was added at (zr = 6,y = 3,2z = 4),
see text for details. Table B] contains the values of reconstruction errors for this test.

Method Error for data set 1 Error for data set 2
Total‘ Max ‘ 0.95 ‘ 0.99 Total‘ Max ‘ 0.95 ‘ 0.99

Trad V 2.2 1.1e—3 | 1.6e—4 | 5.9e—4 5.3 1.1e—3 | 2.6e—4 | 4.9e—4
iCSD 0.041 | 5.4e—5 | 2.5e—6 | 9.7e—6 | 0.20 | 4.9e—5 | 1.3e—5 | 3.0e—5

Table 4: The reconstruction errors for two sets of test data with large Gaussian sources.
Set 1: 4 sources, CSD non-zero only inside the grid. Set 2: 5 sources, CSD non-zero
inside the grid with an additional layer added. The iCSD is a spline method taken with
appropriate boundary conditions (standard for data set 1, B for data set 2).

then the errors in iCSD method grow twice while in “trad V” they grow four times. It
is worth noting that for the data mentioned here the traditional method was an order of
magnitude worse, see Figure 8. Another strong argument in favor of the inverse method is
that here we make all our assumptions explicit: we must spell out the form of the current
sources distribution. For the “trad V” method we also make an assumption: potentials
are constant outside the grid, but we do not know how that assumption is reflected in the
reconstructed CSD. In our opinion it is much more elegant to make assumptions about
the distribution of current-sources instead of the potentials.

The influence of jittering seems to differ strongly for various forms of assumed CSD
distributions. In case of step (see Figure Hl) and linear distributions the jittering signifi-
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Figure 8: Reconstruction of CSD from potentials for large and non-balanced current-
sources located inside the grid (arbitrary units). The inverse method gives the total
reconstruction error e = 0.18 while for the traditional method this error is e = 15, two
orders of magnitude larger. Note particularly the difference between the reconstructions
at z = 3.

cantly improves the quality of the reconstruction, but for splines the improvement is only
slight. It can be easily understood: the “step” reconstruction strongly depends on the
choice of the sources grid, while the “spline” reconstruction does not.

Application to evoked potentials in rat

The method was applied to LEPs recorded from deep structures of the rat forebrain. An
adult male Wistar rat was anesthetized with urethane, placed in a stereotaxic apparatus,
and a bunch of his left whiskers was glued to a piezoelectric stimulator. Most of the right
parietal bone was removed and the resulting opening was covered with agar. A set of five
stainless steel micro-electrodes (FHC, Bowdoin, USA; impedance of 1.5 MOhms at 1 kHz)
mounted parallely in a sagittal plane (tips in antero-posterior line, spaced by 0.7 mm; the
most anterior electrode 1.9 mm posterior to Bregma and 2.1 mm to the right from the
midline) was lowered vertically through the opening and stopped each 0.7 mm at seven
depths in the brain tissue, starting at 3.4 mm from the cortical surface. At each stop
the bunch of left whiskers was deflected 60 times. LFPs were recorded monopolarly and
allowed for extraction of 60 somatosensory evoked potentials (EPs) per each recording
point.

The procedure was repeated at lateral positions 2.8 mm, 3.5 mm and 4.2 mm to the
right from midline, at corresponding depths. Thus a rectangular grid of 140 (4 x 5 x
7) recording points comprising a slab of forebrain tissue with portions of the thalamus,
pretectum, the hippocampus, and cerebral white matter was obtained. An exact location
of the recording points was verified histologically after the experiment and anatomical
structures were identified according to [Paxinos and Watson (1996)l For details of surgical
procedure, stimulation of the vibrissae, signal processing and post-experimental procedure
see [Kublik et al. (2003).

The LFP signal was amplified (1000 times) and filtered (0.1Hz-5kHz). Epochs (of
about 1.4 s) containing EPs were digitized on-line (10 kHz) with 1401plus interface and
Spike-2 software (CED, Cambridge, England). All stored data were examined for integrity
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and epochs with artifacts were excluded from further analysis.

Constant and isotropic conductivity of the tissue was assumed. We took ¢ = 3008 -
mm~! as in (Nunez, 1981} [Hamaldinen et al., 1993), although some measurements in the
rat brain suggest that o can take values around 60-70 S-mm~! (Ueno and Sekino, 2005)).
The only effect of accepting different values of o would be a change of scale of reconstructed
CSD.

Figure @ shows the current source density 3.5ms after the stimulus, reconstructed
using the iCSD not-a-knot spline D method (top row). This is compared with a spline
interpolation of the potentials used for the reconstruction (bottom row). There is a
noticeable correlation, e.g. the activation blots around (x = 1.5,z = 4) and (x = 3.5,z =
4) at y = 2 slice in potentials have corresponding blots in CSD. However, the structure is
clearly different, for instance a strong source visible in CSD around (x = 3.5,y = 3,2 = 4)
is almost invisible on the figure showing potentials.

The differences are even more dramatic at Figure [[{}, which compares reconstructed
CSD (top row) with spline approximation of potential in the tissue (bottom row) 15 ms
after the stimulus. Here, the potential distribution seems to indicate strong activation
of the whole region. The picture of CSD, while complicated, shows a clear structure
of sources and sinks which one can attempt to understand by connecting the activation
pattern with known anatomy of the somatosensory system.

The quality of comparison depends on the chosen scales in both kinds of figures (CSD,
potentials). Our experience shows that one cannot choose a scale for potentials so that
all the pictures have comparable intensities, which is possible for the CSD distribution in
our case. This is another point in favor of studying the reconstructed CSD.

Discussion and summary

LFPs measured in tissue are generated by macroscopic current flow resulting from con-
certed dynamics of neural populations. Long range nature of electric forces implies that
every source can be visible in recordings at many sites complicating the analysis of elec-
trophysiological data. Having the information about the distribution of the sources can
dramatically improve the spatial resolution since these are often well localized in par-
ticular brain structures. Unfortunately, the problem of CSD reconstruction from finite
number of recordings is ill-posed meaning that there are many different CSD distributions
which could generate recorded potentials. The fact that we lack precise measurements
of the electric conductivity tensor in the tissue does not help the reconstruction. Nev-
ertheless, we believe that with a reasonable set of recordings at different sites the CSD
reconstruction may provide the basic understanding of dynamics of an activation wave
flowing through the investigated structure.

This leads to a question which reconstruction method is optimal. Our experiments
show that if we want to choose the best method for the problem at hand, it would be best
to test the methods on sample CSD distribution, preferably from a realistic neural model.
If that is not possible, then for well-localized sources we would recommend the inverse
CSD method with natural spline distribution. If the sources are expected to be large and
not confined to the probed volume then the recommended method would be not-a-knot
splines with extended boundary. If the sources may be very small (localized) and/or the
data are distorted by the presence of a strong source outside the grid, then the “traditional
V” method may be useful, although the spline iCSD with boundary conditions should not
be much worse.
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Figure 9: Top row: Current source density 3.5ms after the stimulus reconstructed using
the iCSD not-a-knot spline D method. Note that different plane is shown than in the
previous figures to allow usage of coronal brain sections. Bottom row: spline approximated
potential in the tissue based on the same data as used for the CSD reconstruction at the
same time. The grid spacing is 0.7mm in each direction. For abbreviations see Appendices.
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Figure 10: As in Figure @, 15ms after the stimulus.
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Movies showing the reconstructed current dynamics for example data presented here
as well as the scripts necessary to generate the movies and to apply our methods can be
found at http://www.neuroinf.pl/Members/szleski/icsd.html.

The methods discussed in the present work constitute a framework which can be easily
extended by considering other forms of CSD distributions, which may be case dependent,
for instance anatomically motivated in specific cases. It is also a simple matter to develop
similar formulae for two-dimensional case which will be of interest for electrode arrays
recordings.
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Appendices

Linear iCSD method

In this appendix we construct the F' matrix for the linear distribution of CSD. Consider
a grid of points (i,7,k), where ¢ = 1.n,, j = l.n,, k = l.n,. Let us number the
points with a multi-index o = (4,7, k) and write (7,7, k) = (Ta,Ya, 2o). Let V be the
set of 8 vectors (vy,vq,v3), v; € {0,1}. The grid has n = n,n,n, nodes and there are
m = (n, —1)(n, —1)(n, — 1) boxes spanned by these nodes. We index the boxes so that
the corners of the box number a are a + v for v € V. Let B denote the set of all the
allowed indices a numbering the boxes and G stand for all the grid points. Let C' denote
the vector of CSD values at the nodes, that is C, = C(x4, Ya, 2o) for a € G. We assume
that CSD in boxes is given by a linear approximation.

Take a point (z,y, z) in box number « and let 0z = x — x4, 0y = Y — Yo, 02 = 2 — 24.
The value of CSD at this point obtained with the linear interpolation is given by:

C(z,y,z2) = Z[l — v + (2v1 — 1)0x][1 — vy + (2v2 — 1)dy][1 — vz + (203 — 1)02]Cor-

Therefore the distribution inside the box is a linear combination of 8 functions f;, [ = 1..8:
fi=1, fo =0z, fs =y, f1 =0z, f5 = dxdy, fo = dxdz, fr = dydz, fs = dxdydz, with
coefficients depending linearly on the values of C' at the nodes of the box:

8
Clz,y,2) = D> EishCs
BeG 1=1

The coefficients E(lxﬁ are non-zero only for 0 — «a € V and follow from the above formula,
e.g. E;ﬂ =1 for f —a = (0,0,0), otherwise E(i,ﬁ = 0, etc. The potential generated by
such a distribution of current-source density at some point (Z, g, Z) is

8
B@5,2) =Y > Fuld,.2)EyC

a€eB BeG =1
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where

Fl(~ ~ ~) 1 /1 /1 /1 fl(xvyvz) dZdyd{L‘
T,9,2) = — )
oY dno Jo Jo Jo (@ — 20—+ (= Yo —y)? + (F— 20 — 2)?

If we now take as (Z,7, ) one of the grid points 7 then

8
¢, = Z F.,5Cp, where F.5= Z ZF&(ZL‘,\/, Yrys zv)Eéﬁ.

BeG a€EB =1

Thus F,3 represents the direct and indirect contributions to the total potential at point
~ from the CSD associated with the grid point S.

Spline iCSD method

The construction of the F' matrix for the spline distribution is in principle very similar to
the case of linear distribution, but the level of complication is much higher. Similarly as in
the previous appendix we have n nodes and m boxes, but now the interpolating function
in each box is the three-dimensional cubic spline. That means there are 4 x 4 x 4 = 64
base functions. Therefore there will be 64 each of E* and F* matrices. The main challenge
here is to construct the F matrices, that means to describe how a CSD value associated
with a given node influences the interpolating splines in all the boxes.

First we briefly remind the construction of one-dimensional spline (Press et al., 1992).
Suppose we have values of a function f at points x = 1..n,. For x such that j <x < j+1
define Pj(z) = j+ 1 —x, Po(x) =z — j. The formula

f(x) = Pu(x)f(5) + Pa(2) (G +1) (6)

gives a linear approximation, that means an approximation with a continuous function.
In case of cubic splines we want more: we want also the first and second derivatives to
be continuous. This can be done if we replace the right hand side of Eq. (@) with a
third-degree polynomial:

f(@) = Pi(x)f(§) + Po(x) f(G + 1) + P3(x) f"(j) + Palz) f" (5 + 1), (7)

where P3(z) = 3(Py(2)® — Py(z)), Py(x) = 3(Py(2)* — Py(x)). This formula guarantees
that both f and its second derivative are continuous. The values of the second derivative
f"” of f at nodes are a priori unknown, but can be calculated from the condition that
also the first derivative is continuous. This condition leads to the following system of
equations (j = 2..n, — 1):

PG =0 ) = S ) =20 G) G- 1).

There are n unknown f”(j) and only n — 2 equations, therefore we need 2 additional
conditions. There are several commonly used choices for these conditions. One of them
is to add equations

f"(1)=0, f"(n)=0,
which leads to so-called “natural splines”. The splines implemented in Matlab use a
different set of conditions, namely

@) =r'@=re-ra,  ffh)-fh-1)=rn-1-7mn-2.
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These conditions mean that the third derivative is continuous at + = 2 and z = n — 1
and they lead to what is known as “not-a-knot” splines. The important thing is that in
both cases the values of f” at the nodes can be obtained from f(j), j = 1..n, by a linear

operation which we call G:
"(i) = ZGijf(j)
j=1

The matrix G is different for “natural” and “not-a-knot” splines.

The three-dimensional spline interpolation is obtained simply by performing three one-
dimensional splines. The complication is that we want not the values of the interpolating
function at some points, but the coefficients standing by the base functions. We found
that it is convenient to choose base functions which are products of the polynomials P,
Py, Py, P, of variables z, y and z, that means P;(z)P;(y)Pi(z), Pi(z)Pi(y)P(2), ...,
Py(x)Py(y)Py(z). To extract the coefficients we start with the spline in z direction:

f(l’,y,Z) :Pl(z)f(xvyaj) + P2(Z)f(x7y7j + 1)

+P3(Z)fzz(x7y7])+P4(z)fzz(x7y7j+1) ) (8)

where f,, stands for 2 e 91 and is given by f..(z,y,7) = S0, G%.f(w,y,1). Therefore we
reduce the problem to two-dimensional splines in the zy— plane We continue with

+ P3(y>fyy(x7 Zvj> + P4(Z)fyy($, P+ 17j> )
and so on. In the end we get the coefficients standing by the base functions as combinations
of f(i,7,k) (values of f at the nodes) and the matrices G*, G¥, G*. Then we construct the
matrices B4, a € B, 3 € G, 1 < p,q,r < 4. The number EY is the coefficient standing

by P,(z)P,(y)P,(%) in box « resulting from a unit CSD at the node 3. The construction
of 64 FP4" matrices (each of size n by m), where v € G and o € B, is simple:

= / / / = ?((Z?(sj?ﬁ — Z)2dzdydx :

and the full matrix F' is now

(9)

4
_ pqr IPqT
= § Frar ppar
p,q,r=1

or

Fa= Y S e

p,q,r=1 a=1
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Anatomical abbreviations

APT anterior pretectal nucleus

cp cerebral peduncle
Hipp hippocampus
ic internal capsule
MG  medial geniculate nucleus
ml medial lemniscus
PO posterior thalamic nuclear group
Rt reticular thalamic nucleus
SN substantia nigra
VPm ventral posteromedial thalamic nucleus
71 zona incerta
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