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tEstimation of the 
ontinuous 
urrent-sour
e density in bulk tissue from a �niteset of ele
trode measurements is a daunting task. Here we present a methodologywhi
h allows su
h a re
onstru
tion by generalizing the one-dimensional inverse CSDmethod. The idea is to assume a parti
ular plausible form of CSD within a 
lassdes
ribed by a number of parameters whi
h 
an be estimated from available data,for example a set of 
ubi
 splines in 3D spanned on a �xed grid of the same size asthe set of measurements. To avoid spe
i�
ity of parti
ular 
hoi
e of re
onstru
tiongrid we add random jitter to the points positions and show that it leads to a 
orre
tre
onstru
tion. We propose di�erent ways of improving the quality of re
onstru
tionwhi
h take into a

ount the sour
es lo
ated outside the re
ording region through ap-propriate boundary treatment. The e�
ien
y of the traditional CSD and variantsof inverse CSD methods is 
ompared using several �delity measures on di�erent testdata to investigate when one of the methods is superior to the others. The meth-ods are illustrated with re
onstru
tions of CSD from potentials evoked by whiskerstimulation re
orded in a slab of the rat forebrain on a grid of 4x5x7 positions.1



Introdu
tionOne of the standard methods of analyzing extra
ellularly re
orded lo
al �eld potentials(LFPs) in neural tissue is the estimation of the 
urrent-sour
e density (CSD) whi
h gen-erated them (Ni
holson and Freeman, 1975; Freeman and Ni
holson, 1975). The 
onne
-tion between the ele
tri
 potential φ and the 
urrent-sour
es of density C is, under as-sumption of quasi-stati
 regime, (Mitzdorf, 1985) given by the equation:
∇(σ∇φ) = −C , (1)where σ is the ele
tri
al 
ondu
tivity tensor (Plonsey, 1969). In general, σ not onlydepends on position but is also anisotropi
 (Ueno and Sekino, 2005). Sin
e we do notknow the properties of σ in the studied tissue in this work we assume that it is a 
onstants
alar. This means that the ele
tri
al 
ondu
tan
e of the tissue is assumed homogeneousand isotropi
.The CSD is usually 
al
ulated in one dimension, for example if a laminar multiele
trodeis used to re
ord evoked potentials in the 
erebral 
ortex. In this 
ase Eq. (1) redu
es to
σ

∂2φ

∂z2
= −C(z) . (2)Let us assume that φ is measured at n equidistant ele
trode points with interele
trodedistan
e h. The traditional method of estimating C(z) at the interior points zi, i =

2, . . . , n − 1 is to use the numeri
al se
ond derivative (Mitzdorf, 1985). This leads to
C(zi) = −σ

φ(zi + h) − 2φ(zi) + φ(zi − h)

h2
. (3)To 
al
ulate the CSD at the extreme points one may follow the suggestion of Vaknin et al. (1988)whi
h is to assume that the potentials do not vary for z < z1 and z > zn, that is

φ(z) = φ(z1) for z < z1 and φ(z) = φ(zn) for z > zn.Re
ently, Pettersen et al. (2006) proposed a general framework 
alled inverse CSDmethod (iCSD) whi
h expli
itly takes into a

ount the assumptions made about the formof the sour
es. They observed that given the distribution of 
urrents in the tissue it isformally a simple matter to evaluate the potentials measured at any point in spa
e. Onehas to add up the 
ontributions from every point sour
e I(x0, y0, z0, t) whi
h are of theform
φ(x, y, z, t) =

I(x0, y0, z0, t)

4πσ
√

(x − x0)2 + (y − y0)2 + (z − z0)2
.Taking 
urrent-sour
e distribution parameterized with parameters C = [C1, . . . , CM ] onegets a fun
tional relation

Φ = [φ(x1) . . . φ(xN)] = F (C)whi
h 
an usually be inverted if the number of parameters, M , is equal to the number ofmeasurement points, xi ≡ (xi, yi, zi), i = 1..N . Inverting this relation leads to the valuesof parameters C for a given set of measured potentials Φ. This is parti
ularly 
onvenientfor parameterizations leading to F linear in C.The Inverse Current Sour
e Density method is a generalization of the traditional Cur-rent Sour
e Density method des
ribed above. Assume the potentials measured at equidis-tant points zi through the 
ortex, zi+1 − zi = h. Consider 
urrent sour
es distributed2



uniformly on in�nitely extended and in�nitely thin parallel planes passing through themeasurement points and perpendi
ular to the ele
trode. Let Ci be the value of planar
urrent sour
e density at zi divided by h, whi
h would be the value of volume 
urrent-sour
e density at this point if the 
urrent was distributed in the sli
e of thi
kness h instead.Then the potentials φ(zi) are 
onne
ted with the 
urrent-sour
e parameters Ci by Eq. (3),see (Pettersen et al., 2006).On
e the framework 
onne
ting C with φ is established it is natural to 
onsider otherdistributions of 
urrent whi
h would be more plausible than uniformly 
harged, in�nitelythin, and in�nitely extended planes in the brain. Pettersen et al. 
onsidered three di�er-ent 
hoi
es of distributions leading to three variants of iCSD whi
h they 
alled �δ-sour
eiCSD�, �step iCSD�, and �spline iCSD� method. In the �rst 
ase they assumed 
urrentsour
es distributed in in�nitely thin dis
s of radius R passing through zi. �Step iCSD�assumes 
urrent distribution in 
ylinders of radius R and height h 
entered at measure-ment points. The last method assumes a 
ontinuously varying in z but 
onstant in the
x, y plane pro�le of 
urrent-sour
e density. In all these 
ases the CSD distribution is pa-rameterized by its values at the measurement points. Let us stress that all these methodswere developed for a one-dimensional problem of a multiele
trode passing through the
ortex perpendi
ularly to its surfa
e.Re
ently we performed experiments in whi
h LFPs were measured at a three-dimen-sional array of 4 × 5 × 7 points in order to reveal the dynami
s and spe
i�
ity of ratdien
ephali
 a
tivation whi
h follows vibrissal stimulation. The simplest approa
h forexamining three-dimensional CSD would be to generalize the numeri
al se
ond derivativeand use an approximation to Lapla
ian:

C(xi, yi, zi) = −
σ

h2
[φ(xi + h, yi, zi) + φ(xi − h, yi, zi)

+ φ(xi, yi + h, zi) + φ(xi, yi − h, zi)

+ φ(xi, yi, zi + h) + φ(xi, yi, zi − h) − 6φ(zi)] ,

(4)This formula (in two dimensions) was used for example in (Novak and Wheeler, 1989),(Shimono et al., 2000) and (Lin et al., 2002). However, the traditional approa
h impliesthe ex
lusion of all the boundary points. In a typi
al one-dimensional re
ording the lossof two points out of 15-20 may be a

eptable. In our 
ase the boundary 
onsists of110 out of 140 measurement points. The pro
edure suggested by Vaknin (to assume thepotentials do not 
hange outside the grid) seemed not well justi�ed in our experimentstherefore we de
ided to generalize the inverse CSD method to three-dimensional 
ase.An early attempt to get information about the three-dimensional distribution of the �eldin the 
ortex by Sukov and Barth (1998) 
ombined analysis of measurements on 8 × 8epipial ele
trode grid with laminar multiele
trode depth re
ordings. The 16-point multi-ele
trode was pla
ed in the point whi
h exhibited highest surfa
ial a
tivity. Se
ond orderapproximation to Lapla
ian with the Vaknin 
ondition was used to obtain CSD at themeasurement points. Other points in the bulk tissue were not probed hen
e the obtainedCSD had a produ
t stru
ture and 
ould not resolve the 3D stru
ture of sour
es and sinksin the studied tissue.All the �gures and all the numeri
al examples in the subsequent se
tions use the grid
4 × 5 whi
h was also used in the experiment. The validity of the methods, however, isindependent of the size of the grid.
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(a) (b)Figure 1: The assumed distribution of 
urrent-sour
es (two-dimensional analog). Cir
lesdenote the grid points. We usually assume that the ele
trodes are lo
ated at, or very 
loseto, the knots of the grid spanning CSD. (a) CSD at any point is an interpolation (linearor spline) of the values at the nodes. (b) In step method we assume 
onstant CSD in abox around ea
h node.MethodsThe Inverse CSD method in three dimensionsLet us start with a three-dimensional 
ubi
 grid of nx, ny and nz points in respe
tivedire
tions so that ea
h re
ording site (xj , yj, zj) is 
lose to one of the grid points.1 Weassume that the total number of ele
trodes is the same as the number of grid pointsand is equal to n = nxnynz. We then 
onsider some 
lass of 
urrent-sour
e distributionswith n free parameters. Su
h distributions 
an be parameterized by the n values of CSDat the grid points. One example is a pie
ewise 
onstant (step) distribution: 
urrent-sour
e density is 
onstant in 
ubes of unit edge length 
entered on the grid points. Nextwe 
al
ulate the potentials at the ele
trodes lo
ations generated by the assumed CSDdistribution. This leads to a linear formula for ea
h φ in terms of the n parameters of Cof the form Φ = FC, where C stands for all the parameters organized in a ve
tor. We�nally invert this relation to 
al
ulate the n unknown parameters C (hen
e the wholeCSD distribution) from the measured potentials. The exa
t form of this linear operatordepends on the assumed form of the 
urrent sour
es distribution.2We 
onsider a number of di�erent CSD distributions. One is the step distributiondes
ribed above. Another is based on linear approximation: we assume that the CSD ispie
ewise linear, that is the CSD between the grid points is 
al
ulated from the values atthe nearest nodes via linear interpolation. The third 
ase we study is the CSD distributionin the form of three-dimensional 
ubi
 splines with knots at grid points. We 
onsider twotypes of splines, �natural� and �not-a-knot�, di�ering with a normalization 
ondition (seethe appendi
es). We also 
onsidered variants of above distributions to deal with boundarye�e
ts. They are des
ribed in the following se
tions.In the 
ase of linear and spline distributions we assumed that the 
urrent-sour
es arelo
alized inside the grid. In 
ase of the step distribution the CSD is nonzero in a slightlylarger 
uboid span by all the unit-size boxes 
entered at grid points (see Figure 1).1It is 
onvenient to work with unit spa
ing and to in
lude the true edge length h at the very end ofthe 
al
ulations, this is done simply by dividing the resulting CSD by h2.2Depending on the form of the assumed distribution and on the 
hosen parameterization the fun
tionaldependen
e φ = F (C) need not be linear. We 
onsider here only the 
ases where this relation is linear,however. 4



The 
al
ulation of the linear operator F for step distribution is quite simple. Let usdenote the position of i-th ele
trode by (x̃i, ỹi, z̃i) and the 
oordinates of the j-th gridnode by (xj , yj, zj). In general they need not be the same. Then the potential at i-thele
trode lo
ation is given by
Φi = Φ(x̃i, ỹi, z̃i) =

n
∑

j=1

FijCj,where
Cj = C(xj , yj, zj) .The matrix element Fij is the 
ontribution of the uniform CSD of unit density lo
atedat box 
entered at point j to the potential at point i. Thus, for the step distribution ofCSD, it is given by

Fij =
1

4πσ

∫ xj+1/2

xj−1/2

∫ yj+1/2

yj−1/2

∫ zj+1/2

zj−1/2

dzdydx
√

(x̃i − x)2 + (ỹi − y)2 + (z̃i − z)2
. (5)This integral is easy to evaluate numeri
ally, although one must be 
areful be
ause ofthe singularity of the integrand3. On
e we have the matrix F we 
an use its inverse toestimate the CSD at grid points from known potentials:

Cj =

n
∑

i=1

(F−1)jiΦi .These values de�ne the whole CSD distribution.The operator F for linear and spline methods is 
al
ulated similarly, although the
al
ulations get mu
h more 
ompli
ated, espe
ially for the 
ubi
 splines. For details ofthe 
al
ulations we refer the reader to Appendi
es.Boundary e�e
ts and distant sour
esIn the linear and spline distributions des
ribed in the previous se
tion it is assumedthat CSD is non-zero only inside the 
uboid en
losing the grid, whi
h was 
hosen toapproximate the distribution of ele
trode lo
ations. In real tissue this assumption is notful�lled: the array of ele
trodes 
overs only a small area of the brain and there are manysour
es outside that area. If we used the Lapla
ian to 
al
ulate CSD, then the in�uen
eof the outlying sour
es 
ould be negle
ted. For example, if there was an additional distantpoint sour
e then there would be a 1
r
term in observed potentials, but ∆1

r
= 0 4 whi
hgives no 
ontribution to the 
al
ulated CSD. The situation is di�erent with the inversemethod. Here we have one-to-one 
orresponden
e (via operators F and F−1) betweensour
es and potentials, hen
e any additional term in the potentials (like 1

r
) will produ
espurious sour
es. Nevertheless it is possible to modify the inverse method in su
h a waythat we 
an pro�t from its advantages over traditional CSD and at the same time limitthe impa
t of the above mentioned e�e
t.To a

ommodate the sour
es lo
ated outside the ele
trode grid we extend the gridby one point in ea
h dire
tion, therefore an additional layer of non-zero CSD is 
reated.3We dealt with the singularity by simply ex
ising a ball of radius ε = 10−8 or ε = 10−6. The numeri
alerror introdu
ed by su
h an ex
ision is smaller than ε2.4Ex
ept at r = 0, but this is not the 
ase here be
ause the sour
e is �distant�.5



The CSD at additional grid points is either zero, whi
h we denote with the letter �B�,or a dupli
ation of the boundary layer of the original grid, whi
h is denoted by �D�(see Figure 2). Therefore we have �linear�, �linear B� and �linear D� methods, similarlyfor splines. At the pra
ti
al level the di�eren
e between these methods is that we usedi�erent matri
es F . The modi�ed linear operator F is 
onstru
ted in 3 steps. First wea
t on a ve
tor of n CSD values with a matrix B, whi
h produ
es a larger ve
tor (of size
N = (nx + 2)(ny + 2)(nz + 2)) of CSD values on a larger grid. There are two di�erent Bmatri
es, BB and BD, for B and D boundary 
onditions respe
tively. Then we apply thematrix F 
al
ulated for the larger (nx + 2) × (ny + 2) × (nz + 2) grid. In the �nal stepwe dis
ard the values of potential at the boundary to get a ve
tor of size n; this is doneby applying a matrix R. Summarizing, we have the following formula for the F B matrix(supers
ripts indi
ate the size of the grid for whi
h the F matrix is 
al
ulated):

F nx,ny,nz B = RF (nx+2),(ny+2),(nz+2)BB ,analogously for F D. Note that there is no point in 
onsidering �step B� method be
auseit is the same as �step�, however, we may 
onsider �step D�.
(a) (b)Figure 2: Comparison of �standard� vs. B or D distribution of sour
es. In standarddistribution (a) the CSD is non-zero only inside the grid of the same size as the number ofele
trodes, while in B or D distribution (b) there is an additional layer of non-zero CSD.The B and D boundary 
onditions are motivated by the following heuristi
s. We knowthat the sour
es we deal with in real-world situations are not restri
ted to lie within thespa
e spanned by the grid. Suppose therefore that there is a sour
e outside, for examplenear a 
orner of the 
uboid. This sour
e will a�e
t the potentials, espe
ially in the 
orner.The inverse CSD method will then generate a 
urrent-sour
e distribution inside the gridsu
h that the resulting potential will mat
h the one measured at the re
ording points.In other words, the method will try to imitate the outlying sour
e with sour
es lo
atedinside the grid. This will lead to errors in CSD re
onstru
tion, for example a false sour
ein the 
orner may appear. Consider now the same potentials pro
essed with a methodusing B boundary 
ondition. One expe
ts that the B method may also generate a spurioussour
e in the 
orner, but the magnitude of the sour
e will be smaller. This is be
ausea larger CSD value in the 
orner means also larger CSD in the additional layer and theiCSD B method may pla
e a smaller sour
e in the 
orner than standard iCSD to obtainthe same potential. Summarizing, we expe
t the B methods to limit the magnitudes ofthe spurious sour
es at the boundary. In 
ase of D methods this attenuation should beeven stronger. We test both B and D variants be
ause it is hard to tell a priori whi
hboundary treatment leads to better re
onstru
tions.6



JitteringThe iCSD method allows us to 
al
ulate N unknown parameters of CSD distributionfrom N measured potentials. So far we assumed that the N unknowns were the valuesof CSD at the nodes pla
ed next to the ele
trode positions, however, su
h an assumptionis not the only possible. In fa
t, it leads to some 
onstraints on the 
al
ulated CSD. Forexample, in the linear method the maxima and minima of the obtained 
urrent sour
edensity are always lo
ated at the nodes. One way to avoid this parti
ular limitation is touse a di�erent distribution, su
h as 
ubi
 spline approximation. Another way is to use anapproa
h whi
h we 
all �spatial jittering�. In this variant we assume that the grid spanningCSD is slightly displa
ed with respe
t to the distribution of the ele
trodes (maximallyby half of the 
ube size), see Figure 3. The CSD obtained in this way is a valid solutionof the inverse problem, that is, it also produ
es the measured potentials. We 
an nowrandomly 
hoose many displa
ed grids, 
al
ulate the CSD and then take the average. Thismethod produ
es �smoother� CSD distributions, espe
ially for step and linear methods.Due to the linearity of this pro
edure the average obtained by jittering also generatesexperimentally obtained potentials and is an equivalent solution of the inverse problem.The jittering is implemented by altering the F matrix. Let ~d = (dx, dy, dz) be adispla
ement ve
tor, that means the CSD grid is shifted by ~d with respe
t to potentials(ele
trodes) grid. Then the elements of F (in 
ase of �step� distribution) are given by theformula:
Fij =

1

4πσ

∫ xj+
1

2

xj−
1

2

∫ yj+
1

2

yj−
1

2

∫ zj+
1

2

zj−
1

2

dz dy dx
√

(xi − dx − x)2 + (yi − dy − y)2 + (zi − dz − z)2
.We always use jittering in 
ombination with a B or D boundary 
ondition, whi
h we

(a) (b)Figure 3: The idea of spatial jittering. (a) The CSD distribution as in B or D method.(b) Jittering, grid spanning the sour
es (empty 
ir
les) is displa
ed with respe
t to thearray of ele
trodes (the bla
k dots).denote by J and K respe
tively. The number of displa
ement ve
tors used in the testsvaried from 12 to 46.ResultsRe
onstru
tion �delity for test dataTo 
ompare quantitatively the di�erent variants of iCSD method in three dimensionswe have to de
ide on a measure of the quality of the method. We 
hose the re
on-7



stru
tion error of a given 
urrent-sour
e distribution. To obtain it we take an arti�
ial
urrent-sour
e distribution C and 
al
ulate the potentials whi
h would be measured bythe three-dimensional array of ele
trodes. Then we use the potentials at the nodes to re-
onstru
t CSD. The total re
onstru
tion error is then the total square di�eren
e betweenthe original, C, and the re
onstru
ted, Crec, densities
e =

∫ nx

1

∫ ny

1

∫ nz

1

(C − Crec)
2 dz dy dx .Other measures of re
onstru
tion error we used are: squared maximal error (max |C −

Crec|
2) and 0.95/0.99 errors. We de�ne the p-error as the smallest value δ su
h that theprobability to �nd |C−Crec|

2 < δ is p. This is easy to �nd from the 
umulative distributionfun
tion of square errors cdf(|C−Crec|
2 < δ). On the graph of cdf one draws a horizontalline at y = p and reads o� the x axis the value of δ (see Figure 4 (b)). These measureshelp to di�erentiate between the re
onstru
tions of 
omparable mean square error butwith di�erent smoothness properties.The di�erent measures of re
onstru
tion error are presented in Tables 1 to 4. Ea
htable 
olle
ts the results for various re
onstru
tion methods applied to given sets of testdata. The re
onstru
tion errors 
an only be 
ompared between di�erent methods appliedto the same data-set as we did not attempt to normalize the results with respe
t todi�erent sour
e intensities.

(a) 0 0.2 0.4 0.6 0.8 1

x 10
−3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Error (C−C
rec

)2

V
ol

um
e 

(n
or

m
al

iz
ed

)

Distribution of reconstruction error

 

 

step
step (J)

(b) 0 1 2 3 4

x 10
−4

0.85

0.9

0.95

0.99
1

Error (C−C
rec

)2

V
ol

um
e 

(n
or

m
al

iz
ed

)

Cumulative distribution of reconstruction error

 

 

step

step (J)

Figure 4: Example of distribution (a) and 
umulative distribution (b) of the re
onstru
tionerror for step and step J iCSD methods. Verti
al lines de�ne 0.95/0.99 errors.We 
ompared all the iCSD methods presented in the previous se
tion, that meansall 
ombinations of the assumed distributions (step, linear, natural spline, not-a-knotspline) and the boundary 
onditions (standard, B, D, jittering J, jittering K). The dire
t
omparison with the �traditional� CSD is not possible be
ause then we do not have there
onstru
ted CSD at the boundary nodes. In order to have a �traditional� method for
omparison we generalize the Vaknin pro
edure to three dimensions, although it does notseem well justi�ed. We extend the potentials grid by adding one point in ea
h dire
-tion and dupli
ating the potential values. Then we 
al
ulate the approximate Lapla
ian,Eq. (4), and interpolate the CSD values using splines. This method is denoted by �tradV�. It appears from our analysis that the relative utility of the methods depends on thetype of the 
hosen test data. This is not surprising: if the test distribution was of the8



Method Re
onstru
tion errorTotal Max 0.95 0.99Traditional V 3.0 2.1e−3 1.8e−4 6.8e−4iCSD step 5.8 1.8e−3 3.5e−4 7.1e−4iCSD linear 0.25 3.6e−4 1.7e−5 4.1e−5iCSD spline (natural) 0.091 6.1e−5 5.3e−6 1.2e−5iCSD spline (not-a-knot) 0.28 1.3e−4 1.6e−5 4.2e−5Table 1: The re
onstru
tion errors for test data shown in Figure 5.same type as the one assumed in the given iCSD variant then this (and only this) methodwould re
onstru
t the test data exa
tly. Therefore an important question is what testdata are �natural�, that means resembling the CSD in a
tual tissue. We used �ve typesof test data. The �rst four types were Gaussian sour
es with CSD given by the formula
C(~r) = A exp

(

−
(~r − ~r0)

2

l

)

.There were between 4 and 8 su
h sour
es and the parameters A, l, ~r0 were 
hosen ran-domly. In the �rst type of data we assumed that CSD outside the ele
trodes array wasstri
tly zero and we trun
ated the distribution a

ordingly. In the se
ond type we assumedthat the CSD is non-zero in one additional layer of unit thi
kness, in the third type therewere 2 additional layers. The fourth type was similar to the se
ond but there was anadditional strong point-like sour
e lo
ated outside the grid. The �fth type of the testdata were homogeneous spheri
al sour
es with sharp 
ut-o�. For the tests we assumedthe same 
on�guration of ele
trode lo
ations as in the motivating experiment whi
h wasa grid of size 4 × 5 × 7.First we 
ompared the re
onstru
tion �delity of four di�erent forms of assumed dis-tributions (see Figure 5 and Table 1). The test data were of the �rst type, that is thesour
es were only inside the grid. The results are as expe
ted: the step method is theworst, the linear approximation of the distribution is an order of magnitude better, thenatural splines are even better. The not-a-knot splines do not work very well on su
h data,they are worse than natural splines and even slightly worse than linear approximation.The �traditional V� method performs here rather poorly.Next we tested di�erent boundary 
onditions (see Figure 6 and Table 2, the splinesused here are �not-a-knot�). As the boundary 
onditions are devised to deal with sour
esoutside the grid, the test data here are of the se
ond type (non-zero CSD also in an addi-tional layer). For su
h test data the �standard� iCSD method produ
es spurious sour
esat the boundary and the re
onstru
tion error is very high. The quality of the methodimproves substantially if we use any of the variants pushing boundary away. We also
onsidered other forms of distributions but in the 
ase at hand the appropriate treatmentof the boundary seems mu
h more important than the 
hoi
e of the interpolation method.The traditional method is quite good here, with the error only about thirty per
ent largerthan iCSD.The distortions present in iCSD spline (se
ond row in Figure 6) form a distin
tive pat-tern. We observed very similar patterns in experimental rat data (when pro
essed withouttaking into a

ount the boundary e�e
ts) and it seems to us that they 
an be 
lassi�ed asartifa
ts resulting from the sour
es lo
ated outside the grid. In the experimental situationthese 
an be, for example, sour
es in the neighboring 
ortex.9
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onstru
tion of CSD from potentials (arbitrary units). Ea
h row is a plotof a three-dimensional volume. From test sour
es (the �rst row) potential at the nodesis 
al
ulated (se
ond row) and then passed on to various CSD methods. The traditionalCSD (third row) allows the re
onstru
tion on a smaller grid only. Test data were randomGaussian sour
es of 
omparable strength and di�erent signs trun
ated at the boundaryof the grid, see text for details. The values of the re
onstru
tion errors are presented inTable 1.It is even more important to 
hoose suitable boundary treatment if we add a strongsour
e to our data (the fourth type), see Figure 7 and Table 3. For su
h data the methodsignoring the boundary are simply useless (
f. the se
ond row in Figure 7). The bestmethod here is the traditional V method, but the iCSD not-a-knot spline K also performswell, although distortions are visible at the edges of the grid.Method Re
onstru
tion errorTotal Max 0.95 0.99Traditional V 0.23 4.6e−4 9.3e−6 7.1e−5iCSD spline 7.9 0.25 1.7e−3 1.7e−3iCSD spline B 0.18 2.7e−4 9.0e−6 4.9e−5iCSD spline D 0.19 3.2e−4 6.5e−6 5.0e−5iCSD spline J 0.18 2.6e−4 9.0e−6 4.5e−5iCSD spline K 0.18 3.2e−4 6.6e−6 4.6e−5Table 2: The re
onstru
tion errors for test data shown in Figure 610
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xFigure 6: Re
onstru
tion of CSD from potentials, 
omparison of di�erent treatments ofthe boundary (arbitrary units). Test data were random Gaussian sour
es trun
ated at theboundary of the grid extended by one layer in ea
h dire
tion, see text for details. Table2 
ontains the values of re
onstru
tion errors for this test.Method Re
onstru
tion errorTotal Max 0.95 0.99Traditional V 0.97 4.4e−4 4.4e−5 9.0e−5iCSD spline 3.9e2 1.8 0.012 0.11iCSD spline B 3.2 1.6e−3 1.6e−4 4.7e−4iCSD spline D 1.6 5.5e−4 7.7e−5 1.7e−4iCSD spline J 3.1 1.5e−3 1.5e−4 4.4e−4iCSD spline K 1.6 5.4e−4 7.6e−5 1.6e−4Table 3: The re
onstru
tion errors for test data shown in Figure 7.Our experien
e shows that the iCSD method (with appropriate boundary 
onditions)is usually better and never mu
h worse than �trad V�. The inverse methods seem to work
omparably to �trad V� in 
ase of 
ompa
t sour
es, su
h as shown in Figures 6 and 7, butare usually an order of magnitude better if we allow the sour
es to be larger, of the sizeobserved in our experimental data, see Table 4 for two examples. The Vaknin pro
edurein one dimension is reported (Pettersen et al., 2006) to work better in 
ase of balan
edCSD, that means when the integral of the CSD over the region at hand is zero. Ourstudy 
on�rms this observation. If we �rst 
al
ulate the errors for a balan
ed 
urrent-sour
e distribution and then 
hange the sign of the sour
es so that they are all positive11
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xFigure 7: Re
onstru
tion of CSD from potentials. Test data were random Gaussiansour
es trun
ated at the boundary of the grid extended by one layer in ea
h dire
tion,plus an additional strong point sour
e outside the grid was added at (x = 6, y = 3, z = 4),see text for details. Table 3 
ontains the values of re
onstru
tion errors for this test.Method Error for data set 1 Error for data set 2Total Max 0.95 0.99 Total Max 0.95 0.99Trad V 2.2 1.1e−3 1.6e−4 5.9e−4 5.3 1.1e−3 2.6e−4 4.9e−4iCSD 0.041 5.4e−5 2.5e−6 9.7e−6 0.20 4.9e−5 1.3e−5 3.0e−5Table 4: The re
onstru
tion errors for two sets of test data with large Gaussian sour
es.Set 1: 4 sour
es, CSD non-zero only inside the grid. Set 2: 5 sour
es, CSD non-zeroinside the grid with an additional layer added. The iCSD is a spline method taken withappropriate boundary 
onditions (standard for data set 1, B for data set 2).then the errors in iCSD method grow twi
e while in �trad V� they grow four times. Itis worth noting that for the data mentioned here the traditional method was an order ofmagnitude worse, see Figure 8. Another strong argument in favor of the inverse method isthat here we make all our assumptions expli
it: we must spell out the form of the 
urrentsour
es distribution. For the �trad V� method we also make an assumption: potentialsare 
onstant outside the grid, but we do not know how that assumption is re�e
ted in there
onstru
ted CSD. In our opinion it is mu
h more elegant to make assumptions aboutthe distribution of 
urrent-sour
es instead of the potentials.The in�uen
e of jittering seems to di�er strongly for various forms of assumed CSDdistributions. In 
ase of step (see Figure 4) and linear distributions the jittering signi�-12



 Sources  
          

iCSD spline
 (natural) 

Traditional
  CSD (V)  

z = 1
1

2

3

4

z = 2 z = 3 z = 4 z = 5 z = 6 z = 7

1

2

3

4

1 2 3 4 5

1

2

3

4
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5y

xFigure 8: Re
onstru
tion of CSD from potentials for large and non-balan
ed 
urrent-sour
es lo
ated inside the grid (arbitrary units). The inverse method gives the totalre
onstru
tion error e = 0.18 while for the traditional method this error is e = 15, twoorders of magnitude larger. Note parti
ularly the di�eren
e between the re
onstru
tionsat z = 3.
antly improves the quality of the re
onstru
tion, but for splines the improvement is onlyslight. It 
an be easily understood: the �step� re
onstru
tion strongly depends on the
hoi
e of the sour
es grid, while the �spline� re
onstru
tion does not.Appli
ation to evoked potentials in ratThe method was applied to LFPs re
orded from deep stru
tures of the rat forebrain. Anadult male Wistar rat was anesthetized with urethane, pla
ed in a stereotaxi
 apparatus,and a bun
h of his left whiskers was glued to a piezoele
tri
 stimulator. Most of the rightparietal bone was removed and the resulting opening was 
overed with agar. A set of �vestainless steel mi
ro-ele
trodes (FHC, Bowdoin, USA; impedan
e of 1.5 MOhms at 1 kHz)mounted parallely in a sagittal plane (tips in antero-posterior line, spa
ed by 0.7 mm; themost anterior ele
trode 1.9 mm posterior to Bregma and 2.1 mm to the right from themidline) was lowered verti
ally through the opening and stopped ea
h 0.7 mm at sevendepths in the brain tissue, starting at 3.4 mm from the 
orti
al surfa
e. At ea
h stopthe bun
h of left whiskers was de�e
ted 60 times. LFPs were re
orded monopolarly andallowed for extra
tion of 60 somatosensory evoked potentials (EPs) per ea
h re
ordingpoint.The pro
edure was repeated at lateral positions 2.8 mm, 3.5 mm and 4.2 mm to theright from midline, at 
orresponding depths. Thus a re
tangular grid of 140 (4 x 5 x7) re
ording points 
omprising a slab of forebrain tissue with portions of the thalamus,prete
tum, the hippo
ampus, and 
erebral white matter was obtained. An exa
t lo
ationof the re
ording points was veri�ed histologi
ally after the experiment and anatomi
alstru
tures were identi�ed a

ording to Paxinos and Watson (1996). For details of surgi
alpro
edure, stimulation of the vibrissae, signal pro
essing and post-experimental pro
eduresee Kublik et al. (2003).The LFP signal was ampli�ed (1000 times) and �ltered (0.1Hz-5kHz). Epo
hs (ofabout 1.4 s) 
ontaining EPs were digitized on-line (10 kHz) with 1401plus interfa
e andSpike-2 software (CED, Cambridge, England). All stored data were examined for integrity13



and epo
hs with artifa
ts were ex
luded from further analysis.Constant and isotropi
 
ondu
tivity of the tissue was assumed. We took σ = 300 S ·
mm−1 as in (Nunez, 1981; Hämäläinen et al., 1993), although some measurements in therat brain suggest that σ 
an take values around 60�70 S ·mm−1 (Ueno and Sekino, 2005).The only e�e
t of a

epting di�erent values of σ would be a 
hange of s
ale of re
onstru
tedCSD.Figure 9 shows the 
urrent sour
e density 3.5ms after the stimulus, re
onstru
tedusing the iCSD not-a-knot spline D method (top row). This is 
ompared with a splineinterpolation of the potentials used for the re
onstru
tion (bottom row). There is anoti
eable 
orrelation, e.g. the a
tivation blots around (x = 1.5, z = 4) and (x = 3.5, z =
4) at y = 2 sli
e in potentials have 
orresponding blots in CSD. However, the stru
ture is
learly di�erent, for instan
e a strong sour
e visible in CSD around (x = 3.5, y = 3, z = 4)is almost invisible on the �gure showing potentials.The di�eren
es are even more dramati
 at Figure 10, whi
h 
ompares re
onstru
tedCSD (top row) with spline approximation of potential in the tissue (bottom row) 15 msafter the stimulus. Here, the potential distribution seems to indi
ate strong a
tivationof the whole region. The pi
ture of CSD, while 
ompli
ated, shows a 
lear stru
tureof sour
es and sinks whi
h one 
an attempt to understand by 
onne
ting the a
tivationpattern with known anatomy of the somatosensory system.The quality of 
omparison depends on the 
hosen s
ales in both kinds of �gures (CSD,potentials). Our experien
e shows that one 
annot 
hoose a s
ale for potentials so thatall the pi
tures have 
omparable intensities, whi
h is possible for the CSD distribution inour 
ase. This is another point in favor of studying the re
onstru
ted CSD.Dis
ussion and summaryLFPs measured in tissue are generated by ma
ros
opi
 
urrent �ow resulting from 
on-
erted dynami
s of neural populations. Long range nature of ele
tri
 for
es implies thatevery sour
e 
an be visible in re
ordings at many sites 
ompli
ating the analysis of ele
-trophysiologi
al data. Having the information about the distribution of the sour
es 
andramati
ally improve the spatial resolution sin
e these are often well lo
alized in par-ti
ular brain stru
tures. Unfortunately, the problem of CSD re
onstru
tion from �nitenumber of re
ordings is ill-posed meaning that there are many di�erent CSD distributionswhi
h 
ould generate re
orded potentials. The fa
t that we la
k pre
ise measurementsof the ele
tri
 
ondu
tivity tensor in the tissue does not help the re
onstru
tion. Nev-ertheless, we believe that with a reasonable set of re
ordings at di�erent sites the CSDre
onstru
tion may provide the basi
 understanding of dynami
s of an a
tivation wave�owing through the investigated stru
ture.This leads to a question whi
h re
onstru
tion method is optimal. Our experimentsshow that if we want to 
hoose the best method for the problem at hand, it would be bestto test the methods on sample CSD distribution, preferably from a realisti
 neural model.If that is not possible, then for well-lo
alized sour
es we would re
ommend the inverseCSD method with natural spline distribution. If the sour
es are expe
ted to be large andnot 
on�ned to the probed volume then the re
ommended method would be not-a-knotsplines with extended boundary. If the sour
es may be very small (lo
alized) and/or thedata are distorted by the presen
e of a strong sour
e outside the grid, then the �traditionalV� method may be useful, although the spline iCSD with boundary 
onditions should notbe mu
h worse. 14



Figure 9: Top row: Current sour
e density 3.5ms after the stimulus re
onstru
ted usingthe iCSD not-a-knot spline D method. Note that di�erent plane is shown than in theprevious �gures to allow usage of 
oronal brain se
tions. Bottom row: spline approximatedpotential in the tissue based on the same data as used for the CSD re
onstru
tion at thesame time. The grid spa
ing is 0.7mm in ea
h dire
tion. For abbreviations see Appendi
es.

Figure 10: As in Figure 9, 15ms after the stimulus.15



Movies showing the re
onstru
ted 
urrent dynami
s for example data presented hereas well as the s
ripts ne
essary to generate the movies and to apply our methods 
an befound at http://www.neuroinf.pl/Members/szleski/i
sd.html.The methods dis
ussed in the present work 
onstitute a framework whi
h 
an be easilyextended by 
onsidering other forms of CSD distributions, whi
h may be 
ase dependent,for instan
e anatomi
ally motivated in spe
i�
 
ases. It is also a simple matter to developsimilar formulae for two-dimensional 
ase whi
h will be of interest for ele
trode arraysre
ordings.A
knowledgmentsWe are grateful to Wit Jaku
zun for his suggestion to investigate spatial jittering as oneway to improve the CSD re
onstru
tion. This work was partly �nan
ed from the PolishMinistry of S
ien
e and Higher Edu
ation resear
h grants N401 146 31/3239 and 2P04C046 27.Appendi
esLinear iCSD methodIn this appendix we 
onstru
t the F matrix for the linear distribution of CSD. Considera grid of points (i, j, k), where i = 1..nx, j = 1..ny, k = 1..nz. Let us number thepoints with a multi-index α ≡ (i, j, k) and write (i, j, k) ≡ (xα, yα, zα). Let V be theset of 8 ve
tors (v1, v2, v3), vi ∈ {0, 1}. The grid has n = nxnynz nodes and there are
m = (nx − 1)(ny − 1)(nz − 1) boxes spanned by these nodes. We index the boxes so thatthe 
orners of the box number α are α + v for v ∈ V . Let B denote the set of all theallowed indi
es α numbering the boxes and G stand for all the grid points. Let C denotethe ve
tor of CSD values at the nodes, that is Cα = C(xα, yα, zα) for α ∈ G. We assumethat CSD in boxes is given by a linear approximation.Take a point (x, y, z) in box number α and let δx = x− xα, δy = y − yα, δz = z − zα.The value of CSD at this point obtained with the linear interpolation is given by:
C(x, y, z) =

∑

v∈V

[1 − v1 + (2v1 − 1)δx][1 − v2 + (2v2 − 1)δy][1 − v3 + (2v3 − 1)δz]Cα+v.Therefore the distribution inside the box is a linear 
ombination of 8 fun
tions fl, l = 1..8:
f1 = 1, f2 = δx, f3 = δy, f4 = δz, f5 = δxδy, f6 = δxδz, f7 = δyδz, f8 = δxδyδz, with
oe�
ients depending linearly on the values of C at the nodes of the box:

C(x, y, z) =
∑

β∈G

8
∑

l=1

El
αβflCβ.The 
oe�
ients El

αβ are non-zero only for β − α ∈ V and follow from the above formula,e.g. E1
α,β = 1 for β − α = (0, 0, 0), otherwise E1

α,β = 0, et
. The potential generated bysu
h a distribution of 
urrent-sour
e density at some point (x̃, ỹ, z̃) is
Φ(x̃, ỹ, z̃) =

∑

α∈B

∑

β∈G

8
∑

l=1

F l
α(x̃, ỹ, z̃)El

αβCβ ,16
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where
F l

α(x̃, ỹ, z̃) =
1

4πσ

∫ 1

0

∫ 1

0

∫ 1

0

fl(x, y, z) dz dy dx
√

(x̃ − xα − x)2 + (ỹ − yα − y)2 + (z̃ − zα − z)2
.If we now take as (x̃, ỹ, z̃) one of the grid points γ then

Φγ =
∑

β∈G

FγβCβ, where Fγβ =
∑

α∈B

8
∑

l=1

F l
α(xγ , yγ, zγ)E

l
αβ.Thus Fγβ represents the dire
t and indire
t 
ontributions to the total potential at point

γ from the CSD asso
iated with the grid point β.Spline iCSD methodThe 
onstru
tion of the F matrix for the spline distribution is in prin
iple very similar tothe 
ase of linear distribution, but the level of 
ompli
ation is mu
h higher. Similarly as inthe previous appendix we have n nodes and m boxes, but now the interpolating fun
tionin ea
h box is the three-dimensional 
ubi
 spline. That means there are 4 × 4 × 4 = 64base fun
tions. Therefore there will be 64 ea
h of Eℓ and F ℓ matri
es. The main 
hallengehere is to 
onstru
t the Eℓ matri
es, that means to des
ribe how a CSD value asso
iatedwith a given node in�uen
es the interpolating splines in all the boxes.First we brie�y remind the 
onstru
tion of one-dimensional spline (Press et al., 1992).Suppose we have values of a fun
tion f at points x = 1..nx. For x su
h that j ≤ x ≤ j +1de�ne P1(x) = j + 1 − x, P2(x) = x − j. The formula
f(x) = P1(x)f(j) + P2(x)f(j + 1) (6)gives a linear approximation, that means an approximation with a 
ontinuous fun
tion.In 
ase of 
ubi
 splines we want more: we want also the �rst and se
ond derivatives tobe 
ontinuous. This 
an be done if we repla
e the right hand side of Eq. (6) with athird-degree polynomial:

f(x) = P1(x)f(j) + P2(x)f(j + 1) + P3(x)f ′′(j) + P4(x)f ′′(j + 1) , (7)where P3(x) = 1
6
(P1(x)3 − P1(x)), P4(x) = 1

6
(P2(x)3 − P2(x)). This formula guaranteesthat both f and its se
ond derivative are 
ontinuous. The values of the se
ond derivative

f ′′ of f at nodes are a priori unknown, but 
an be 
al
ulated from the 
ondition thatalso the �rst derivative is 
ontinuous. This 
ondition leads to the following system ofequations (j = 2..nx − 1):
1

6
f ′′(j − 1) +

1

3
f ′′(j) +

1

6
f ′′(j + 1) = f(j + 1) − 2f(j) + f(j − 1) .There are n unknown f ′′(j) and only n − 2 equations, therefore we need 2 additional
onditions. There are several 
ommonly used 
hoi
es for these 
onditions. One of themis to add equations

f ′′(1) = 0 , f ′′(n) = 0 ,whi
h leads to so-
alled �natural splines�. The splines implemented in Matlab use adi�erent set of 
onditions, namely
f ′′(3) − f ′′(2) = f ′′(2) − f ′′(1) , f ′′(n) − f ′′(n − 1) = f ′′(n − 1) − f ′′(n − 2) .17



These 
onditions mean that the third derivative is 
ontinuous at x = 2 and x = n − 1and they lead to what is known as �not-a-knot� splines. The important thing is that inboth 
ases the values of f ′′ at the nodes 
an be obtained from f(j), j = 1..n, by a linearoperation whi
h we 
all G:
f ′′(i) =

n
∑

j=1

Gijf(j) .The matrix G is di�erent for �natural� and �not-a-knot� splines.The three-dimensional spline interpolation is obtained simply by performing three one-dimensional splines. The 
ompli
ation is that we want not the values of the interpolatingfun
tion at some points, but the 
oe�
ients standing by the base fun
tions. We foundthat it is 
onvenient to 
hoose base fun
tions whi
h are produ
ts of the polynomials P1,
P2, P3, P4 of variables x, y and z, that means P1(x)P1(y)P1(z), P1(x)P1(y)P2(z), . . .,
P4(x)P4(y)P4(z). To extra
t the 
oe�
ients we start with the spline in z dire
tion:

f(x, y, z) =P1(z)f(x, y, j) + P2(z)f(x, y, j + 1)

+ P3(z)fzz(x, y, j) + P4(z)fzz(x, y, j + 1) ,
(8)where fzz stands for ∂2f

∂z2 and is given by fzz(x, y, j) =
∑nz

i=1 Gz
jif(x, y, i). Therefore weredu
e the problem to two-dimensional splines in the xy−plane. We 
ontinue with

f(x, y, j) =P1(y)f(x, i, j) + P2(y)f(x, i + 1, j)

+ P3(y)fyy(x, i, j) + P4(z)fyy(x, i + 1, j) ,
(9)and so on. In the end we get the 
oe�
ients standing by the base fun
tions as 
ombinationsof f(i, j, k) (values of f at the nodes) and the matri
es Gx, Gy, Gz. Then we 
onstru
t thematri
es E

pqr
αβ , α ∈ B, β ∈ G, 1 ≤ p, q, r ≤ 4. The number E

pqr
αβ is the 
oe�
ient standingby Pp(x)Pq(y)Pr(z) in box α resulting from a unit CSD at the node β. The 
onstru
tionof 64 F pqr

γα matri
es (ea
h of size n by m), where γ ∈ G and α ∈ B, is simple:
F pqr

γα =
1

4πσ

∫ 1

0

∫ 1

0

∫ 1

0

Pp(x)Pq(y)Pr(z)
√

(xγ − xα − x)2 + (yγ − yα − y)2 + (zγ − zα − z)2
dzdydx ,and the full matrix F is now

F =

4
∑

p,q,r=1

F pqrEpqr ,or
Fγβ =

4
∑

p,q,r=1

m
∑

α=1

F pqr
γα E

pqr
αβ .
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