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4 Faulty of Mathematis and Information SieneWarsaw University of TehnologyPl. Politehniki 1, 00-661 Warszawa, PolandApril 17, 2007AbstratEstimation of the ontinuous urrent-soure density in bulk tissue from a �niteset of eletrode measurements is a daunting task. Here we present a methodologywhih allows suh a reonstrution by generalizing the one-dimensional inverse CSDmethod. The idea is to assume a partiular plausible form of CSD within a lassdesribed by a number of parameters whih an be estimated from available data,for example a set of ubi splines in 3D spanned on a �xed grid of the same size asthe set of measurements. To avoid spei�ity of partiular hoie of reonstrutiongrid we add random jitter to the points positions and show that it leads to a orretreonstrution. We propose di�erent ways of improving the quality of reonstrutionwhih take into aount the soures loated outside the reording region through ap-propriate boundary treatment. The e�ieny of the traditional CSD and variantsof inverse CSD methods is ompared using several �delity measures on di�erent testdata to investigate when one of the methods is superior to the others. The meth-ods are illustrated with reonstrutions of CSD from potentials evoked by whiskerstimulation reorded in a slab of the rat forebrain on a grid of 4x5x7 positions.1



IntrodutionOne of the standard methods of analyzing extraellularly reorded loal �eld potentials(LFPs) in neural tissue is the estimation of the urrent-soure density (CSD) whih gen-erated them (Niholson and Freeman, 1975; Freeman and Niholson, 1975). The onne-tion between the eletri potential φ and the urrent-soures of density C is, under as-sumption of quasi-stati regime, (Mitzdorf, 1985) given by the equation:
∇(σ∇φ) = −C , (1)where σ is the eletrial ondutivity tensor (Plonsey, 1969). In general, σ not onlydepends on position but is also anisotropi (Ueno and Sekino, 2005). Sine we do notknow the properties of σ in the studied tissue in this work we assume that it is a onstantsalar. This means that the eletrial ondutane of the tissue is assumed homogeneousand isotropi.The CSD is usually alulated in one dimension, for example if a laminar multieletrodeis used to reord evoked potentials in the erebral ortex. In this ase Eq. (1) redues to
σ

∂2φ

∂z2
= −C(z) . (2)Let us assume that φ is measured at n equidistant eletrode points with intereletrodedistane h. The traditional method of estimating C(z) at the interior points zi, i =

2, . . . , n − 1 is to use the numerial seond derivative (Mitzdorf, 1985). This leads to
C(zi) = −σ

φ(zi + h) − 2φ(zi) + φ(zi − h)

h2
. (3)To alulate the CSD at the extreme points one may follow the suggestion of Vaknin et al. (1988)whih is to assume that the potentials do not vary for z < z1 and z > zn, that is

φ(z) = φ(z1) for z < z1 and φ(z) = φ(zn) for z > zn.Reently, Pettersen et al. (2006) proposed a general framework alled inverse CSDmethod (iCSD) whih expliitly takes into aount the assumptions made about the formof the soures. They observed that given the distribution of urrents in the tissue it isformally a simple matter to evaluate the potentials measured at any point in spae. Onehas to add up the ontributions from every point soure I(x0, y0, z0, t) whih are of theform
φ(x, y, z, t) =

I(x0, y0, z0, t)

4πσ
√

(x − x0)2 + (y − y0)2 + (z − z0)2
.Taking urrent-soure distribution parameterized with parameters C = [C1, . . . , CM ] onegets a funtional relation

Φ = [φ(x1) . . . φ(xN)] = F (C)whih an usually be inverted if the number of parameters, M , is equal to the number ofmeasurement points, xi ≡ (xi, yi, zi), i = 1..N . Inverting this relation leads to the valuesof parameters C for a given set of measured potentials Φ. This is partiularly onvenientfor parameterizations leading to F linear in C.The Inverse Current Soure Density method is a generalization of the traditional Cur-rent Soure Density method desribed above. Assume the potentials measured at equidis-tant points zi through the ortex, zi+1 − zi = h. Consider urrent soures distributed2



uniformly on in�nitely extended and in�nitely thin parallel planes passing through themeasurement points and perpendiular to the eletrode. Let Ci be the value of planarurrent soure density at zi divided by h, whih would be the value of volume urrent-soure density at this point if the urrent was distributed in the slie of thikness h instead.Then the potentials φ(zi) are onneted with the urrent-soure parameters Ci by Eq. (3),see (Pettersen et al., 2006).One the framework onneting C with φ is established it is natural to onsider otherdistributions of urrent whih would be more plausible than uniformly harged, in�nitelythin, and in�nitely extended planes in the brain. Pettersen et al. onsidered three di�er-ent hoies of distributions leading to three variants of iCSD whih they alled �δ-soureiCSD�, �step iCSD�, and �spline iCSD� method. In the �rst ase they assumed urrentsoures distributed in in�nitely thin diss of radius R passing through zi. �Step iCSD�assumes urrent distribution in ylinders of radius R and height h entered at measure-ment points. The last method assumes a ontinuously varying in z but onstant in the
x, y plane pro�le of urrent-soure density. In all these ases the CSD distribution is pa-rameterized by its values at the measurement points. Let us stress that all these methodswere developed for a one-dimensional problem of a multieletrode passing through theortex perpendiularly to its surfae.Reently we performed experiments in whih LFPs were measured at a three-dimen-sional array of 4 × 5 × 7 points in order to reveal the dynamis and spei�ity of ratdienephali ativation whih follows vibrissal stimulation. The simplest approah forexamining three-dimensional CSD would be to generalize the numerial seond derivativeand use an approximation to Laplaian:

C(xi, yi, zi) = −
σ

h2
[φ(xi + h, yi, zi) + φ(xi − h, yi, zi)

+ φ(xi, yi + h, zi) + φ(xi, yi − h, zi)

+ φ(xi, yi, zi + h) + φ(xi, yi, zi − h) − 6φ(zi)] ,

(4)This formula (in two dimensions) was used for example in (Novak and Wheeler, 1989),(Shimono et al., 2000) and (Lin et al., 2002). However, the traditional approah impliesthe exlusion of all the boundary points. In a typial one-dimensional reording the lossof two points out of 15-20 may be aeptable. In our ase the boundary onsists of110 out of 140 measurement points. The proedure suggested by Vaknin (to assume thepotentials do not hange outside the grid) seemed not well justi�ed in our experimentstherefore we deided to generalize the inverse CSD method to three-dimensional ase.An early attempt to get information about the three-dimensional distribution of the �eldin the ortex by Sukov and Barth (1998) ombined analysis of measurements on 8 × 8epipial eletrode grid with laminar multieletrode depth reordings. The 16-point multi-eletrode was plaed in the point whih exhibited highest surfaial ativity. Seond orderapproximation to Laplaian with the Vaknin ondition was used to obtain CSD at themeasurement points. Other points in the bulk tissue were not probed hene the obtainedCSD had a produt struture and ould not resolve the 3D struture of soures and sinksin the studied tissue.All the �gures and all the numerial examples in the subsequent setions use the grid
4 × 5 whih was also used in the experiment. The validity of the methods, however, isindependent of the size of the grid.
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(a) (b)Figure 1: The assumed distribution of urrent-soures (two-dimensional analog). Cirlesdenote the grid points. We usually assume that the eletrodes are loated at, or very loseto, the knots of the grid spanning CSD. (a) CSD at any point is an interpolation (linearor spline) of the values at the nodes. (b) In step method we assume onstant CSD in abox around eah node.MethodsThe Inverse CSD method in three dimensionsLet us start with a three-dimensional ubi grid of nx, ny and nz points in respetivediretions so that eah reording site (xj , yj, zj) is lose to one of the grid points.1 Weassume that the total number of eletrodes is the same as the number of grid pointsand is equal to n = nxnynz. We then onsider some lass of urrent-soure distributionswith n free parameters. Suh distributions an be parameterized by the n values of CSDat the grid points. One example is a pieewise onstant (step) distribution: urrent-soure density is onstant in ubes of unit edge length entered on the grid points. Nextwe alulate the potentials at the eletrodes loations generated by the assumed CSDdistribution. This leads to a linear formula for eah φ in terms of the n parameters of Cof the form Φ = FC, where C stands for all the parameters organized in a vetor. We�nally invert this relation to alulate the n unknown parameters C (hene the wholeCSD distribution) from the measured potentials. The exat form of this linear operatordepends on the assumed form of the urrent soures distribution.2We onsider a number of di�erent CSD distributions. One is the step distributiondesribed above. Another is based on linear approximation: we assume that the CSD ispieewise linear, that is the CSD between the grid points is alulated from the values atthe nearest nodes via linear interpolation. The third ase we study is the CSD distributionin the form of three-dimensional ubi splines with knots at grid points. We onsider twotypes of splines, �natural� and �not-a-knot�, di�ering with a normalization ondition (seethe appendies). We also onsidered variants of above distributions to deal with boundarye�ets. They are desribed in the following setions.In the ase of linear and spline distributions we assumed that the urrent-soures areloalized inside the grid. In ase of the step distribution the CSD is nonzero in a slightlylarger uboid span by all the unit-size boxes entered at grid points (see Figure 1).1It is onvenient to work with unit spaing and to inlude the true edge length h at the very end ofthe alulations, this is done simply by dividing the resulting CSD by h2.2Depending on the form of the assumed distribution and on the hosen parameterization the funtionaldependene φ = F (C) need not be linear. We onsider here only the ases where this relation is linear,however. 4



The alulation of the linear operator F for step distribution is quite simple. Let usdenote the position of i-th eletrode by (x̃i, ỹi, z̃i) and the oordinates of the j-th gridnode by (xj , yj, zj). In general they need not be the same. Then the potential at i-theletrode loation is given by
Φi = Φ(x̃i, ỹi, z̃i) =

n
∑

j=1

FijCj,where
Cj = C(xj , yj, zj) .The matrix element Fij is the ontribution of the uniform CSD of unit density loatedat box entered at point j to the potential at point i. Thus, for the step distribution ofCSD, it is given by

Fij =
1

4πσ

∫ xj+1/2

xj−1/2

∫ yj+1/2

yj−1/2

∫ zj+1/2

zj−1/2

dzdydx
√

(x̃i − x)2 + (ỹi − y)2 + (z̃i − z)2
. (5)This integral is easy to evaluate numerially, although one must be areful beause ofthe singularity of the integrand3. One we have the matrix F we an use its inverse toestimate the CSD at grid points from known potentials:

Cj =

n
∑

i=1

(F−1)jiΦi .These values de�ne the whole CSD distribution.The operator F for linear and spline methods is alulated similarly, although thealulations get muh more ompliated, espeially for the ubi splines. For details ofthe alulations we refer the reader to Appendies.Boundary e�ets and distant souresIn the linear and spline distributions desribed in the previous setion it is assumedthat CSD is non-zero only inside the uboid enlosing the grid, whih was hosen toapproximate the distribution of eletrode loations. In real tissue this assumption is notful�lled: the array of eletrodes overs only a small area of the brain and there are manysoures outside that area. If we used the Laplaian to alulate CSD, then the in�ueneof the outlying soures ould be negleted. For example, if there was an additional distantpoint soure then there would be a 1
r
term in observed potentials, but ∆1

r
= 0 4 whihgives no ontribution to the alulated CSD. The situation is di�erent with the inversemethod. Here we have one-to-one orrespondene (via operators F and F−1) betweensoures and potentials, hene any additional term in the potentials (like 1

r
) will produespurious soures. Nevertheless it is possible to modify the inverse method in suh a waythat we an pro�t from its advantages over traditional CSD and at the same time limitthe impat of the above mentioned e�et.To aommodate the soures loated outside the eletrode grid we extend the gridby one point in eah diretion, therefore an additional layer of non-zero CSD is reated.3We dealt with the singularity by simply exising a ball of radius ε = 10−8 or ε = 10−6. The numerialerror introdued by suh an exision is smaller than ε2.4Exept at r = 0, but this is not the ase here beause the soure is �distant�.5



The CSD at additional grid points is either zero, whih we denote with the letter �B�,or a dupliation of the boundary layer of the original grid, whih is denoted by �D�(see Figure 2). Therefore we have �linear�, �linear B� and �linear D� methods, similarlyfor splines. At the pratial level the di�erene between these methods is that we usedi�erent matries F . The modi�ed linear operator F is onstruted in 3 steps. First weat on a vetor of n CSD values with a matrix B, whih produes a larger vetor (of size
N = (nx + 2)(ny + 2)(nz + 2)) of CSD values on a larger grid. There are two di�erent Bmatries, BB and BD, for B and D boundary onditions respetively. Then we apply thematrix F alulated for the larger (nx + 2) × (ny + 2) × (nz + 2) grid. In the �nal stepwe disard the values of potential at the boundary to get a vetor of size n; this is doneby applying a matrix R. Summarizing, we have the following formula for the F B matrix(supersripts indiate the size of the grid for whih the F matrix is alulated):

F nx,ny,nz B = RF (nx+2),(ny+2),(nz+2)BB ,analogously for F D. Note that there is no point in onsidering �step B� method beauseit is the same as �step�, however, we may onsider �step D�.
(a) (b)Figure 2: Comparison of �standard� vs. B or D distribution of soures. In standarddistribution (a) the CSD is non-zero only inside the grid of the same size as the number ofeletrodes, while in B or D distribution (b) there is an additional layer of non-zero CSD.The B and D boundary onditions are motivated by the following heuristis. We knowthat the soures we deal with in real-world situations are not restrited to lie within thespae spanned by the grid. Suppose therefore that there is a soure outside, for examplenear a orner of the uboid. This soure will a�et the potentials, espeially in the orner.The inverse CSD method will then generate a urrent-soure distribution inside the gridsuh that the resulting potential will math the one measured at the reording points.In other words, the method will try to imitate the outlying soure with soures loatedinside the grid. This will lead to errors in CSD reonstrution, for example a false sourein the orner may appear. Consider now the same potentials proessed with a methodusing B boundary ondition. One expets that the B method may also generate a spurioussoure in the orner, but the magnitude of the soure will be smaller. This is beausea larger CSD value in the orner means also larger CSD in the additional layer and theiCSD B method may plae a smaller soure in the orner than standard iCSD to obtainthe same potential. Summarizing, we expet the B methods to limit the magnitudes ofthe spurious soures at the boundary. In ase of D methods this attenuation should beeven stronger. We test both B and D variants beause it is hard to tell a priori whihboundary treatment leads to better reonstrutions.6



JitteringThe iCSD method allows us to alulate N unknown parameters of CSD distributionfrom N measured potentials. So far we assumed that the N unknowns were the valuesof CSD at the nodes plaed next to the eletrode positions, however, suh an assumptionis not the only possible. In fat, it leads to some onstraints on the alulated CSD. Forexample, in the linear method the maxima and minima of the obtained urrent souredensity are always loated at the nodes. One way to avoid this partiular limitation is touse a di�erent distribution, suh as ubi spline approximation. Another way is to use anapproah whih we all �spatial jittering�. In this variant we assume that the grid spanningCSD is slightly displaed with respet to the distribution of the eletrodes (maximallyby half of the ube size), see Figure 3. The CSD obtained in this way is a valid solutionof the inverse problem, that is, it also produes the measured potentials. We an nowrandomly hoose many displaed grids, alulate the CSD and then take the average. Thismethod produes �smoother� CSD distributions, espeially for step and linear methods.Due to the linearity of this proedure the average obtained by jittering also generatesexperimentally obtained potentials and is an equivalent solution of the inverse problem.The jittering is implemented by altering the F matrix. Let ~d = (dx, dy, dz) be adisplaement vetor, that means the CSD grid is shifted by ~d with respet to potentials(eletrodes) grid. Then the elements of F (in ase of �step� distribution) are given by theformula:
Fij =

1

4πσ

∫ xj+
1

2

xj−
1

2

∫ yj+
1

2

yj−
1

2

∫ zj+
1

2

zj−
1

2

dz dy dx
√

(xi − dx − x)2 + (yi − dy − y)2 + (zi − dz − z)2
.We always use jittering in ombination with a B or D boundary ondition, whih we

(a) (b)Figure 3: The idea of spatial jittering. (a) The CSD distribution as in B or D method.(b) Jittering, grid spanning the soures (empty irles) is displaed with respet to thearray of eletrodes (the blak dots).denote by J and K respetively. The number of displaement vetors used in the testsvaried from 12 to 46.ResultsReonstrution �delity for test dataTo ompare quantitatively the di�erent variants of iCSD method in three dimensionswe have to deide on a measure of the quality of the method. We hose the reon-7



strution error of a given urrent-soure distribution. To obtain it we take an arti�ialurrent-soure distribution C and alulate the potentials whih would be measured bythe three-dimensional array of eletrodes. Then we use the potentials at the nodes to re-onstrut CSD. The total reonstrution error is then the total square di�erene betweenthe original, C, and the reonstruted, Crec, densities
e =

∫ nx

1

∫ ny

1

∫ nz

1

(C − Crec)
2 dz dy dx .Other measures of reonstrution error we used are: squared maximal error (max |C −

Crec|
2) and 0.95/0.99 errors. We de�ne the p-error as the smallest value δ suh that theprobability to �nd |C−Crec|

2 < δ is p. This is easy to �nd from the umulative distributionfuntion of square errors cdf(|C−Crec|
2 < δ). On the graph of cdf one draws a horizontalline at y = p and reads o� the x axis the value of δ (see Figure 4 (b)). These measureshelp to di�erentiate between the reonstrutions of omparable mean square error butwith di�erent smoothness properties.The di�erent measures of reonstrution error are presented in Tables 1 to 4. Eahtable ollets the results for various reonstrution methods applied to given sets of testdata. The reonstrution errors an only be ompared between di�erent methods appliedto the same data-set as we did not attempt to normalize the results with respet todi�erent soure intensities.
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Figure 4: Example of distribution (a) and umulative distribution (b) of the reonstrutionerror for step and step J iCSD methods. Vertial lines de�ne 0.95/0.99 errors.We ompared all the iCSD methods presented in the previous setion, that meansall ombinations of the assumed distributions (step, linear, natural spline, not-a-knotspline) and the boundary onditions (standard, B, D, jittering J, jittering K). The diretomparison with the �traditional� CSD is not possible beause then we do not have thereonstruted CSD at the boundary nodes. In order to have a �traditional� method foromparison we generalize the Vaknin proedure to three dimensions, although it does notseem well justi�ed. We extend the potentials grid by adding one point in eah dire-tion and dupliating the potential values. Then we alulate the approximate Laplaian,Eq. (4), and interpolate the CSD values using splines. This method is denoted by �tradV�. It appears from our analysis that the relative utility of the methods depends on thetype of the hosen test data. This is not surprising: if the test distribution was of the8



Method Reonstrution errorTotal Max 0.95 0.99Traditional V 3.0 2.1e−3 1.8e−4 6.8e−4iCSD step 5.8 1.8e−3 3.5e−4 7.1e−4iCSD linear 0.25 3.6e−4 1.7e−5 4.1e−5iCSD spline (natural) 0.091 6.1e−5 5.3e−6 1.2e−5iCSD spline (not-a-knot) 0.28 1.3e−4 1.6e−5 4.2e−5Table 1: The reonstrution errors for test data shown in Figure 5.same type as the one assumed in the given iCSD variant then this (and only this) methodwould reonstrut the test data exatly. Therefore an important question is what testdata are �natural�, that means resembling the CSD in atual tissue. We used �ve typesof test data. The �rst four types were Gaussian soures with CSD given by the formula
C(~r) = A exp

(

−
(~r − ~r0)

2

l

)

.There were between 4 and 8 suh soures and the parameters A, l, ~r0 were hosen ran-domly. In the �rst type of data we assumed that CSD outside the eletrodes array wasstritly zero and we trunated the distribution aordingly. In the seond type we assumedthat the CSD is non-zero in one additional layer of unit thikness, in the third type therewere 2 additional layers. The fourth type was similar to the seond but there was anadditional strong point-like soure loated outside the grid. The �fth type of the testdata were homogeneous spherial soures with sharp ut-o�. For the tests we assumedthe same on�guration of eletrode loations as in the motivating experiment whih wasa grid of size 4 × 5 × 7.First we ompared the reonstrution �delity of four di�erent forms of assumed dis-tributions (see Figure 5 and Table 1). The test data were of the �rst type, that is thesoures were only inside the grid. The results are as expeted: the step method is theworst, the linear approximation of the distribution is an order of magnitude better, thenatural splines are even better. The not-a-knot splines do not work very well on suh data,they are worse than natural splines and even slightly worse than linear approximation.The �traditional V� method performs here rather poorly.Next we tested di�erent boundary onditions (see Figure 6 and Table 2, the splinesused here are �not-a-knot�). As the boundary onditions are devised to deal with souresoutside the grid, the test data here are of the seond type (non-zero CSD also in an addi-tional layer). For suh test data the �standard� iCSD method produes spurious souresat the boundary and the reonstrution error is very high. The quality of the methodimproves substantially if we use any of the variants pushing boundary away. We alsoonsidered other forms of distributions but in the ase at hand the appropriate treatmentof the boundary seems muh more important than the hoie of the interpolation method.The traditional method is quite good here, with the error only about thirty perent largerthan iCSD.The distortions present in iCSD spline (seond row in Figure 6) form a distintive pat-tern. We observed very similar patterns in experimental rat data (when proessed withouttaking into aount the boundary e�ets) and it seems to us that they an be lassi�ed asartifats resulting from the soures loated outside the grid. In the experimental situationthese an be, for example, soures in the neighboring ortex.9
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xFigure 6: Reonstrution of CSD from potentials, omparison of di�erent treatments ofthe boundary (arbitrary units). Test data were random Gaussian soures trunated at theboundary of the grid extended by one layer in eah diretion, see text for details. Table2 ontains the values of reonstrution errors for this test.Method Reonstrution errorTotal Max 0.95 0.99Traditional V 0.97 4.4e−4 4.4e−5 9.0e−5iCSD spline 3.9e2 1.8 0.012 0.11iCSD spline B 3.2 1.6e−3 1.6e−4 4.7e−4iCSD spline D 1.6 5.5e−4 7.7e−5 1.7e−4iCSD spline J 3.1 1.5e−3 1.5e−4 4.4e−4iCSD spline K 1.6 5.4e−4 7.6e−5 1.6e−4Table 3: The reonstrution errors for test data shown in Figure 7.Our experiene shows that the iCSD method (with appropriate boundary onditions)is usually better and never muh worse than �trad V�. The inverse methods seem to workomparably to �trad V� in ase of ompat soures, suh as shown in Figures 6 and 7, butare usually an order of magnitude better if we allow the soures to be larger, of the sizeobserved in our experimental data, see Table 4 for two examples. The Vaknin proedurein one dimension is reported (Pettersen et al., 2006) to work better in ase of balanedCSD, that means when the integral of the CSD over the region at hand is zero. Ourstudy on�rms this observation. If we �rst alulate the errors for a balaned urrent-soure distribution and then hange the sign of the soures so that they are all positive11
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xFigure 7: Reonstrution of CSD from potentials. Test data were random Gaussiansoures trunated at the boundary of the grid extended by one layer in eah diretion,plus an additional strong point soure outside the grid was added at (x = 6, y = 3, z = 4),see text for details. Table 3 ontains the values of reonstrution errors for this test.Method Error for data set 1 Error for data set 2Total Max 0.95 0.99 Total Max 0.95 0.99Trad V 2.2 1.1e−3 1.6e−4 5.9e−4 5.3 1.1e−3 2.6e−4 4.9e−4iCSD 0.041 5.4e−5 2.5e−6 9.7e−6 0.20 4.9e−5 1.3e−5 3.0e−5Table 4: The reonstrution errors for two sets of test data with large Gaussian soures.Set 1: 4 soures, CSD non-zero only inside the grid. Set 2: 5 soures, CSD non-zeroinside the grid with an additional layer added. The iCSD is a spline method taken withappropriate boundary onditions (standard for data set 1, B for data set 2).then the errors in iCSD method grow twie while in �trad V� they grow four times. Itis worth noting that for the data mentioned here the traditional method was an order ofmagnitude worse, see Figure 8. Another strong argument in favor of the inverse method isthat here we make all our assumptions expliit: we must spell out the form of the urrentsoures distribution. For the �trad V� method we also make an assumption: potentialsare onstant outside the grid, but we do not know how that assumption is re�eted in thereonstruted CSD. In our opinion it is muh more elegant to make assumptions aboutthe distribution of urrent-soures instead of the potentials.The in�uene of jittering seems to di�er strongly for various forms of assumed CSDdistributions. In ase of step (see Figure 4) and linear distributions the jittering signi�-12
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xFigure 8: Reonstrution of CSD from potentials for large and non-balaned urrent-soures loated inside the grid (arbitrary units). The inverse method gives the totalreonstrution error e = 0.18 while for the traditional method this error is e = 15, twoorders of magnitude larger. Note partiularly the di�erene between the reonstrutionsat z = 3.antly improves the quality of the reonstrution, but for splines the improvement is onlyslight. It an be easily understood: the �step� reonstrution strongly depends on thehoie of the soures grid, while the �spline� reonstrution does not.Appliation to evoked potentials in ratThe method was applied to LFPs reorded from deep strutures of the rat forebrain. Anadult male Wistar rat was anesthetized with urethane, plaed in a stereotaxi apparatus,and a bunh of his left whiskers was glued to a piezoeletri stimulator. Most of the rightparietal bone was removed and the resulting opening was overed with agar. A set of �vestainless steel miro-eletrodes (FHC, Bowdoin, USA; impedane of 1.5 MOhms at 1 kHz)mounted parallely in a sagittal plane (tips in antero-posterior line, spaed by 0.7 mm; themost anterior eletrode 1.9 mm posterior to Bregma and 2.1 mm to the right from themidline) was lowered vertially through the opening and stopped eah 0.7 mm at sevendepths in the brain tissue, starting at 3.4 mm from the ortial surfae. At eah stopthe bunh of left whiskers was de�eted 60 times. LFPs were reorded monopolarly andallowed for extration of 60 somatosensory evoked potentials (EPs) per eah reordingpoint.The proedure was repeated at lateral positions 2.8 mm, 3.5 mm and 4.2 mm to theright from midline, at orresponding depths. Thus a retangular grid of 140 (4 x 5 x7) reording points omprising a slab of forebrain tissue with portions of the thalamus,pretetum, the hippoampus, and erebral white matter was obtained. An exat loationof the reording points was veri�ed histologially after the experiment and anatomialstrutures were identi�ed aording to Paxinos and Watson (1996). For details of surgialproedure, stimulation of the vibrissae, signal proessing and post-experimental proeduresee Kublik et al. (2003).The LFP signal was ampli�ed (1000 times) and �ltered (0.1Hz-5kHz). Epohs (ofabout 1.4 s) ontaining EPs were digitized on-line (10 kHz) with 1401plus interfae andSpike-2 software (CED, Cambridge, England). All stored data were examined for integrity13



and epohs with artifats were exluded from further analysis.Constant and isotropi ondutivity of the tissue was assumed. We took σ = 300 S ·
mm−1 as in (Nunez, 1981; Hämäläinen et al., 1993), although some measurements in therat brain suggest that σ an take values around 60�70 S ·mm−1 (Ueno and Sekino, 2005).The only e�et of aepting di�erent values of σ would be a hange of sale of reonstrutedCSD.Figure 9 shows the urrent soure density 3.5ms after the stimulus, reonstrutedusing the iCSD not-a-knot spline D method (top row). This is ompared with a splineinterpolation of the potentials used for the reonstrution (bottom row). There is anotieable orrelation, e.g. the ativation blots around (x = 1.5, z = 4) and (x = 3.5, z =
4) at y = 2 slie in potentials have orresponding blots in CSD. However, the struture islearly di�erent, for instane a strong soure visible in CSD around (x = 3.5, y = 3, z = 4)is almost invisible on the �gure showing potentials.The di�erenes are even more dramati at Figure 10, whih ompares reonstrutedCSD (top row) with spline approximation of potential in the tissue (bottom row) 15 msafter the stimulus. Here, the potential distribution seems to indiate strong ativationof the whole region. The piture of CSD, while ompliated, shows a lear strutureof soures and sinks whih one an attempt to understand by onneting the ativationpattern with known anatomy of the somatosensory system.The quality of omparison depends on the hosen sales in both kinds of �gures (CSD,potentials). Our experiene shows that one annot hoose a sale for potentials so thatall the pitures have omparable intensities, whih is possible for the CSD distribution inour ase. This is another point in favor of studying the reonstruted CSD.Disussion and summaryLFPs measured in tissue are generated by marosopi urrent �ow resulting from on-erted dynamis of neural populations. Long range nature of eletri fores implies thatevery soure an be visible in reordings at many sites ompliating the analysis of ele-trophysiologial data. Having the information about the distribution of the soures andramatially improve the spatial resolution sine these are often well loalized in par-tiular brain strutures. Unfortunately, the problem of CSD reonstrution from �nitenumber of reordings is ill-posed meaning that there are many di�erent CSD distributionswhih ould generate reorded potentials. The fat that we lak preise measurementsof the eletri ondutivity tensor in the tissue does not help the reonstrution. Nev-ertheless, we believe that with a reasonable set of reordings at di�erent sites the CSDreonstrution may provide the basi understanding of dynamis of an ativation wave�owing through the investigated struture.This leads to a question whih reonstrution method is optimal. Our experimentsshow that if we want to hoose the best method for the problem at hand, it would be bestto test the methods on sample CSD distribution, preferably from a realisti neural model.If that is not possible, then for well-loalized soures we would reommend the inverseCSD method with natural spline distribution. If the soures are expeted to be large andnot on�ned to the probed volume then the reommended method would be not-a-knotsplines with extended boundary. If the soures may be very small (loalized) and/or thedata are distorted by the presene of a strong soure outside the grid, then the �traditionalV� method may be useful, although the spline iCSD with boundary onditions should notbe muh worse. 14



Figure 9: Top row: Current soure density 3.5ms after the stimulus reonstruted usingthe iCSD not-a-knot spline D method. Note that di�erent plane is shown than in theprevious �gures to allow usage of oronal brain setions. Bottom row: spline approximatedpotential in the tissue based on the same data as used for the CSD reonstrution at thesame time. The grid spaing is 0.7mm in eah diretion. For abbreviations see Appendies.

Figure 10: As in Figure 9, 15ms after the stimulus.15



Movies showing the reonstruted urrent dynamis for example data presented hereas well as the sripts neessary to generate the movies and to apply our methods an befound at http://www.neuroinf.pl/Members/szleski/isd.html.The methods disussed in the present work onstitute a framework whih an be easilyextended by onsidering other forms of CSD distributions, whih may be ase dependent,for instane anatomially motivated in spei� ases. It is also a simple matter to developsimilar formulae for two-dimensional ase whih will be of interest for eletrode arraysreordings.AknowledgmentsWe are grateful to Wit Jakuzun for his suggestion to investigate spatial jittering as oneway to improve the CSD reonstrution. This work was partly �naned from the PolishMinistry of Siene and Higher Eduation researh grants N401 146 31/3239 and 2P04C046 27.AppendiesLinear iCSD methodIn this appendix we onstrut the F matrix for the linear distribution of CSD. Considera grid of points (i, j, k), where i = 1..nx, j = 1..ny, k = 1..nz. Let us number thepoints with a multi-index α ≡ (i, j, k) and write (i, j, k) ≡ (xα, yα, zα). Let V be theset of 8 vetors (v1, v2, v3), vi ∈ {0, 1}. The grid has n = nxnynz nodes and there are
m = (nx − 1)(ny − 1)(nz − 1) boxes spanned by these nodes. We index the boxes so thatthe orners of the box number α are α + v for v ∈ V . Let B denote the set of all theallowed indies α numbering the boxes and G stand for all the grid points. Let C denotethe vetor of CSD values at the nodes, that is Cα = C(xα, yα, zα) for α ∈ G. We assumethat CSD in boxes is given by a linear approximation.Take a point (x, y, z) in box number α and let δx = x− xα, δy = y − yα, δz = z − zα.The value of CSD at this point obtained with the linear interpolation is given by:
C(x, y, z) =

∑

v∈V

[1 − v1 + (2v1 − 1)δx][1 − v2 + (2v2 − 1)δy][1 − v3 + (2v3 − 1)δz]Cα+v.Therefore the distribution inside the box is a linear ombination of 8 funtions fl, l = 1..8:
f1 = 1, f2 = δx, f3 = δy, f4 = δz, f5 = δxδy, f6 = δxδz, f7 = δyδz, f8 = δxδyδz, withoe�ients depending linearly on the values of C at the nodes of the box:

C(x, y, z) =
∑

β∈G

8
∑

l=1

El
αβflCβ.The oe�ients El

αβ are non-zero only for β − α ∈ V and follow from the above formula,e.g. E1
α,β = 1 for β − α = (0, 0, 0), otherwise E1

α,β = 0, et. The potential generated bysuh a distribution of urrent-soure density at some point (x̃, ỹ, z̃) is
Φ(x̃, ỹ, z̃) =

∑

α∈B

∑

β∈G

8
∑

l=1

F l
α(x̃, ỹ, z̃)El

αβCβ ,16
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where
F l

α(x̃, ỹ, z̃) =
1

4πσ

∫ 1

0

∫ 1

0

∫ 1

0

fl(x, y, z) dz dy dx
√

(x̃ − xα − x)2 + (ỹ − yα − y)2 + (z̃ − zα − z)2
.If we now take as (x̃, ỹ, z̃) one of the grid points γ then

Φγ =
∑

β∈G

FγβCβ, where Fγβ =
∑

α∈B

8
∑

l=1

F l
α(xγ , yγ, zγ)E

l
αβ.Thus Fγβ represents the diret and indiret ontributions to the total potential at point

γ from the CSD assoiated with the grid point β.Spline iCSD methodThe onstrution of the F matrix for the spline distribution is in priniple very similar tothe ase of linear distribution, but the level of ompliation is muh higher. Similarly as inthe previous appendix we have n nodes and m boxes, but now the interpolating funtionin eah box is the three-dimensional ubi spline. That means there are 4 × 4 × 4 = 64base funtions. Therefore there will be 64 eah of Eℓ and F ℓ matries. The main hallengehere is to onstrut the Eℓ matries, that means to desribe how a CSD value assoiatedwith a given node in�uenes the interpolating splines in all the boxes.First we brie�y remind the onstrution of one-dimensional spline (Press et al., 1992).Suppose we have values of a funtion f at points x = 1..nx. For x suh that j ≤ x ≤ j +1de�ne P1(x) = j + 1 − x, P2(x) = x − j. The formula
f(x) = P1(x)f(j) + P2(x)f(j + 1) (6)gives a linear approximation, that means an approximation with a ontinuous funtion.In ase of ubi splines we want more: we want also the �rst and seond derivatives tobe ontinuous. This an be done if we replae the right hand side of Eq. (6) with athird-degree polynomial:

f(x) = P1(x)f(j) + P2(x)f(j + 1) + P3(x)f ′′(j) + P4(x)f ′′(j + 1) , (7)where P3(x) = 1
6
(P1(x)3 − P1(x)), P4(x) = 1

6
(P2(x)3 − P2(x)). This formula guaranteesthat both f and its seond derivative are ontinuous. The values of the seond derivative

f ′′ of f at nodes are a priori unknown, but an be alulated from the ondition thatalso the �rst derivative is ontinuous. This ondition leads to the following system ofequations (j = 2..nx − 1):
1

6
f ′′(j − 1) +

1

3
f ′′(j) +

1

6
f ′′(j + 1) = f(j + 1) − 2f(j) + f(j − 1) .There are n unknown f ′′(j) and only n − 2 equations, therefore we need 2 additionalonditions. There are several ommonly used hoies for these onditions. One of themis to add equations

f ′′(1) = 0 , f ′′(n) = 0 ,whih leads to so-alled �natural splines�. The splines implemented in Matlab use adi�erent set of onditions, namely
f ′′(3) − f ′′(2) = f ′′(2) − f ′′(1) , f ′′(n) − f ′′(n − 1) = f ′′(n − 1) − f ′′(n − 2) .17



These onditions mean that the third derivative is ontinuous at x = 2 and x = n − 1and they lead to what is known as �not-a-knot� splines. The important thing is that inboth ases the values of f ′′ at the nodes an be obtained from f(j), j = 1..n, by a linearoperation whih we all G:
f ′′(i) =

n
∑

j=1

Gijf(j) .The matrix G is di�erent for �natural� and �not-a-knot� splines.The three-dimensional spline interpolation is obtained simply by performing three one-dimensional splines. The ompliation is that we want not the values of the interpolatingfuntion at some points, but the oe�ients standing by the base funtions. We foundthat it is onvenient to hoose base funtions whih are produts of the polynomials P1,
P2, P3, P4 of variables x, y and z, that means P1(x)P1(y)P1(z), P1(x)P1(y)P2(z), . . .,
P4(x)P4(y)P4(z). To extrat the oe�ients we start with the spline in z diretion:

f(x, y, z) =P1(z)f(x, y, j) + P2(z)f(x, y, j + 1)

+ P3(z)fzz(x, y, j) + P4(z)fzz(x, y, j + 1) ,
(8)where fzz stands for ∂2f

∂z2 and is given by fzz(x, y, j) =
∑nz

i=1 Gz
jif(x, y, i). Therefore weredue the problem to two-dimensional splines in the xy−plane. We ontinue with

f(x, y, j) =P1(y)f(x, i, j) + P2(y)f(x, i + 1, j)

+ P3(y)fyy(x, i, j) + P4(z)fyy(x, i + 1, j) ,
(9)and so on. In the end we get the oe�ients standing by the base funtions as ombinationsof f(i, j, k) (values of f at the nodes) and the matries Gx, Gy, Gz. Then we onstrut thematries E

pqr
αβ , α ∈ B, β ∈ G, 1 ≤ p, q, r ≤ 4. The number E

pqr
αβ is the oe�ient standingby Pp(x)Pq(y)Pr(z) in box α resulting from a unit CSD at the node β. The onstrutionof 64 F pqr

γα matries (eah of size n by m), where γ ∈ G and α ∈ B, is simple:
F pqr

γα =
1

4πσ

∫ 1

0

∫ 1

0

∫ 1

0

Pp(x)Pq(y)Pr(z)
√

(xγ − xα − x)2 + (yγ − yα − y)2 + (zγ − zα − z)2
dzdydx ,and the full matrix F is now

F =

4
∑

p,q,r=1

F pqrEpqr ,or
Fγβ =

4
∑

p,q,r=1

m
∑

α=1

F pqr
γα E

pqr
αβ .
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