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Abstract

Local �eld potentials (LFP), the low-frequency part of extracellular electrical

recordings, are a measure of the neural activity re�ecting dendritic processing

of synaptic inputs to neuronal populations.

To localize synaptic dynamics it is convenient, whenever possible, to es-

timate the density of trans-membrane current sources (CSD) generating the

LFP.
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In this work we propose a new framework, kernel Current Source Density

method (kCSD), for non-parametric estimation of CSD from LFP recorded

from arbitrarily distributed electrodes using kernel methods. We test spe-

ci�c implementations of this framework on model data measured with one-,

two-, and three-dimensional multielectrode setups. We compare these meth-

ods with the traditional approach through numerical approximation of the

Laplacian and with the recently developed inverse Current Source Density

methods (iCSD). We show that iCSD is a special case of kCSD. The proposed

method opens up new experimental possibilites of CSD analysis from already

taken or new recordings on arbitrarily distributed electrodes (not necessarily

on a grid), which can be obtained in extracellular recordings of single unit

activity with multiple electrodes.

1 Introduction

Extracellular recordings of electric potential have great signi�cance in the

studies of neural activity in vivo. In the last few years we have witnessed

rapid development of technology for large scale electrical recordings. Various

types of multielectrodes were devised to simultaneously record extracellular

potentials from multiple spatial locations (Normann et al. 1999, Csicsvari

et al. 2003, Barthó et al. 2004, Buzsáki 2004, Sher et al. 2007, Imfeld et al.

2008, Frey et al. 2009, Ward et al. 2009, Charvet et al. 2010). The low-

frequency part of these recordings, the local �eld potentials (LFP), typically

re�ect the dendritic processing of synaptic inputs (Nunez & Srinivasan 2006,

Einevoll et al. 2007, Pettersen et al. 2008, Lindén et al. 2010). Direct inter-
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pretation of LFP is di�cult as it is a nonlocal measure of the neural activity:

it may have contributions from neurons located more than a millimeter away

from the electrode (Kreiman et al. 2006, Liu & Newsome 2006, Berens et al.

2008, Katzner et al. 2009, Xing et al. 2009) or even a few milimeters (Hunt

et al. 2010). Therefore, if only possible it is convenient to estimate the current

source density (CSD), the volume density of net transmembrane currents,

generating the LFP (Lorente de No 1947, Pitts 1952, Plonsey 1969, Freeman

& Nicholson 1975, Nicholson & Freeman 1975, Mitzdorf 1985). CSD directly

relates to the local neural activity and current source density analysis is a

convenient tool for analysis of LFP recorded from multielectrodes (Haberly

& Shepherd 1973, Mitzdorf 1985, Schroeder et al. 1992, Ylinen et al. 1995,

Lakatos et al. 2005, Lipton et al. 2006, Rajkai et al. 2008, de Solages et al.

2008).

Since CSD in a homogeneous and isotropic tissue is given by the Lapla-

cian of the potentials, originally it was estimated by a discrete di�erentiation

scheme from the potentials measured on a regular grid (Freeman & Nicholson

1975, Nicholson & Freeman 1975, Mitzdorf 1985). In the past few years a

new method for CSD estimation has been developed, the inverse CSD (iCSD)

method (Pettersen et al. 2006, �¦ski, Wójcik, Tereszczuk, �wiejkowski, Kub-

lik & Wróbel 2007, Wójcik & �¦ski 2010, �¦ski, Pettersen, Tunstall, Einevoll,

Gigg & Wójcik 2011). The main idea behind iCSD is to assume a speci�c

parametric form of CSD generating the measured potentials (e.g. spline in-

terpolated between the grid nodes), calculate the LFP in a forward-modeling

scheme to obtain the values of CSD parameters (e.g. CSD values at the

nodes) by matching the experimental data with computed values. The iCSD
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framework requires an assumption of a speci�c geometry of contacts requiring

new calculations for each distribution of electrodes. So far, all the proposi-

tions assumed recordings on regular, Cartesian grids.

Here we introduce a new, non-parametric method for CSD estimation.

The kernel CSD method (kCSD) uses some basic facts from the theory of

reproducing kernel Hilbert spaces used in machine learning (Aronszajn 1950,

Vapnik 1998, Schoelkopf & Smola 2002, Shawe-Taylor & Christiani 2004).

This method does not require the user to specify the restricted, parametrized

form of the admissible CSD distributions. Instead, one speci�es an arbitrar-

ily broad family of possible distributions and uniqueness of the solution is

guaranteed by the minimum-norm requirement built in the method. The

assumption of regular electrode arrangement is not necessary, kCSD can be

applied to recordings from electrodes distributed at any positions on one-,

two-, and three-dimensional sets with equal ease. Moreover, we show that

kCSD is a general non-parametric framework for CSD estimation including

all the previous variants of iCSD methods as special cases.

The problem of CSD reconstruction is similar in spirit to reconstruction

of sources in EEG (Guljarani 1998, He & Lian 2005, Phillips et al. 2005,

Nunez & Srinivasan 2006) and ECoG (Freeman 1980, Zhang et al. 2008) and

di�erent source reconstruction methods including those using rich bases were

studied in this context (see the review in He & Lian (2005)). However, since

extracellular recordings of LFP are taken much closer to the sources than

in the case of EEG, one builds di�erent models (typically dipolar sources

rather than monopoles, etc., see the discussion in �¦ski, Pettersen, Tunstall,

Einevoll, Gigg & Wójcik (2011)), so it is not obvious a priori if approaches
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useful or required in EEG analysis would work just as well in CSD recon-

struction, or the other way round. In this work we present one candidate

method for CSD reconstruction and show its utility on variety of model data.

The article is organized as follows: in Section 2 we introduce the basic

framework of the method using reproducing kernel Hilbert spaces (RKHS)

(Aronszajn 1950, Vapnik 1998, Schoelkopf & Smola 2002, Shawe-Taylor &

Christiani 2004) and show an e�cient regression algorithm applicable in

RKHS. However, the CSD we want to estimate and the potentials we mea-

sure are di�erent physical quantities which normally forces us to solve a

linear operator equation. Introducing a cross-kernel between spaces of po-

tentials and sources we can easily obtain estimation of sources. We apply this

technique to estimate the most plausible CSD consistent with the measured

potentials. We show how to do this in cases where the measurements were

taken on sets of di�erent dimensionality, e.g. for laminar multielectrodes,

multi-shaft multielectrodes, and in the general three-dimensional case. We

also show that the previously introduced iCSD methods are special cases of

kCSD introduced here.

To test the viability of the proposed scheme we performed a number

of tests on model data where we control the sources to be recovered from

potentials. These tests are presented in Section 3. We �rst consider the case

of regular grids, as these are the only cases that were treated by the methods

available so far, to show how the new method compares with the readily

available alternatives. Then we consider the case of arbitrary distributions

of contacts as the proposed methods can easily treat arbitrary geometry of

the electrode setup.
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Since every measurement is subject to noise it is important to study its

e�ect on the method. Having established the soundness of the basic approach,

in Section 4 we study ridge regression as a possible means of avoiding over-

�tting and removing almost singularities which might arise for instance in

case of atypical setups. The properties of the proposed method, further

directions of development, and the signi�cance of the kernel approach are

discussed in the �nal section.

2 The Kernel Current Source Density (kCSD)

Method

Consider the following problem: N electrodes are placed in the brain at x1,

. . . , xN ∈ R3 and we measure the extracellular potential V at N locations

(V1, . . . , VN). The extracellular potential we sample is generated by trans-

membrane currents whose density C (current source density, CSD) is what

we would like to estimate. The connection between V and C is given by the

Poisson equation,

∇(σ∇)V = −C. (1)

Let us approximate the CSD generated by concerted activity of the myriads

of neurons as a sum of M localized sources b̃i(x),

C(x) =
M∑
j=1

aj b̃j(x). (2)
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Conceptually, we consider each b̃ as a model of activity of a small population

of neurons. In practice we consider sources of constant density within a ball

of radius R and 0 elsewhere:

b̃i(x, y, z) =


1 (x− xi)2 + (y − yi)2 + (z − zi)2 ≤ R2

0 otherwise

(3)

or Gaussians:

b̃i(x, y, z) = exp

(
−(x− xi)2 + (y − yi)2 + (z − zi)2

2R

)
. (4)

Each of the sources b̃i generates potential in the whole space consistent with

the Poisson equation (1). In what follows we assume homogeneous and uni-

form conductivity value σ and no boundary conditions (we return to discuss

this issue in the �nal section). Then the potential bi generated by source b̃i

is obtained by applying a linear operator A:

bi(x, y, z) = Ab̃i(x, y, z) =
1

4πσ

∫
dx′
∫
dy′
∫
dz′

b̃i(x
′, y′, z′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

(5)

The relation between the sources and potentials is di�erent in lower dimen-

sionality and for other models of propagation, boundary conditions etc, but

it does not a�ect the general formulation of the method. In every case, how-

ever, we can introduce a linear operator A : F̃ 7→ F connecting sources and

potentials by

V (x) = AC(x) =
M∑
i=1

aibi(x) (6)

7



with bi = Ab̃i, where the space of sources is

F̃ =
{
C(x) = a1b̃1(x) + ...+ anb̃n(x) : b̃i : Rd −→ R

}
, (7)

and the space of potentials is

F =
{
V (x) = a1b1(x) + ...+ anbn(x) : bi : Rd −→ R

}
. (8)

We assume that b̃i (bi) are linearly independent and so they constitute bases

of the linear spaces F̃ and F . We consider A in one- and two-dimensional

cases below.

Let us introduce a kernel function (a kernel for short) K : Rd×Rd −→ R

by the following equation

K(x,x′) =
M∑
i=1

bi(x)bi(x
′). (9)

With this kernel one can show (see for example Section 1.3, Theorem A in

Aronszajn (1950) and Theorem 3.11 in Shawe-Taylor & Christiani (2004))

that the space of potentials F is the feature space of K and as such, (F , K)

is a Reproducing Kernel Hilbert Space (RKHS). That is, one can show that

F =

{
l∑

i=1

αiK(xi,x) : l ∈ N,xi ∈ Rd, αi ∈ R, i = 1, ..., l

}
. (10)

and it is a Hilbert space with the inner product of functions f(x) =
∑l

i=1 αiK(xi,x),
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g(x) =
∑m

j=1 βjK(zj,x) given by

〈f, g〉H =
l∑

i=1

m∑
j=1

αiβjK(xi, zj). (11)

Note that we have now two representations of every function in F , as sum

of kernels or sum of basis elements

f(x) =
l∑

i=1

αiK(xi,x) =
M∑
i=1

aibi(x)

where ai =
∑l

j=1 αjbi(xj).

Using the inner product we can de�ne the norm in F by ‖f‖2
F = 〈f, f〉.

It is easy to see that in the two representations we have

‖f‖2
F =

l∑
i=1

l∑
j=1

αiαjK(xi,xj) =
M∑
i=1

a2
i .

We use ‖f‖2
F to induce a norm in F̃ by

‖f̃‖2
F̃ := ‖Af̃‖2

F =
M∑
i=1

a2
i . (12)

Our goal is to �nd the current source density C(x) consistent with the

measured potentials1. We �rst estimate the potential from data. As there

are many more sources than measurements there is an in�nite number of

solutions. Consider potentials V (x) =
∑M

i=1 aibi(x) consistent with the mea-

surements, that is V (xk) =
∑M

i=1 aibi(xk) = Vk for all k. To �nd the potential

1Such consistence with data is appropriate when the observations are noise free. In

section 4 we discuss a more general treatment of data with noise.
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with minimum norm ‖V ‖2 =
∑M

i=1 a
2
i satisfying these constraints, the deriva-

tive ∂‖V ‖2/∂ak must be a linear combination of constraints derivatives along

ak. That is we have

ai =
N∑
k=1

βkbi(xk)

and the potential we seek takes the form

V ∗(x) =
N∑
i=1

βiK(xi,x) ∈M. (13)

Solving the constraints we get the parameters β1, . . . , βN to be


β1

...

βN

 =


K(x1,x1) · · · K(x1,xN)

...
. . .

...

K(xN ,x1) · · · K(xN ,xN)


−1 

V1

...

VN

 , (14)

which can be written in more compact notation as

β = K−1 ·V

with an obvious de�nition of terms.

We have also assumed here that the measurements are su�ciently inde-

pendent (informative) that K is of full order and so can be inverted. In

all the cases we considered K was invertible and we expect this to be true

for all experimentally accessible electrode setups. If this is not the case, for

instance if two contacts are too close giving unstable inverse, one can use

one of many strategies to stabilize inversion. In particular the regularization

which we discuss in Section 4 also overcomes the problem of possible almost
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singularities of K.

Having V ∗ given by

V ∗(x) =
N∑
i=1

βiK(xi,x) =
M∑
j=1

ajbj(x), (15)

where aj =
∑N

i=1 βibj(xi), we know that there exists exactly one C∗ ∈ F̃

generating V ∗ and it is given by

C∗ =
M∑
j=1

aj b̃j(x) =
N∑
i=1

βi

M∑
j=1

bj(xi)̃bj(x) =
N∑
i=1

βiK̃(xi,x). (16)

Thus we see that it is convenient to introduce the cross-kernel function

K̃(x,y) =
M∑
j=1

bj(x)̃bj(y). (17)

If we de�ne the vector function

K̃T (x) := [K̃(x1,x), . . . , K̃(xn,x)],

then

C∗(x) = K̃T (x) ·K−1 ·V. (18)

From (12) we see that C∗ is the current source density consistent with the

measured potentials that has the smallest norm in F̃ .
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2.1 kCSD for measurements taken on planes or lines

In lower dimensionality the framework changes because in order to calculate

the potentials generated by a source we must assume the structure of the

source in the normal (perpendicular) directions to the plane (in 2D) or line

(in 1D) of measurements. The need for such models and speci�c examples

were carefully discussed by Pettersen et al. (2006) for the case of laminar

recordings and by �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik (2011)

for planar recordings (such as multishaft electrodes).

2.1.1 kCSD in 2D

Consider a situation in which LFP is measured by electrodes that are ar-

ranged on a �at surface, e.g. as in (Csicsvari et al. 2003). To estimate CSD

we need to make assumptions about its pro�le in the direction perpendicu-

lar to the surface. Let's introduce a coordinate system (x, y, z) and assume

that the electrodes are arranged on the surface spanned by the x and y axes.

In �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik (2011) we proposed

to consider the CSD as a product of a two-dimensional pro�le f̃(x, y) and a

speci�c pro�le H in the perpendicular direction z :

f̃(x, y, z) = f̃(x, y)H(z).

For H(z) here we take a simple step function:

H(z) =


1 −h ≤ z ≤ h

0 otherwise
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although other choices such as a Gaussian pro�le are also possible. Thus

we assume that the CSD pro�le is constant in z direction within a slice of

thickness 2h centered at the surface with electrodes and 0 elsewhere. It turns

out that the speci�c choice of pro�le H(z) in�uences mainly the amplitude

of the calculated potentials and so the estimated sources, while their over-

all shape is reasonably robust (�¦ski, Pettersen, Tunstall, Einevoll, Gigg &

Wójcik 2011).

The potential measured by an electrode placed in some point (x, y, 0) is

in this case given by:

f(x, y) =
1

2πσ

∫
dx′
∫
dy′ arsinh

(
2h√

(x− x′)2 + (y − y′)2

)
f̃(x′, y′) =: (A2f̃)(x, y).

(19)

In this case it is su�cient to estimate the two-dimensional pro�le f̃(x, y) to

get an estimate of the overall CSD in the region. Therefore we can de�ne

spaces F and F̃ by introducing two-variable basis functions. This can be

done similarly as in the 3D case, using simple step basis functions for space

F̃ :

b̃i(x, y) =


1 (x− xi)2 + (y − yi)2 ≤ R2

0 otherwise

(20)

or Gaussians:

b̃i(x, y) = exp

(
−(x− xi)2 + (y − yi)2

2R

)
. (21)

The potential basis functions bi ∈ F can be derived by applying equation
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(19):

bi(x, y) =
1

2πσ

∫
dx′
∫
dy′ arsinh

(
2h√

(x− x′)2 + (y − y′)2

)
b̃i(x

′, y′). (22)

2.1.2 kCSD in 1D

Assume that the electrodes are arranged along a straight line. As in the

previous section we need to make assumptions on CSD pro�le in the perpen-

dicular plane. Pettersen et al. (2006) proposed to introduce an overall CSD

pro�le of the form:

f̃(x, y, z) = f̃(z)H(x, y).

We assume rotational symmetry around z axis and for H(x, y) we take a

simple step function on a disk of radius r:

H(x, y) =


1 x2 + y2 ≤ r2,

0 otherwise.

The potential measured by an electrode placed in some point (0, 0, z) is in

this case given by:

f(z) =
1

2σ

∫
dz′
(√

(z − z′)2 + r2 − |z − z′|
)
f̃(z′) = (A1f̃)(z) (23)

Now the space of CSD F̃ can be de�ned by introducing one-variable basis

functions. As in the previous cases, one can use simple step functions

b̃i(z) = I[zi−R;zi+R](z) (24)
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or Gaussians

b̃i(z) = exp

(
−(z − zi)2

2R

)
. (25)

Finally, the potential basis functions bi ∈ F can be obtained by applying

equation (23):

bi(z) =
1

2σ

∫
dz′
(√

(z − z′)2 + r2 − |z − z′|
)
b̃i(z

′). (26)

2.2 Spatial arrangement of the basis elements

In Section 2 we introduced example shapes of the basis functions
{
b̃i

}n
i=1

which we considered in various dimensions. To implement kCSD we have to

specify the number and localization of these sources. Let us denote the area

where we estimate CSD by B ⊂ Rd, where d ∈ {1, 2, 3}. In all the tests we

carried out B was a product of intervals, B = ∩dk=1Ik, Ik = [ak, bk] ⊂ R, for

example, in Section 3.1:

B =
{

(x, y) ∈ R2 : xmin − ξ∆x ≤ x ≤ xmax + ξ∆x, ymin − ξ∆y ≤ y ≤ ymax + ξ∆y
}
.

The parameter ξ is introduced to treat the cases when the actual sources

extend beyond the grid of electrodes (that is, beyond xmin ≤ x ≤ xmax, ymin ≤

y ≤ ymax). For ξ = 0 such sources would cause artifacts at the boundary

of reconstruction region. We observed this phenomenon in 3D and 2D iCSD

(�¦ski, Wójcik, Tereszczuk, �wiejkowski, Kublik & Wróbel 2007, �¦ski, Pet-

tersen, Tunstall, Einevoll, Gigg & Wójcik 2011). The remedy there was to

add and additional layer of non-zero sources to the original electrodes grid,
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this method was called `B' or `D' boundary conditions. In case of kCSD we

achieve the same result by choosing ξ > 0.

To generate the basis of sources we always took a spherically symmetric

template function b̃(x) and translated it to nodes of a regular, rectangular

grid xi ∈ B obtaining the full basis b̃i(x) = b̃ ((x− xi)
2) making sure that

each point in the estimation area B belongs to the support of at least two

basis sources. It turns out that to get apparently smooth results R should

be a multiple of the spacing between the grid nodes, otherwise we observed

signi�cant irregularities.

2.3 Relation between iCSD and kCSD

The main feature of kCSD is e�cient estimation in spaces with rich bases:

we assumed here that in general the dimension of the space of sources N is

much higher that the number of measurements, M . If M = N then kCSD is

equivalent to a variant of previously developed inverse Current Source Den-

sity method (Pettersen et al. 2006, �¦ski, Wójcik, Tereszczuk, �wiejkowski,

Kublik & Wróbel 2007, �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik

2011), in which we take the basis from the kCSD method as the N -parameter

family of sources in the inverse CSD method. Then in both models we have

the same space of sources and no degeneracy, hence the solutions have to be

the same. To illustrate the connection between the two approaches we show

this explicitly in Appendix B.
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3 Tests and examples

To test the viability of the kCSD method we performed a number of numerical

experiments using model sources and experimentally registered potentials.

The �rst question is how the kCSD method compares to the other meth-

ods (�nite-di�erence approximation, inverse CSD). To answer this we used

several con�gurations of the model CSD to calculate the potentials which

would have been measured using multi-contact electrodes. To be able to ap-

ply all the di�erent CSD methods we had to use regular grids, that means

we calculated the potentials either at equidistant points in 1D or at points

which formed a Cartesian grid in 2D or 3D. Then we tested the similarity of

the CSD reconstructions to the model CSD for a wide range of parameters

of the kCSD method. These tests are described in more detail in Section 3.1

below. The conclusion is that for the electrode grids where all the methods

can be applied the kCSD method performs as well as the spline iCSD method

or better (which is typically better than the �nite di�erence � `traditional'

� CSD analysis) if we choose basis appropriately.

A major strength of kCSD is its capability to estimate CSD from arbitrary

distributions of contacts with equal ease. Thus the second and perhaps the

most interesting question is how the kCSD method performs for contacts

not forming a regular grid. Though it is sometimes possible to use other

CSD methods in such cases, it is usually harder to use them without the

assumption of the regularity and the kCSD method seems to be the most

natural choice. We illustrate this below in Section 3.2. First we show how the

kCSD method can be easily applied to (model) potentials recorded on a grid
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used in Wirth & Lüscher (2004). Then we test the quality of reconstruction

for electrodes placed randomly within the probed area and check how it

changes with increasing number of electrodes.

The intermediate case between regular and irregular grids is when we

use a grid of regularly placed contacts but with a small number of contacts

missing. This can happen, for example, when one or two contacts are used for

stimulation instead of recording. This problem was studied earlier in Wójcik

& �¦ski (2010) where two approaches based on iCSD were proposed: one was

to substitute the missing channels with averages of their neighbors (LA for

local averages), the other was to restrict the dimensionality of the possible

CSD distributions and use the least-squares �t to all available recordings

(LS). Again, the kCSD method seems to be a natural choice here. In Section

3.3 we test the kCSD method on the same experimental data as used in

Wójcik & �¦ski (2010) and show that it is a substantially better approach

than the LS method from Wójcik & �¦ski (2010). Comparison of kCSD with

the LA method depends on the dataset tested.

3.1 Comparison of CSD methods on regular grids

The kCSD method as de�ned above has a number of parameters which need

to be speci�ed before the method can be applied to data. Speci�cally, we

need to de�ne the basis
{
b̃i(x)

}n
i=1

of the space of the CSD distributions

F̃ . As an example we will consider a two-dimensional regular, rectangular

electrode grid (z = 0 for all electrodes). We generate all the basis functions

by translating a single reference function of the form c(x, y)H(z) where as in
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Section 2.1.1 for c(x, y) we take either a two-dimensional Gaussian

cg(x, y) = exp

(
−x

2 + y2

2R

)
, (27)

or a two-dimensional cylindrically symmetric step function

cs(x, y) =


1 if x2 + y2 < R2

0 otherwise.

(28)

Therefore, each basis function b̃i is a translation of cs or cg. The parameter R

in the formulae above is the size of the basis sources in the xy plane. As the

transverse pro�le H(z) we take a step function: H(z) = 1 for −h ≤ z ≤ h.

Let xmin, xmax denote the minimum and the maximum of the x coordinates of

the electrodes, similarly for y; the spacing of the grid is ∆x,∆y. We assume

that the sources can extend beyond the electrode grid, speci�cally, the central

points (x, y) of the basis functions can be in the region xmin − ξ∆x ≤ x ≤

xmax + ξ∆x, ymin − ξ∆y ≤ y ≤ ymax + ξ∆y, where ξ is a parameter. We

arrange the sources as described along a regular rectangular grid. The �nal

parameter is the number of sources n. We choose such n that it is a product

of numbers of equally spaced sources in x and y directions. Summarizing,

the parameters we have to specify are n, R, h, and ξ, and the choice between

step and Gaussian pro�les in the xy plane. The choice of the translation

parameters and number of sources was described in Section 2.2.

Let us focus on an eight-by-eight grid with equal spacing in both direc-

tions (∆x = ∆y = 0.2, all lengths in this section are in mm) spanning the
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area 0 ≤ x, y ≤ 1.4. We chose two sets of test sources, both having product

structure c(x, y)H(z) with H(z) = 1 for −0.5 ≤ z ≤ 0.5. The datasets are

composed of Gaussian sources: in the �rst set the sources are large compared

to the inter-electrode distance (Fig. 1A), and in the second dataset they are

small (Fig. 1F). The exact formulae are given in the Appendix A.

We calculated the potentials at the registration points (for that purpose

the integration area was (x, y) ∈ [−0.5, 1.9]×[−0.5, 1.9]). Then we performed

a scan over the space of parameters of the kCSD method: we took all possible

combinations of R = 0.05, 0.1, 0.15, . . . , 0.4, n = 902, 1202, . . . , 2402, h =

0.2, 0.5, 1, and ξ = 0, 0.5, 1, 2, 3. For each combination of parameters, and

for both the Gaussian and the step pro�les we reconstructed the CSD and

calculated the normalized reconstruction error e using the formula

e =

∫
(c(x, y)− ĉ(x, y))2∫

c(x, y)2
,

where ĉ(x, y) is the reconstructed CSD (�¦ski, Wójcik, Tereszczuk, �wiejkowski,

Kublik & Wróbel 2007).

In Figure 1

we show example reconstructions using the kCSD method with parame-

ters close to optimal (Fig. 1E, J), exact parameter sets given in the caption.

These are compared with traditional CSD (Fig. 1C, H) and spline iCSD

reconstructions (Fig. 1D, I).

By `traditional CSD' here and in the following we understand the fol-

lowing procedure: (i) extend the grid by extra layer in each direction and

copy the potential value at extra points from nearest neighbors; (ii) calcu-
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Figure 1: (A-E) Test results for the �rst model dataset (`large sources'). A)
The model CSD. B) The potentials. C) Reconstruction using traditional
CSD. D) Reconstruction using spline iCSD method with D boundary con-
ditions. E) Reconstruction using the kCSD method for n = 8100, ξ = 2,
R = 0.3, h = 0.5, step basis. (F-J) Test results for the second model
dataset (`small sources'). F) The model CSD. G) The potentials. H) Recon-
struction using traditional CSD. I) Reconstruction using spline iCSD method
with D boundary conditions. J) Reconstruction using the kCSD method for
n = 8100, ξ = 0.5, R = 0.2, h = 0.5, Gaussian basis.
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late the CSD value at the grid points by discrete numerical approximation

to the Laplacian; (iii) cubic spline interpolate in between. The iCSD with

D boundary conditions means the CSD model where the original grid was

extended with an extra layer and the same CSD value was assumed as in the

nearest neighbor, spline interpolated CSD between the nodes (�¦ski, Wójcik,

Tereszczuk, �wiejkowski, Kublik & Wróbel 2007, �¦ski, Pettersen, Tunstall,

Einevoll, Gigg & Wójcik 2011).

The errors for optimal kCSD parameters (e = 0.06% and e = 35% for

large and small sources, respectively) are smaller than the errors of the tradi-

tional CSD (e = 43% and e = 38%) and spline iCSD (e = 1% and e = 36%).

Note that for the `small sources' data set all errors are rather large. This is

because the electrodes grid is too sparse to probe the detailed structure of

the sources, compare Figure 1H�J with Figure 3 where a denser electrodes

grid leads to much better reconstruction. This is intuitively very natural as

it resembles the situation in Fourier analysis where it is impossible to re-

cover frequencies higher than half the sampling rate of the signal (Nyquist

theorem).

The results of the parameters space scan can be summarized as follows:

the most important parameter is the size of the basis sources R. For the �rst

set of model sources (`large sources') it is best to choose large R (R = 0.4

or even larger), while for the second set (`small sources') the results are best

for small R (∼ 0.1). This is not surprising since any CSD estimation method

works best if the assumed CSD family matches closely the actual distribution.

Since optimal reconstruction parameters depend on the dataset we fur-

ther tested the dependence of reconstruction error on R on a large set of
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Figure 2: Dependence of (logarithm of) reconstruction error on R for step
(A) and Gaussian (B) basis sources. The boxes in the `box and whisker' plots
show the median and the lower and upper quartile values; the whiskers extend
over the neighboring values up to a maximum of 1.5 times the interquartile
range; the values further away are shown as outliers (+ signs, typically less
than 10% of the data points).

randomly placed Gaussian sources of di�erent sizes from small to large. We

used 2000 data sets, the details on how the sources were chosen are given

in the Appendix A. For each data set we performed reconstructions for dif-

ferent R (other parameters kept �xed). The results for both Gaussian and

step bases are presented in Fig. 2. For this collection of 2000 data sets the

optimal R is ∼ 0.3 to 0.4 for the Gaussian basis and ∼ 0.15 to 0.2 for the

step basis. One interesting observation is that the Gaussian basis leads to

weaker dependence of the reconstruction error on R. Therefore, the recom-

mendation for this electrode grid would be to use Gaussian basis sources and

an intermediate value of R, say R = 0.35. For such choice the method should

work reasonably well for a wide range of CSD sources.

The conclusions regarding the choice of h are the same as in inverse CSD
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method (�¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik 2011): the

closer we are to the actual h, the better; assuming wrong h may have strong

in�uence on the amplitude of the reconstructed sources but the shape of the

distribution is roughly preserved.

The non-zero values of the parameter ξ dramatically help in cases where

the actual activity in the xy plane extends beyond the electrodes grid (the

`large sources' case). This corresponds to choosing `B' or `D' boundary con-

ditions in iCSD (�¦ski, Wójcik, Tereszczuk, �wiejkowski, Kublik & Wróbel

2007, �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik 2011). The recon-

struction error grows with ξ when there is no activity beyond the grid, but

this e�ect is very small, therefore ξ = 1 is a safe choice in any case.

The number of sources (originally between n = 902 up to n = 2402) had

almost no e�ect on the reconstructions. We further studied reconstructions

with smaller number of sources (n = 102, 112, . . . 152, 202, 302, 452, 602, 752)

and we found that the reconstructions only break for very sparse bases (such

as n = 102); taking n = 202 yields errors only slightly higher than the opti-

mal values of n. The reason that the method does not work for very small

n (especially when used together with small R) is that the character of the

cross-kernel functions changes dramatically: for larger n they are `smooth'

functions with a single maximum, whereas for small n the kernels have mul-

tiple maxima located at the observation points and are therefore unable to

reproduce smooth CSD distributions faithfully. Our recommendation is that

n should be such that the basis sources are denser than the observation points

(for example n = 202 for 8 by 8 grid).
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3.2 kCSD on irregular grids

One of the strengths of the kCSD method is that it can be easily applied to

any con�guration of the recording points. As an example let us consider an

electrode array used by Wirth & Lüscher (2004), see Fig. 3. The contacts

Figure 3: CSD reconstruction on an irregular grid of electrodes (circles). A)
The model CSD. B) The estimated potentials. C) CSD reconstructed from
potential values at the grid using kCSD method.

of the array do not form a regular, rectangular grid similar to the ones used

in Section 3.1 (although locally they form a square lattice). While it would

be possible to apply some form of inverse CSD (or even numerical second

derivative), the kCSD method is the most natural method to use in this

case. Figure 3 presents the test sources used in this case (`small sources'

dataset described in Section 3.1), the potentials resulting from the sources

and the reconstructed CSD. Note that this reconstruction is better than the

reconstructions obtained in Section 3.1 because the inter-electrode distance,

140µm, is smaller here.
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In fact, it is equally easy to apply the kCSD method to regular and irreg-

ular grids, which is not the case for other CSD methods such as spline iCSD

introduced previously. To demonstrate the strength of this new approach we

consider electrodes placed randomly. Such irregular placement could occur

in real experiments, for example, when many electrodes are positioned inde-

pendently to record spiking activity and then also the LFP signal is recorded.

For the two test datasets de�ned in Section 3.1 we chose randomly a set of

electrodes placed within the area (x, y) ∈ [0, 1.4] × [0, 1.4] 2 and calculated

the reconstruction error e (example reconstructions shown in Figure 4). For

Figure 4: CSD reconstructions from randomly placed electrodes (examples).
Top row: `large sources', bottom row: `small sources'.

each number of electrodes we repeated this procedure 50 times to obtain error

bars on e. The results are presented in Figure 5. For `large sources' the CSD

can be reconstructed quite faithfully from as little as 16 electrodes. Because

2The only constraint was that any two electrodes can not be closer than 0.14 mm.
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Figure 5: Distribution of errors for reconstruction from randomly placed
electrodes. A) Large sources, B) small sources. For the meaning of the `box
and whisker' plots see caption of Figure 2.

of small spatial extent of `small sources', the errors are large (∼ 40%) even

for 64 electrodes.

Similar reconstructions from randomly placed electrodes can be performed

also in one and three dimensions. Figure 6 shows an example of reconstruc-

Figure 6: (A�C) CSD reconstruction from randomly placed electrodes in 1D.
A) model CSD; B) single reconstruction, electrodes positions are marked with
vertical bars at the x axis; C) reconstructions for 12 di�erent sets of randomly
placed electrodes. (D�E) One-dimensional example of reconstructing CSD
from a regular grid with one missing electrode. D) Reconstruction from all
but one channels, electrodes positions are marked with vertical bars at the x
axis � note one is missing. E) Realizations for di�erent electrodes removed.

tion of sources (A) from 9 electrodes placed randomly on a line (B). Fig. 6
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(C) shows reconstructed sources for 12 di�erent distributions of nine contacts.

The sources used in Fig. 6 are described in Appendix A.4.

3.3 Kernel CSD on incomplete regular grids

One interesting case of irregular grids are regular grids with a number of miss-

ing contacts. Such situations arise often in real experiments e.g. because of

speci�c experimental setup (Bakker et al. 2009) or hardware failures. In the

kCSD framework one can deal with such situations without problems. Fig-

ure 6 D�E shows a simple one-dimensional example for the sources presented

in Fig. 6 A.

In previous work (Wójcik & �¦ski 2010) we studied possible remedies

to the `incomplete grid' problem in the context of the inverse CSD (iCSD)

method. We proposed two solutions: either to substitute the missing chan-

nels with averages of the neighbors (LA for `local averaging') or to �t a CSD

distribution described by fewer parameters than the number of electrodes

using least squares method (LS). Here we treat the same problem in the

context of kCSD. The kCSD method is a natural replacement for the LS

approach. It can also be applied to the full dataset obtained with the LA

method (the results are very close to the LA + spline iCSD method). In this

section we compare the two approaches (either kCSD on incomplete grid or

LA + kCSD). As the irregularity of the grid is naturally accounted for in the

kCSD method without the need to explicitly use least squares �t we expect

this method to perform much better than the LS method in the inverse CSD

case.

28



To test the relative performance of kCSD and LA + kCSD methods we

�rst studied the two-dimensional datasets (`large sources' and `small sources')

introduced above in Section 3.1. We set a number n of missing channels

(1 ≤ n ≤ 8) and we studied a large number of possible combinations of

missing points (for n = 1 and n = 2 we checked all possibilities, 64 and

(64 × 63) ÷ 2 = 2016, respectively; for each larger n we chose randomly

2000 combinations). For each con�guration and each of the two datasets we

reconstructed the CSD twice, �rst using the kCSD method on the incomplete

dataset, second using the LA + kCSD approach. The results plotted as the

mean of the reconstruction error e ± standard deviation are presented in

Figure 7.

The kCSD method applied to the incomplete set yields better results than

the LA + kCSD method. The di�erence is striking in case of `large sources',

Figure 7A, which is not unexpected as we saw before that for this dataset

the kCSD reconstructions are very precise even for a much smaller number

of available measurements (Figure 5). Evidently in this case local averages of

neighbors lead to incorrect approximation of the missing values of potential

distorting the data and resulting in bigger reconstruction errors.

To directly compare the new kCSD method to the LA + iCSD and LS

methods from Wójcik & �¦ski (2010) we performed another numerical exper-

iment, this time using the experimental datasets utilized in Wójcik & �¦ski

(2010). The data are the extracellular evoked potentials recorded in the rat

brain on a three-dimensional grid of 4 × 5 × 7 points and are described in

detail elsewhere (�¦ski, Wójcik, Tereszczuk, �wiejkowski, Kublik & Wróbel

2007, �¦ski, Kublik, �wiejkowski, Wróbel & Wójcik 2010). In Wójcik &
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Figure 7: Comparison of two methods (LA followed by kCSD � o's, kCSD
on an incomplete grid � x's) to reconstruct CSD from data on a grid with
missing points. The x-axis shows the number of recording points removed
from the grid. The values plotted at y-axis are the means of normalized
reconstruction error e, error bars are ± standard deviation. A) Large sources,
B) small sources. C) The best 90% out of 2000 random choices of removed
points (except n = 1 and n = 2 where 90% of all possibilities are used). D)
Same as C) but for the worst 10% of the cases. The data used here are the
same as used in Figures 3 and 4 in Wójcik & �¦ski (2010).
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�¦ski (2010) we concluded that the LA + iCSD method is to be preferred

over the less stable LS approach.

Here, similarly as in the two-dimensional case above we calculated the

reconstruction error for di�erent electrodes setups using either kCSD or LA

+ kCSD approach3. As expected, the kCSD method is indeed much better

than LS combined with spline iCSD: the errors of reconstruction are much

smaller and the results are much more robust (there are no cases of huge

errors as opposed to the LS method in Wójcik & �¦ski (2010)). Still, the

LA + kCSD method performs better for this datasets than pure kCSD. This

is a result similar to the one obtained in Wójcik & �¦ski (2010) and it is

di�erent from the result for the two-dimensional case of `large' and `small'

sources. The results are presented in Figures 7 C and D (the A and B panels

are direct counterparts ofcorresponding to panels C and D of �gure 4 from

Wójcik & �¦ski (2010)).

Summarizing the two tests described above: the relative performance of

the pure kCSD method on an incomplete grid vs. LA + kCSD method

depends on the exact geometry of the electrodes. Therefore, we recommend

that the decision if missing values should be supplemented with local averages

of the neighbors is made based on tests on plausible model data for every

particular electrodes setup.

3Note that here we know only the potentials and not the true sources, therefore the

error is the di�erence between the reconstruction from complete and incomplete data.
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4 Regularization and parameter selection

Until now we have assumed that the data are precise (measured without

errors) and suggested heuristics for choosing parameters. Such an approach

allowed us to show how kCSD can be seen as a generalisation of the previously

developed iCSD method. Setting R equal to half of the electrode spacing in a

regular grid also corresponds to iCSD, where the shape of the basis functions

was determined by the geometry of the electrode array. Such an approach,

demanding little computational power, can be recommended in cases when

one wants quick results.

In practice, one never encounters noiseless data. Moreover, in a thorough

analysis one would like to set the parameters of the method optimally to do

justice to the data, not just to the electrode setup. In this section we examine

one possible approach to address these issues. Since machine learning theory

o�ers a variety of solutions the following discussion merely indicates further

directions of research.

4.1 Regularization

Measurements from electrodes are always corrupted with noise. To minimize

the in�uence of this noise on inferences one should avoid over-�tting estima-

tions to the data observed. Taking such precautions is known in statistics

as regularization. Regularization can be understood as reducingthe variance

of estimators but allowing for bias. Until now we have constructed unbiased
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estimators that exactly �tted the observations.

N∑
i=1

(
N∑
j=1

βjK(xj,xi)− Vi

)2

= 0. (29)

To regularize the solution we used Tikhonov regularization (Tikhonov (1977),

Shawe-Taylor & Christiani (2004)) requiring

N∑
i=1

(
N∑
j=1

βjK(xj,xi)− Vi

)2

+ λ
N∑
i=1

β2
i , (30)

which is solved by

β = (K + λI)−1 ·V. (31)

Thus the resulting regularized estimate of CSD is

C∗(x) = K̃T (x) · (K + λI)−1 ·V.

Increasing the value of λ results in a continuous reduction of magnitude of the

parameters β which stabilizes the model (decreases variation but increases

bias) but choosing λ too large eventually ignores the data. Therefore one has

to decide on a compromise value for λ.

There are several ways to select optimal value of λ from data Hastie &

Tibshirani (2001), He & Lian (2005). We used cross-validation. The idea

behind cross-validation is fairly simple. The observations are divided into

L subsets which can be of equal size. Next we construct L regressors each

time using one of the L subsets as a test set and the rest as a training set.

Each time the estimation error on the test set is calculated. This procedure
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is repeated for a wide range of λ values and each time the average error is

calculated. At the end we choose the value of λ which results in the smallest

average error. In practice we used `leave one out' cross validation where each

test set consists of one element.

To test the viability of Tikhonov regularization we performed a test using

the model dataset `large sources'. To the calculated potentials we added

Gaussian noise of std equal to 10% of the total variation of the noise-free

potential in the studied domain (maxV (x) − minV (x)). We set R to 1.5

of maximum electrode distance and chose λ using cross validation. Figure 8

shows that the kCSD method without regularization works rather poorly for

Figure 8: A) Distribution of model sources used to test ridge regression. blue
circles indicate positions of simulated electrodes. To the potentials measured
there we added Gaussian noise with std equal to 10% of the total variation
of the noise-free potential in the studied domain. B) CSD reconstruction
without regularisatin C) Reconstruction using Tikhonov regularization with
R set to 1.5 of maximum electrode distance and λ chosen via cross-validation.

such large noise, whereas combining kCSD with ridge regression and cross-

validation improves the reconstruction signi�cantly.

In the test situation, where one knows the model source, optimal λ can be
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calculated not only through cross-validation but also through direct compar-

ison of reconstructed sources with the true source. In experiment we do not

have this luxury. To �nd out how close to optimal is the value of λ selected

by cross validation we checked reconstruction error in ridge regression on the

model data set for a wide range of λ. Fig. 9 A

Figure 9: A) Line: Reconstruction error of kCSD with ridge regression on
the whole data set for a wide range of parameters. Circle indicates the value
of λ chosen via cross-validation. B) Line: Reconstruction error for iCSD and
kCSD (with λ and R chosen via cross-validation) for increasing std. of noise.
Potentials used for the reconstructions were generated by the 'big sources'
CSD pro�le and recorded on a 7 x 7 regular rectangular grid.

shows that the λ obtained with cross-validation gives a very good estimate

of the optimal value.

4.2 Parameter selection

In the previous sections we have proposed heuristic suggestions how to select

parameter values. Cross-validation, which we used for selecting optimal value
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of λ in ridge regression, can also be used to select values of other parameters of

the method. The main parameter is R but we could have a parameter setting

the extend of the sources beyond the area span by the electrodes and thus

consider in�uence of sources beyond the region of interest. In general we may

want our method to depend on parameters p1, . . . , pm and get their values

using cross-validation. In practice we select m �nite sets P1, ...Pm containing

the parameters p1 ∈ P1, ...p1 ∈ Pm, consider all possible combinations of

parameter values P = P1×P2× ...×Pm and do cross-validation as discussed

above. One can construct the sets P1, . . . , Pm using prior knowledge or just

let them cover a wide range of values.

To ilustrate the power of this approach to parameter tuning that includes

regularization we examined the performance of kCSD as noise grows (Fig. 9

B)). At each level of noise λ and R were chosen through cross-validation. We

compared the reconstruction error of the obtained solution with the perfor-

mance of spline iCSD. The improvement is signi�cant.

5 Discussion and summary

In this article we have introduced a new framework for estimation of current

sources from extracellular potentials using kernel methods. Introduction of

kernels in this context opens up new experimental possibilities allowing e�-

cient approximation of the sources from arbitrary distributions of contacts.

We discuss here the advantages and limitations of the presented approach

indicating possible further directions of development, both in the physical

and statistical aspects of the problem.
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Advantages of kCSD The main advantages of kCSD compared with the

previously developed methods are (i) conceptual separation of the model con-

struction (introducing the sources and potentials � the bi(x) and b̃j(y) basis

functions) from the distribution of electrode locations, and (ii) ease of recon-

structing CSD from arbitrarily located contacts. One immediate bene�t is

that in cases such as the 3D recordings analyzed in �¦ski, Wójcik, Tereszczuk,

�wiejkowski, Kublik & Wróbel (2007), �¦ski, Kublik, �wiejkowski, Wróbel

& Wójcik (2010), where we know that the potentials where not recorded ex-

actly on a grid, in the framework of kCSD we can take the best estimates of

electrode position and the cost of calculations does not change, as opposed

to the 3D iCSD where we assumed electrode location on a regular grid and

neglected possible errors.

This �exibility may lead to new experimental possibilities. One case

we see is combining acute experiments, such as the one described in �¦ski,

Wójcik, Tereszczuk, �wiejkowski, Kublik & Wróbel (2007), �¦ski, Kublik,

�wiejkowski, Wróbel & Wójcik (2010), where one can perform precise scans

of electrical activation of tissue with high spatial resolution, with chronic

experiments, where of necessity, one would restrict oneself to a few precisely

positioned electrodes, usually not on a grid. One could then use the infor-

mation about the activity of CSD obtained in the acute experiments to build

optimal model spaces allowing the best possible reconstruction of the sources

from the limited number of measurements available in the chronic situation.

This may lead to a clearer spatial and temporal separation of functional

pathways than possible using methods available so far.
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Interplay of modeling and data analysis in CSD reconstruction A

question which arises in connection with the above mentioned approach is

this: given a speci�c pro�le of the sources, including their temporal dynam-

ics or not, assume available N electrodes. How should they be positioned

and how should one construct the model RKHS to minimize errors of CSD

reconstruction in the studied process? Or alternatively, how many electrodes

are needed and how should they be positioned to allow for e�cient estima-

tion of CSD with given precision? We expect that the answers to these open

questions would signi�cantly depend on the speci�c activity and structure.

To �nd optimal positions for recording it would probably be necessary to

test di�erent arrangements of electrodes on simulated data. This calls for a

new optimization scheme and for development of e�cient simulations of local

�eld potentials in realistic geometries.

Spectral decomposition We have concentrated here on the estimation of

sources from potentials, as the CSD seems to be the main object of interest

in terms of physiology. However, the approach through RKHS can give us

additional insight through the `spectral decomposition' (Shi et al. 2008).

That is, for a selected representation of sources (given set of basis sources

b̃i(x)) we can calculate the contribution of every basis source to the estimated

CSD at any time point. We can write Eq. (18) as

f̃ ∗(x) =
n∑
j=1

αj b̃j(x)
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where

αj =
k∑
i=1

βibj(xi).

It may happen that temporal changes of `activation' αj of a source b̃j(y)

centered on xj are di�erent from the value of estimated CSD at x, as this is

a sum of contributions from all the sources b̃i containing xj in their support.

This could yield additional insight in the analysis of data, especially if the

construction of the underlying RKHS is motivated anatomically and the basic

sources can be attributed functional meaning.

Parameter choice for kCSD The kCSD framework which we have intro-

duced here is very �exible, one can use many di�erent types of bases. This

leads to a question what is the recommended �rst choice of model space and

how to choose parameters for unknown sources. As our numerical exper-

iments in Section 3 show, Gaussian models give smaller errors in a larger

range of parameters than the step functions, so we recommend the Gaus-

sians. The optimal value of R for electrodes on regular grid is between 1-2

inter-electrode distances. We expect that even better results can be obtained

with basis adapted to problem at hand. Its construction should be motivated

by available anatomical and functional information or tests on sources gen-

erated in computational modeling, if only possible. E�cient construction of

optimal basis for a problem at hand is another direction worth exploring.

One possible approach is the use of cross-validation which we demonstrated

in Section 4 for selection of the regularization constant λ.
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Including time dependence As mentioned in Section 2 time dependence

of the potentials was not taken into account in this paper. However, LFP

data coming from experiments usually have the form of several time series

� one for each electrode. Modeling these time series, relationships between

them and incorporating this knowledge in the estimation may reveal more

information about the examined region.

A possible way of extending the framework described in this paper would

be to add time dependence to the basis functions introduced in Section 2.

In the simplest case one could think of basis functions that factorise into the

product of two seperate location and time dependent factors:

b̃i(x, t) = b̃i1(x)̃bi2(t),

where b̃i2(t) could have a 'step' or a Gaussian shape.

If we calculate the potential generated by b̃i in every moment t, we get

a set of potential basis functions bi(x, t). We are therefore free to construct

kernels as in (9) and (17), run the kCSD method and obtain a time dependent

CSD estimator.

Direct kCSD method Up till now we have always derived kernels K and

K̃ from the basis functions via equations (9) and (17). One can also try

de�ning kernel K directly, omitting the introduction of basis functions. It is

shown in Shawe-Taylor & Christiani (2004) (Theorem 3.11) that as long as

a kernel function K is positive de�nite, then there exists an RKHS H and
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an equivalent mapping φ : R −→ H such that:

K(x,y) = 〈φ(x), φ(y)〉.

We are therefore free to model the potentials with kernels typically used

in learning algorithms (e.g. a Gaussian kernel), as presented for instance

in Schoelkopf & Smola (2002), Chapter 2.3. To model CSD it rests to �nd the

equivalent cross-kernel. This can be done regarding the following equation:

K(x,y) = AyK̃(x,y),

where by Ay we denote operator A acting on the second variable, so we can

write

K̃(x,y) = [Ay]−1K(x,y).

Calculating K̃ involves inverting operator Ay which is simple in the three

dimensional case where the inverse operator is just the Laplacian. However,

in 1D and 2D cases this operator depends on the model of the tissue in the

directions normal to the space spanned by the electrodes, so its inversion is

more involved.

Our preliminary numerical experiments with the 3D case indicate that

this `direct kCSD' method, as we call it, is even faster, very easy to calculate,

and is very stable. A thorough study is underway.

Generalized models of tissue conductivity We have assumed in the

analysis constant conductivity. This simpli�es the problem and in view of the
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lack of available data on conductivity in many areas, is a natural approach

to start. However, as it is now becoming feasible to measure conductivity

more and more precisely and as the changing conductivity seems to in�uence

substantially the �elds Goto et al. (2010) it is necessary to develop kCSD

to incorporate richer models of sources taking into account space-dependent

and perhaps non-scalar conductivity. One important example which calls for

a dedicated approach is that of slices on multielectrode arrays (MEA).
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A Speci�cation of the sources used in the tests

In this appendix we provide detailed information about the sources used in

testing kCSD method in Section 3.

A.1 `Large sources'

The `large sources' were generated using the following Matlab function:

function f = test_csd(x,y,z)

zz = [0.4; -0.3; -0.1; 0.6];

zs = [0.2; 0.3; 0.4; 0.2];
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f1 = 0.5965*exp((-(x-0.1350).^2 - (y-0.8628)^2)/0.4464)*...

exp(-(z-zz(1))^2/zs(1))/exp(-(zz(1))^2/zs(1));

f2 = -0.9269*exp((-2*(x-0.1848).^2 - (y-0.0897)^2)/0.2046)*...

exp(-(z-zz(2))^2/zs(2))/exp(-(zz(2))^2/zs(2));

f3 = 0.5910*exp((-3*(x-1.3189).^2 - (y-0.3522)^2)/0.2129)*...

exp(-(z-zz(3))^2/zs(3))/exp(-(zz(3))^2/zs(3));

f4 = -0.1963*exp((-4*(x-1.3386).^2 - (y-0.5297)^2)/0.2507)*...

exp(-(z-zz(4))^2/zs(4))/exp(-(zz(4))^2/zs(4));

f= f1+f2+f3+f4;

Note that the sources used in this paper have product structure which means

that the above function was evaluated only for z = 0 and we assumed a step

pro�le in z variable. More general sources were considered in �¦ski, Pettersen,

Tunstall, Einevoll, Gigg & Wójcik (2011).

A.2 `Small sources'

Let a, µ1, µ2 and C be the parameters (amplitude, mean, covariance matrix)

of the following Gaussian function:

Ga,µ1,µ2,C(x, y) =
a

2π
√

detC
exp

−1

2

 x− µ1

y − µ2


T

C−1

 x− µ1

y − µ2


 .

The `small sources' dataset was generated by a sum of four such Gaussians

with parameters given in the table below:
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Number a µ1 µ2 C

1 0.2 0.2 0.3

 0.002 0

0 0.008


2 −0.25 0.2 0.6

 0.005 0

0 0.01


3 0.24 0.5 0.3

 0.0024 0

0 0.008


4 −0.2 0.5 0.6

 0.005 0

0 0.01


A.3 Random Gaussian sources

The random Gaussian sources were constructed according to the following

algorithm (all probability distributions are uniform):

1. choose randomly rmin between 0.1 and 0.2, let rmax = 2rmin,

2. choose number n of Gaussian sources, 4 ≤ n ≤ 8,

3. for each source choose amplitude a between −1 and 1, angle ϑ between

0 and 2π, position of the source (x0, y0) in the square [0, 1.4]2, and σx,

σy between rmin and rmax,

4. the test CSD distribution is equal to the sum of n terms, each of the

form

G(x, y) = a exp
[
−xTAx

]
,
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where x =

 x− x0

y − y0

, andA =

 cos2 ϑ
2σ2

x
+ sin2 ϑ

2σ2
y
− sin 2ϑ

4σ2
x

+ sin 2ϑ
4σ2

y

− sin 2ϑ
4σ2

x
+ sin 2ϑ

4σ2
y

sin2 ϑ
2σ2

x
+ cos2 ϑ

2σ2
y

 .

(see http://en.wikipedia.org/wiki/Gaussian_function ).

A.4 1-D sources

The one-dimensional sources were constructed in the following manner as a

mixture of two Gaussians:

GA1,µ1,σ1,A2,µ2,σ2 = A1 exp

(
−(x− µ1)2

2πσ1

)
+ A2 exp

(
−(x− µ2)2

2πσ2

)
.

The parameter values were:

A1 µ1 σ1 A2 µ2 σ2

1 2 0.5 0.5 7 1

B iCSD is a special case of kCSD

To set the stage let us rewrite iCSD in the language used here. We start from

a set of k LFP measurements: (xi, Vi)
N
i=1,xi ∈ Rd. Then a model of CSD is

assumed in the form of N -parameter distribution

C(x) =
N∑
j=1

Cj b̃j(x).

In all the work so far xi were assumed to form a regular rectangular grid

and Ci were the values of CSD at the nodes of the grid which were to be

estimated from the given potentials. The spatial pro�les b̃i(x) and the asso-
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ciated potentials bi(x) are set by the dimensionality of the problem and the

variant of the method used (step, linear spline, cubic spline, etc.). For exam-

ple, in three dimensional spline method b̃i(x) would be spline interpolated

three-dimensional function between grid points, taking values 1 at xi and

0 at xj 6=i with appropriate boundary conditions (�¦ski, Wójcik, Tereszczuk,

�wiejkowski, Kublik &Wróbel 2007). The potential generated by source b̃i(x)

is given by Eq. (5). In lower dimensionality one has to add a model of sources

in the directions not probed by the electrodes. Thus in the two-dimensional

step method (�¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik 2011), for

example, assuming xi ≡ (xi, yi, 0) with interelectrode distance ∆ and step

pro�le in the perpendicular direction of the depth H we would have

b̃i(x, y, z) =

 1 x ∈ (xi − ∆
2
, xi + ∆

2
), y ∈ (yi − ∆

2
, yi + ∆

2
), z ∈ (−H

2
, H

2
)

0 otherwise

with the potentials given by Eq. (22).

In any iCSD variant, the potentials according to the assumed model of

sources are given by V (x) =
∑

j Cjbj(x) with the values measured at a grid

point i equal to V (xi) =
∑

j Cjbj(xi) = Vi. To �nd the model sources we �rst

solve for parameters Cj given the potentials:

V ≡


V1

...

VN

 =


b1(x1) . . . bN(x1)

...

b1(xN) . . . bN(xN)



C1

...

CN

 =


bT (x1)

...

bT (xN)



C1

...

CN


with obvious notation b(x) = [b1(x), . . . , bN(x)]T . Inverting this relation we
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obtain

C =


C1

...

CN

 =


bT (x1)

...

bT (xN)


−1

V.

Then the source are given by

CiCSD(x) =
n∑
j=1

Cj b̃j(x) = b̃T (x)


bT (x1)

...

bT (xN)


−1

V. (32)

In kCSD framework we have (Eq. (15)):


V1

...

VN

 =


K(x1,x1) . . . K(x1,xN)

...

K(xN ,x1) . . . K(xN ,xN)



β1

...

βN



=


bT (x1)

...

bT (xN)


[
b(x1) . . . b(xN)

]
β1

...

βN


which gives


β1

...

βN

 =

[
b(x1) . . . b(xN)

]−1


bT (x1)

...

bT (xN)


−1

V. (33)
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Then the sources CkCSD(x) according to Eq. (16) are given by

CkCSD(x) =
k∑
i=1

βi

n∑
j=1

bj(xi)̃bj(x) = b̃T (x)

[
b(x1) . . . b(xN)

]
β1

...

βN

(34)

Using (33) and (34) we obtain

CkCSD(x) = b̃T (x)

[
b(x1) . . . b(xN)

] [
b(x1) . . . b(xN)

]−1


bT (x1)

...

bT (xN)


−1

V

= b̃T (x)


bT (x1)

...

bT (xN)


−1

V = CiCSD(x). (35)
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