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Two black hole initial data
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The Misner initial data are a standard example of time-symmetric initial data with two apparent
horizons. Compact formulae describing such data are presented in the cases of equal or nonequal masses
(i.e. isometric or nonisometric horizons). The interaction energy in the ‘‘Schwarzschild + test-particle’’
limit of the Misner data is analyzed.
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I. INTRODUCTION

In [1] Misner proposed two-body wormhole initial data
and in [2] he used the method of images to describe the
time-symmetric initial data for an arbitrary number N of
particles (see also [3] for a review of time-symmetric initial
data). Such data may be viewed as a collection of Einstein-
Rosen bridges connecting two isometric sheets. If we
restrict ourselves to just one of them, we can view such
initial data as a three-dimensional metric on a manifold
with internal boundary. The boundary consists of N mini-
mal surfaces representing surfaces of the ‘‘black holes’’
corresponding to the particles. In this paper I am concerned
with the N � 2 case only. If the masses of black holes are
equal (i.e. when the horizons are isometric) then there is a
well-known formula for the three-metric:

g � �4�d�2 � d�2 � sin2�d’2�; (1)
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Here (�, �, ’) are the bispherical coordinates defined by
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There are two parameters in (2): d and �0. The � coor-
dinate ranges from ��0 to�0. The� � ��0 surfaces are
minimal, which translates to the Neumann boundary con-
dition for �: @
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� 0. The conformal factor �

satisfies an elliptic equation
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where � is the Beltrami-Laplace operator associated with
the metric d�2 � d�2 � sin2�d’2 and sin� is the volume
element.
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It is obvious that the metric g is conformally related to
the Euclidean metric on R3 minus two balls which corre-
spond to j�j>�0. This transformation reads:

g � �4d2�dx2 � dy2 � dz2�; (5)

where the conformal factor � is related to � by the
formula � � d�1=2�

������������������������������
cosh�� cos�

p
. The

���
d

p
factor is

extracted from � in order to normalize the value of � at
infinity to 1. Now the parameter 2d has the interpretation of
the Euclidean distance (with respect to the metric d2�dx2 �
dy2 � dz2�) between the points corresponding to � � �1
(z � �1).

To generalize the metric g to the case of nonequal
masses one takes � 2 ��a; b� with a; b > 0, imposes the
Neumann boundary conditions and solves Eq. (4) for �.
Such metrics are well known and used to construct initial
data. There are effective formulae which give the confor-
mal factor, see for example [4]. However, it seems that no
closedform formula has been published, for example, the
formulae from [2] include series of operators of inversion
with respect to spheres in Euclidean space and the formu-
lae in [4] are recursive. Below I present a compact form of
the metric. First I derive a new version of formula (2) in the
equal-mass case, see (7) and (8). Then I present the corre-
sponding formulae (10) and (11) in the case of nonequal
masses. I also use (11) to calculate the interaction energy in
the test-body limit of the Misner initial data, that means
when one mass is much smaller than the other.
II. MAIN RESULT

Let us begin with

1

j ~r� ~r0j
�

X1
l�0

rl<
rl�1
>
Pl�cos��;

where r< :� min�j~rj; j ~r0j�, r> :� max�j~rj; j ~r0j�, �—the
angle between ~r, ~r0. Taking ~r � ~ez and j ~r0j � exp���, we
get

j ~ez � ~r0j �
���
2

p
e�=2

������������������������������
cosh�� cos�

p
;

where � is a spherical angle of the vector ~r0. Hence we
have the following formula for terms in (2):
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where � � 0: If we expand the summands in (2) using (6)
and sum the n-indexed series then we arrive at the confor-
mal factor (2) for the equal-mass case rewritten as:
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the formula being valid for � � 0. We can also extract the
singular term
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with the series being uniformly convergent for � 2
���0; �0�.

In the case of nonequal masses the conformal factor is
given by the following formula:
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where
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cosh�� cos�
p :

Simple symmetry argument shows that such � indeed
satisfies the Neumann boundary conditions at � � �a,
� � b. As before we use (6) and perform summation
over n to get � in the following compact form:
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or, if we extract the singular term,
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Again formula (10) is valid for� � 0 and the series in (11)
converges uniformly for� 2 ��a; b�. If we substitute a �
b � �0 then (10) and (11) reduce to (7) and (8),
respectively.

The main results here are formulae (10) and (11). It is
worth noting that the conformal factor is expanded in a
series of orthogonal polynomials, which is a desirable
feature for numerical treatment.

III. SCHWARZSCHILD + TEST-BODY LIMIT

Let us now analyze the ‘‘Schwarzschild + test-body’’
limit of Misner initial data. First, we observe that if we
pass to the limit b! 1 in (11) then we get Schwarzschild
initial data in bispherical coordinates. The � � �a sphere
represents the minimal surface in Schwarzschild initial
data and � � 1 becomes a regular point. The mass of
such data is

m �
2d

sinha
: (12)

Second, we treat " :� exp��b� as a small parameter, that
means "� exp��a�, and expand (11) in ". We get the
following formula for the conformal factor:
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Let us denote bym1 andm2 the masses of the � � �a and
the � � b surfaces, respectively. By ‘‘mass of a surface’’ I
mean here the square root of its area divided by

���������
16�

p
.

Using (13) we find the individual masses of the surfaces
and the ADM mass M of the whole system:

m1 �
2d

sinha
� 8d�e�a � e�2a�"�O�"2�; (14)

m2 � 4d�1� e�a�2"�O�"2�; (15)

M � m1 �m2 � 8d�e�a � e�2a�"�O�"2�: (16)

In the Newtonian gravity the interaction energy equals

E
�

� � m1m2

distance and for the Misner data the interaction en-
ergy should converge to this value in the Newtonian limit,
that means when the distance increases to infinity. We
would like to write the interaction energy in the form E �

� m1m2

distance", where " is a function of distance and converges
to 1 as the distance goes to infinity. The two most obvious
choices for the distance parameter are D :� 2d and the
length of the � � � geodesic connecting two horizons
which we denote by L. The distance D is quite close to
the distance studied by Brill and Lindquist [5], in the sense
that it is the Euclidean distance between two points lying
inside minimal surfaces. In this case we get the following
formula for the interaction energy:
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Passing now to the second case, we can calculate the
geodesic distance L as the integral

L � d
Z 1

z1
���x � 0; y � 0; z��2dz�O�"�;

where z1 � � sinha
cosha�1 is the z coordinate (3) of the point

(� � �a, � � �). The result is
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with z0 � � cosha
sinha being the z coordinate of the center of the

removed ball corresponding to the � � �a minimal sur-
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face. As the result we get the interaction energy equal to

M�m1 �m2 � �
m1m2

L
"L �O�"

2�: (18)

The factor
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can be expressed in zeroth order in " (using (14)) as a
rather complicated function of a single parameter 2d

m1
. In the

d! 1 limit (L! 1) it converges to 1, giving the correct
Newtonian limit of (18).
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