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Sensory deprivation caused by peripheral injury can trigger func-
tional cortical reorganization across the initially silenced cortical
area. It is proposed that intracortical connectivity enables recovery
of function within such a lesion projection zone (LPZ), thus sub-
stituting lost subcortical input. Here, we investigated retinal lesion-
induced changes in the function of lateral connections in the
primary visual cortex of the adult rat. Using voltage-sensitive dye
recordings, we visualized in millisecond-time resolution spreading
synaptic activity across the LPZ. Shortly after lesion, the majority of
neurons within the LPZ were subthresholdly activated by delayed
propagation of activity that originated from unaffected cortical
regions. With longer recovery time, latencies within the LPZ grad-
ually decreased, and activation reached suprathreshold levels.
Targeted electrode recordings confirmed that receptive fields of
intra-LPZ neurons were displaced to the retinal lesion border while
displaying normal orientation and direction selectivity. These re-
sults corroborate the view that cortical horizontal connections
have a central role in functional reorganization, as revealed here
by progressive facilitation of synaptic activity and the traveling
wave of excitation that propagates horizontally into the deprived
cortical region.

horizontal connections � plasticity � striate cortex

The adult cerebral cortex is capable of plastic reorganization
that can partially recover lost function (1–7). In primary

visual cortex, a focal retinal lesion cuts off retinal input, leading
to a cortical region in which no visually evoked spikes can be
detected. However, after a given period of recovery, initially
redundant neurons regain responsiveness, with receptive fields
shifted toward positions represented by neurons at the border of
the lesion projection zone (LPZ) (2–4, 8–11), even within hours
after lesion (12, 13).

A common hypothesis is that long-range horizontal cortical
connections, originating in extragranular cortical layers, substi-
tute for deprived thalamic input, thereby enabling LPZ neurons
to share function with their unaffected neighbor cortical neurons
(6). Indeed, 2-photon imaging in mouse visual cortex showed a
3-fold increase in loss and gain of dendritic spines in layer 2/3,
arguing for remodeling of horizontal connectivity (14). Earlier,
it also had been shown that axonal sprouting may be involved in
long-term cortical reorganization (15). Moreover, intrinsic op-
tical imaging revealed recovery of an orientation map to a layout
similar to the one before lesion (8). Such preservation of
orientation preference despite the shift of receptive fields is
indicative of massive restructuring of the existing intracortical
network, involving large populations of neurons within and
outside the lesion-affected cortex.

However, single-cell recordings are limited in spatial sam-
pling, and therefore they do not provide a coherent population
picture of activation across the LPZ. Moreover, spiking activity
reports the binary outcome of far-reaching integrative processes
but not their underlying analogue synaptic events. Thus, gradual
changes in subthreshold synaptic activity over the time span of

recovery processes cannot be revealed. Intrinsic optical imaging
and fMRI, on the other hand, enable sampling of large cell
populations but are limited in temporal resolution. Furthermore,
the recorded hemodynamic signals are only indirectly coupled to
electrical activity and fail to disambiguate subthreshold synaptic
events from mass suprathreshold activation.

For these reasons, we made use of a high-resolution imaging
technique that employs voltage-sensitive dye, emphasizing postsyn-
aptic dendritic potentials (16), to explore the dynamic changes in
functional properties of lateral connections over the time course of
cortical reorganization at the neuronal population level.

Results
Visual input to the medial monocular part of rat primary visual
cortex was removed by laser coagulation of a small, �1-mm-
diameter, patch of the upper retina just dorsal to the optic disc.
The lesion resulted in destruction of all retinal layers and fibers
of passage, leading to formation of a scotoma of 15–20° tempo-
ronasal width and extending from below the optic disc to the far
periphery of the monocular lower visual field (Fig. 1 A, B, and
D). Measurements were performed in 3 groups of animals: 2 groups
of rats were lesioned at postnatal day 65 (P65) and recorded either
at P69–P72 (acute lesion) or after a longer period of recovery, at
P92–P105. Unlesioned rats of matching ages were used in control
experiments to delineate normal retinotopy.

To determine the initial position and extension of the LPZ
functionally, retinotopic mapping was performed by using volt-
age-sensitive dye imaging (VSDI; Fig. 1B). Apart from the
affected lower central position (red), each stimulated locus in the
visual field was represented by a local spot of activity (Fig. 1C
depicts the complete retinotopic map for an unlesioned control).
Fig. 1D summarizes the cortical retinotopic organization after
lesion. Because of the cortical point-spread function, activated
regions were partially overlapping, in sum representing �60 �
60° of the visual field, excluding the lesioned region that was
cortically neglected (dotted line in Fig. 1D marks border of the
LPZ, shaded in gray).

Next, we measured responses to full-field stimuli that entirely
covered the sampled visual field, including the scotoma. Fig. 2A
depicts the response dynamics for 2 different cases at 6 and 28
days after lesion (Fig. 2 A Upper and Lower, respectively). At the
onset of response, both animals revealed an instantly activated
cortical region (greenish areas in 60-ms frames), reflecting early
vertical input to the lateral part of the cortex unaffected by the
lesion. Fig. 2B shows the corresponding latency maps in which
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earliest responses can be seen along the lateral posterior–
anterior axis (green colors). Starting from this region, both
examples showed a gradual increase in latencies toward medial
(red-gray), indicating delayed propagation of activity into the
LPZ. The gradual spread of activity into the LPZ is depicted in
20-ms time frames in Fig. 2 A. Although activity continued to rise
at initial input regions, low-level activity crossed the LPZ border
(black line) at which horizontal input starts dominating thalamic
contributions (see Fig. S1, in which horizontal spread was
uncovered by using an artificial scotoma). Fig. 2C shows traces
of activity across pixels representing unaffected regions (green),
LPZ border (red), and the LPZ (gray). The gradual shift of the
curves shows the systematic increase in latencies across the LPZ.
Importantly, the slope of the latency gradient across the LPZ was
significantly steeper in the acutely lesioned animal compared
with 28 days after lesion (Fig. 2 B and C Lower: curves appear
compressed, demonstrating a rapid subsequent activation). In
addition, amplitudes reached within the LPZ relative to unaf-
fected regions were lower after brief recovery (Fig. 2D).

For statistical analysis, we divided all treated animals into 2
groups: those measured shortly after lesion (I: 4–7 days, n � 6)
and those that had recovered for a longer time (II: 28–44 days,
n � 6). For both groups, unaffected cortical regions had similar

latencies (I, 98.8 ms; II, 97.2 ms after stimulus onset; Fig. 3A).
For animals measured several days after lesion, latencies within
the center of the LPZ (860 �m from the border) were �28 ms
delayed (126 � 5 ms) compared with unaffected regions. In
contrast, after longer recovery, latencies within the LPZ were
delayed by only �12 ms (108 � 2 ms) and were almost similar
across the entire LPZ (Fig. 3A, compare dark and light gray
bars). This effect was paralleled by a significant increase in
amplitudes within the LPZ, reaching �80% of values obtained
across intact regions (Fig. 3B). Both progressive shortening of
latencies and increased maximal amplitudes point to increased
efficacy in synaptic transmission within the LPZ after prolonged
recovery. The VSDI signal originates mainly from superficial layers
(�80%) due to focal depth, penetration depth of the dye, and light
scattering (16). Hence, potential remodeling in deeper cortical
layers or changes in thalamocortical afferents cannot be observed
directly. Neurons in layers 5/6 contribute, however, to the optical
signal because they possess dendritic arbors in layers 2/3.

Even though the voltage-sensitive dye signal reports changes
in synaptic potentials across several millimeters of cortex with
high temporal accuracy, spike events are not detected by the
signal (17–19). Thus, to test whether higher fluorescence levels
correspond to suprathreshold activity, we performed additional
electrophysiological recordings. Starting from the border of the
LPZ, spiking activity could be evoked as far as 0.8–1 mm within
the LPZ (Fig. 4 A and B, red/orange/black). As expected, the
corresponding receptive fields (Fig. 4C, bold-outlined rectan-
gles) were shifted away from their normal retinotopic positions
and clustered at the border of the lesion-affected visual space
(Fig. 4C, gray shaded area). Moreover, we found that many
neurons responded to stimulus orientation and direction (polar
plots in Fig. 4B). Although orientation tuning varied across a
broad range, selectivity of neurons within the LPZ was not
significantly different from units located in unaffected cortex
(Fig. S3 summarizes all experiments), as observed similarly in the
literature (20). Hence, in animals that were allowed to recover
for several weeks, electrophysiology proved that the increased
amplitudes of the dye signals within the LPZ were indeed
reflecting suprathreshold activity. In contrast, no spikes could be
evoked within the LPZ of animals up to 1 week of recovery (Fig.
S4). Thus, the observed lateral spread of activity from unaffected
cortical regions into the LPZ remained largely subthreshold
within the group measured 4–7 days after lesion.

Discussion
We explored, by using VSDI, plasticity of the adult visual cortical
circuitry triggered by monocular retinal lesions in the rat. As a
consequence of removal of dominant afferent input, intracorti-
cal lateral spread was unmasked, originating from unaffected
cortical regions. Within a short period of recovery, remote inputs
from neurons �1 mm outside the LPZ remained subthreshold.
After several weeks of recovery, however, stimulus-related su-
prathreshold activity within the LPZ was obtained. Our obser-
vations suggest that gradual reinforcement of horizontal inputs
may compensate for lesion-induced loss of function in vertical
projections.

Challenging Findings. By using metabolic markers, such as cyto-
chrome oxidase (21) or hemodynamic signals (22), previous
investigations in monkey primary visual cortex (V1) could not
confirm cortical reorganization after binocular retinal lesions, as
opposed to refs. 2, 3, 8, and 14. Two explanations may exist for
our positive results and the discrepancies in comparison with
results with metabolic markers.

First, interspecies differences in cortical magnification factors
could account for various extents of LPZ filling-in. In the cited
studies (21, 22), retinal lesions affected visual cortical represen-
tations covering 4–12° of visual space. Thus, full recovery of the

A B C

D

Fig. 1. Monocular retinal lesion produces a circumscribed loss of input to
primary visual cortex. (A) Photograph from a Nissl-stained retinal wholemount
from the left eye. Note the optic disc (asterisk), the adjacent direct laser lesion
in the dorsal retina, and the dorsally extending region of retrograde ganglion
cell degeneration that add up to the complete area of visual loss in the retina
(broken line). For further details, see Methods. (B) Cortical retinotopy 6 days
after lesion. VSDI signals were averaged over the first 50 ms of responses.
Colorbar indicates levels of activity (�F/F, see Methods). Black line marks the
border of the LPZ. (C) Unlesioned control. Note that the lower central stimulus
(red) evoked early activity in those regions that were unresponsive in B. (D)
(Left) Retinotopic stimuli (20°) were arranged within a 3 � 3 grid. Color codes
stimulus identity; stimulus position: ut/lt, upper/lower temporal; n, nasal. Gray
patch sketches lesion-affected location in visual field coordinates. Asterisk
marks projection of the papilla. (Right) Retinotopic cortical map of signifi-
cantly activated regions as depicted in B. Because of the retinal lesion, cortical
regions beyond the LPZ border (dotted line) do not receive direct input.
Position of the recording chamber is indicated by coordinates: P, posterior
relative to Bregma; L, lateral from midline; V1M, monocular V1; V1B, binocular
V1. Small cross in B and C marks 5 mm P, 4 mm L.
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LPZ in monkey would have to involve cortical regions of many
square millimeters, demanding far-reaching remodeling of con-
nectivity. Here, as in ref. 14, rodents were used in which each
millimeter of visual cortex contains neurons with dense overlap
of dendritic and axonal trees, covering a much larger visual space
compared with primate V1. Therefore, strengthening of hori-
zontal connectivity within a millimeter of rodent V1 leads to
functional recovery of up to 20° in visual field coordinates. In
addition, spine turnover rate, indicating potential plasticity, was
found to be �8 times higher in mouse compared with macaque
visual cortex (23).

Second, metabolic markers do not report cortical activity
directly but generate signals that are slow compared with the
underlying neuronal events. Therefore, the position of the actual
border of the LPZ might be underestimated based on fMRI
signals that dominantly reflect integration of input rather than
spiking output (24). The time-averaged hemodynamic signal may
include both components, summing lateral input into the LPZ as
well as retinotopically evoked spikes, eventually smearing the
exact position of the LPZ. In our study, the high spatiotemporal
resolution of VSDI allowed separation between lateral and
direct cortical input by detecting latency differences of synaptic
activity (25).

Ultimately, more studies are needed that describe ‘‘filling-in’’
after loss of retinal input to investigate the degree and the quality
of functional recovery at behavioral levels (26–28) in parallel
with physiological measurements.

Reinforcement of Lateral Activation: Structural and Functional Syn-
aptic Changes. Lesion-induced strengthening of lateral activation,
as observed here, must be reflected by structural changes at the
single-neuron level. By using 2-photon imaging in mouse visual
cortex, a recent study demonstrated a 3-fold increase in dendritic
spine turnover several days after retinal lesion (14). During a
recovery period of 2 months, �90% of spines at apical dendrites
of layer 5 neurons were replaced. The authors also showed that
such remodeling of synaptic contacts inside the LPZ depended
on input from neighboring cortical regions because animals with
complete binocular lesions revealed only a little increase in spine
dynamics. Axonal projections in rat area 17 extend up to 1.8 mm
in layers 2/3, 5, and 6 (29). Thus, increased spine turnover (14,
23) and changes in dendritic field morphology (30–32) might
serve as a basis for functional reorganization within the existing
long-range axonal plexus. Axonal sprouting, as an additional
anatomical substrate for strengthening of lateral input, was
found in cat visual (15) and in mouse and monkey somato-
sensory (33, 34) but not in rodent visual cortex (14). Therefore,
to what extent axonal growth in rodent visual cortex plays a
critical role in remodeling of intracortical connectivity remains
unclear.

At the synaptic level, increased glutamate concentrations (35,
36), decreased GABA concentrations, and glutamic acid decar-
boxylase expression (37, 38) after lesion all contribute to net
hyperexcitability as revealed around the border of the LPZ in cat
visual cortex. During the recovery process, this region propa-
gates into the LPZ, paralleled by a constant shrinkage of the

A

B C D

Fig. 2. Lateral spread of cortical activity across the LPZ. (A) Single snapshots of evoked VSDI signals. Colorbars show activity levels, same conventions as in Fig.
1 B and C. (Upper) Six days after lesion. (Lower) Twenty-eight days after lesion. Black line in images marks LPZ border. High-amplitude activity propagates beyond
the border of the LPZ after 28 days of recovery (see Movie S1 for a 10-ms time resolution). (B) Latencies as a function of cortical site. Each pixel’s latency was
evaluated by determining the time at which activity crossed prestimulus levels (see Methods). Note that after 28 days of recovery (Lower), latencies within the
LPZ were decreased compared with 6 days after lesion (Upper). (C) Time courses averaged across pixels outside (green), on the border (red), and inside (gray)
the LPZ. Solid lines depict mean, and colored contours show 1 SD. Blue lines mark �2 SD from baseline, and dotted lines depict activity without stimulation. The
later phase of the responses often varied unsystematically across animals and was independent of postlesion times. (D) Relative activity levels within LPZ and
over unaffected cortex. Values were normalized to maximum value reached across all pixels (see colorbar). (Upper) Six days after lesion, most of the pixels within
the LPZ reached values of only �60% of unaffected regions. This value increased to �80% with longer recovery (Lower). (Scale bars: 1 mm.)
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initially nonresponsive area (9, 35). Although we could not find
hyperexcitability reflected in the dye signal, possibly because of
low signal to noise ratio close to baseline, our electrical record-
ings frequently revealed units with high spontaneous activity
(Fig. S4). Hyperexcitability due to lesion-induced shifts in the
excitation–inhibition balance (39) may create the basis for
enhancement of synaptic transmission via horizontal fibers
through long-term potentiation-like mechanisms (40). Addition-
ally, as horizontal input leads intra-LPZ responses during the
recovery process, the reversal of spike order may trigger spike
time-dependent plasticity (STDP)-like alterations in synaptic
transmission. Indeed, computational models implicate STDP-
dependent reorganization after monocular retinal lesion in cat or
after whisker trimming in rat barrel cortex (41, 42). At the
population level, these plastic changes in synaptic transmission
are most likely reflected by strengthened lateral activation, as
observed in our study.

Methods
All surgical and experimental procedures were approved by the German
Animal Care and Use Committee (AZ 50.8735.1) in accordance with the
Deutsche Tierschutzgesetz and the National Institutes of Health guidelines. A
total of 18 healthy adult (9–14 weeks old) Agouti Brown rats were used for the
experiments.

Retinal Lesions. The left retinae of ketamine/xylazine-anesthetized adult rats
were focally photocoagulated by a high-intensity laser lesion (1 mm, 1,000
mW, 200–300 ms) through a laser-adapted operating microscope. The result-
ing round lesions were localized in the retina dorsal to the optic disc and
typically extended about 1 mm horizontally (corresponding to 15°-20°
along the horizontal meridian in visual space). The lesion destroyed all
retinal layers, including axonal fibers of passage, leading to retrograde
degeneration of all retinal ganglion cells peripheral to the lesion, which
extends the scotoma from the lesion proper toward the far periphery of the
monocular lower visual field.

Animal Preparation. Experiments were performed under general anesthesia.
After premedication with 0.05 mg kg�1 atropine sulfate, anesthesia was
induced with chloral hydrate (4%, 1 mL 0.1 kg�1). Xylocaine (4%) was used
for additional local anesthesia. Animals were tracheotomized and artifi-
cially ventilated (0.8 –1.1% isofluorane, 40% O2, 60% N2O, 1–1.2 Hz).
End-tidal CO2 was measured constantly and kept at 3.8 – 4.2%. Heart rate
and body temperature (37–38°C) were monitored during the entire exper-
iment. Craniotomy was performed over the right primary visual cortex (3–9
mm posterior to Bregma; 1–5 mm lateral). Subsequently, a metal chamber
was attached to the skull. During imaging sessions, the chamber was filled
with artificial CSF and sealed with a coverslip. During the experiments,
animals received an i.v. infusion of electrolytes (Sterofundin; Braun), 2.5%
glucose, and alcuronium chloride (Alloferin, Valeant Pharmaceuticals) to
block eye movements (0.06 mg kg�1 h�1). The eyes were regularly flushed
with hyperosmotic saline. Before measurements the pupils were dilated
with atropine.

Visual Stimulation. Visual stimuli were generated by VSG (Cambridge Research
Systems Ltd.), controlled by a custom-written Matlab routine, and displayed
on a 24-inch Sony monitor (GDM-FW900; 100 Hz). Stimuli were presented at
a 30-cm distance to the contralateral eye, covering �60 � 60°. The position of
the papilla projection was mapped onto the screen by using ophthalmoscope
backprojection and was repeatedly measured to check for residual eye move-
ments. Full-field stimuli consisted of vertical and horizontal square wave
gratings (0.02 cycles per degree; 2 cycles per second). For retinotopic mea-

Fig. 3. Summary of VSDI experiments: effect of postlesion time on changes
in synaptic cortical activity at different cortical regions (color code as in Fig.
2C): 4–7 days after lesion (dark gray) and 28–44 days after lesion (light gray).
(A) Latencies at different cortical recording sites. Both groups had similar
latencies across lesion-unaffected cortical regions (�0.43 to 0 mm) up to 0.2
mm from the LPZ border (red). Inside the LPZ, latencies increased differently
for short recovery compared with the group with longer recovery times (*, P �
0.05). Propagation speed of activity: for short recovery, 0.03–0.05 m/s; for long
recovery, 0.08–0.11 m/s. (B) Effect of postlesion times on response amplitudes
(bright colors denote 4–7 days after lesion). For each individual experiment,
amplitudes of activity over unaffected cortex (green) were normalized to one.
Error bars are SE.

A

B

C

Fig. 4. Electrophysiological confirmation of functional recovery 32 days
after lesion. (A) Vascular image and recording sites before VSDI. Red line marks
LPZ border. (B) Poststimulus time histograms (PSTHs) of neurons recorded at
locations shown in A; colors match recording sites. Lower graphs in each pair
present spontaneous activity. Neurons within the LPZ (gray background) were
responsive to drifting gratings and showed various degrees of direction
tuning (see polar plots). Each histogram displays activity evoked by preferred
grating orientation. (C) Receptive fields of neurons within the LPZ (outlined
bold) appeared at the border of the lesion’s projection (gray; asterisk indicates
projection of papilla). Neurons outside the LPZ showed normal retinotopic
arrangements of receptive fields. Receptive fields were hand mapped. See Fig.
S2 for another example, 29 days after lesion.
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surements grating size was 20 � 20°, presented within a 3 � 3 grid. Mean
luminance of the stimuli was 57 cd/m2. Each stimulus (750-ms presentation
time) was alternated with an interstimulus period (15 s) in which an isolumi-
nant gray background (blank) was shown. To measure baseline activity, 2
blanks were included in each trial consisting of all stimulus conditions pre-
sented in pseudorandom order.

Electrophysiology. Before imaging, electrophysiological recordings (glass-
coated tungsten, 1–2 MOhm) were performed through the intact dura. Re-
cording depth was 300–500 �m, corresponding to units located in layer 2/3.
Receptive field positions were either hand-mapped or quantified by retino-
topic measurements. Histograms were calculated by averaging (20–60 stim-
ulus repetitions).

VSDI. After the dura was carefully removed, the cortex was stained for 2 h with
blue voltage-sensitive dye (RH-1838). Subsequently, unbound dye was washed
out with artificial CSF. Imager 3001 (Optical Imaging Inc.) was used with a
tandem lens macroscope, 85 mm/1.2 toward camera and 50 mm/1.2 toward
subject. The camera was focused �400–500 microns below cortical surface.
The cortex was illuminated with 630 � 10 nm light, and emitted light was
high-pass filtered with a cutoff at 665 nm using a dichroic filter system. Frames
were collected at 100 Hz.

Data Analysis. Processing of raw imaging data. Normalization was performed for
each pixel by its DC level during the prestimulus period (200 ms). Next,

heartbeat and respiration-related artifacts were removed by dividing by
the average of blank signals recorded in absence of stimulation. These
steps were applied for each trial separately and then averaged across trials
(n � 20 –30).
Determination of the LPZ. First, activity of all grating conditions was averaged.
Significance of stimulus-evoked responses was then estimated by using boot-
strap with replacement over single trials. For each image pixel and each time
frame, P values were derived by comparison to prestimulus conditions using
ANOVA. The resulting P value maps were smoothened (Butterworth; filter size
270 microns), and latencies of pixels were calculated by determining the time of
significant response (P � 0.05). The unaffected cortical region was characterized
by earliest latencies and includes pixels that crossed significance threshold in 3
consecutive time frames. The border of the LPZ outlines pixels with longer
latencies. For the calculation of propagation velocities, profiles parallel to the LPZ
border were created (by using unfiltered P value maps). Velocity was calculated
perpendicular to these strips (width 4 pixels � 215 microns). The slope of the
curves from linear regression of latencies is equal to speed.
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