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Abstract

In the past two decades, functional Magnetic Resonance Imaging has been used
to relate neuronal network activity to cognitive processing and behaviour. Recently
this approach has been augmented by algorithms that allow us to infer causal links
between component populations of neuronal networks. Multiple inference procedures
have been proposed to approach this research question but so far, each method has
limitations when it comes to establishing whole-brain connectivity patterns. In this
paper, we discuss the ways to infer causality in fMRI research. We also formulate
recommendations for the future directions in this area.

1 What is causality?

Although inferring causal relations is a fundamental aspect of scientific research, the notion
of causation itself can be notoriously difficult to define. The basic idea is straightforward:
When process A is the cause of process B, A is necessarily in the past from B, and without
A, B would not occur. But in practice, and in dynamic systems such as the brain in
particular, the picture is far less clear. First, for any event a large number of (potential)
causes can be identified. The efficacy of certain neuronal process in producing behavior
is dependent on the state of many other (neuronal) processes, but also on the availability
of glucose and oxygen in the brain, etc. In a neuroscientific context, we are generally not
interested in most of these causes, but only in a cause that stands out in such a way that
it is deemed to provide a substantial part of the explanation, for instance causes that vary
with the experimental conditions. However, the contrast between relevant and irrelevant
causes (in terms of explanatory power) is arbitrary and strongly dependent on experimental
setup, contextual factors, etc. For instance, respiratory movement is typically considered
a confound in fMRI experiments, unless the research question concerns the influence of
respiration speed on the dynamics of the neuronal networks.

In dynamic systems, causal processes are unlikely to be part of a unidirectional chain
of events, but rather a causal web, with often mutual influences between process A and
B [87]. As a result, it is hard to maintain the temporal ordering of cause and effect and,
indeed, a clear separation between them [122].

Furthermore, causation can never be established directly, just correlation [64]. When
a correlation is highly stable, we are inclined to infer a causal link. Additional information



is then needed to assess the direction of the assumed causal link, as correlation indicates
for association and not for causation [1|. For example, the motor cortex is always active
when a movement is made, so we assume a causal link between the two phenomena. The
anatomical and physiological properties of the motor cortex, and the timing of the two
phenomena provide clues about the direction of causality (i.e. cortical activity causes the
movement, and not the other way around). However, only intervention studies, such as
delivering Transcranial Magnetic Simulation (TMS, [78|) pulses over the motor cortex or
lesion studies, can confirm the causal link between the activity in the motor cortex and
behavior.

Causal studies in fMRI are based on three types of correlations: correlating neuronal
activity to 1) mental and behavioral phenomena; 2) physiological state (such as neuro-
transmitters, hormones, etc.), and 3) neuronal activity in other parts of the brain. In this
review we will focus on the last field of research: establishing causal connections between
two or more brain areas.

fMRI studies currently use a variety of algorithms to infer causal links [35, 134]. All
these methods have different assumptions, advantages and disadvantages (see for instance
[144, 139]). In a seminal study by Smith et al., popular approaches to causal processes were
compared using synthetic data created with a Dynamic Causal Modeling (DCM, see be-
low) generative model [42]. Surprisingly, most of the methods struggled to perform above
chance level, even though the test networks were sparse and the noise levels introduced to
the model were low compared to what one would expect in real recordings. This raises the
question: given the characteristics of fMRI data (low temporal resolution, slow haemody-
namics, low signal-to-noise ratio; see Section 2) and the fact that causal webs in the brain
are likely dense and dynamic, is it in principle possible to investigate causality in the brain
using MRI?

In this review, we discuss this question. First, we identify seven characteristics of
models used to study causality. Then, we compare and contrast the popular approaches
to the causal research in fMRI according to these criteria. Our list of features of causality
is as follows:

1. Sign of connections: Can the algorithm distinguish between excitatory and inhibitory
causal relations? In this context, we do not mean synaptic effects, but rather an
overall driving or attenuating impact of the activity in one brain region on the activity
in another region. Certain algorithms only detect the existence of causal influence
from the BOLD responses, whereas others can distinguish between these distinct
forms of influence.

2. Strength of connections: Can the algorithm distinguish between weak and strong
connections, apart from indicating the directionality of connections at a certain con-
fidence level?

3. Bidirectionality: Can the algorithm pick up bidirectional connections X <> Y, or only
indicate the strongest of the two connections X — Y and Y — X7 Some algorithms
do not allow for bidirectional relations, since they cannot deal with cycles in the
network.

4. Immediacy: Does the algorithm specifically identify direct influences X — Y, or does
it pool across direct and indirect influences Z;: X — Z; — Y7 While some methods
aim to make this distinction, others highlight any influence X — Y, whenever it is
direct or not.

5. Resilience to confounds: Does the algorithm correct for possible spurious causal ef-
fects from a common source (Z — X, Z — Y, so we infer X — Y and/or Y — X),



or other confounders? In general, confounding variables are an issue to all the meth-
ods for causal inference, especially when a given study is non-interventional [115],
however different methods can suffer from these issues to a different extent.

6. Type of inference: Does the algorithm probe causality through classical hypothesis
testing or through model comparison? Hypothesis-based algorithms will test a null
hypothesis Hy that there is no causal link between two variables, against a hypothesis
H; that there is causal link between the two. In contrast, model-comparison-based
methods do not have an explicit null hypothesis. Instead, evidence for a predefined set
of models is computed. In particular cases, when the investigated network contains
only a few nodes and the estimation procedure is computationally cheap, a search
through all the connectivity patterns by means of model comparison is possible. In
all the other cases, prior knowledge is necessary to select a subset of possible models
for model comparison.

7. Computational cost: What is the computational complexity of the inference proce-
dure? In the case of model comparison, the computational cost refers to the cost
of finding the likelihood of a single model, as the range of possible models depends
on the research question. This can lead to practical limitations based on computing
power.

8. Size of the network: What sizes of network does the method allow for? Some methods
are restricted in the number of nodes that it allows, for computational or interpreta-
tional reasons.

In the following chapters, the references to this ‘causality list’ will be marked in the text
with lowercase indices.

With respect to assumptions made on the connectivity structure, the approaches dis-
cussed here can be divided into three main groups (Fig. 1). The first group comprises
multivariate methods that search for directed graphs without imposing any particular
structure onto the graph: Granger Causality [127], Transfer Entropy [90], Structural Equa-
tion Modeling [91] and Dynamic Causal Modeling [42]. These methods will be referred to
as network-wise models throughout the manuscript. The second group of methods is also
multivariate, but requires an additional assumption of acyclicity. Models in this group
assume that information travels through the brain by feed-forward projections only. As a
result, the network can always be represented by a Directed Acyclic Graph (DAG, [143]).
Methods in this group include Linear Non-Gaussian Acyclic Models (LINGAM, [131]) and
Bayesian Nets [98], and will be referred to as hierarchical network-wise models through-
out the manuscript. The last group of methods, referred to as pairwise methods, use a
two-stage procedure: first, a map of nondirectional functional connections is rendered, and
second, the directionality in each connection is assessed. Since these methods focus on
pairwise connections rather than complete network architectures, they by definition do
not impose network assumptions like acyclicity. Patel’s tau [102] and Pairwise Likelihood
Ratios [67]! are members of this group.

Lin this review, we do not include studying a coupling between brain region and the rest of the brain
with relation to a particular cognitive task, The Psycho-Physiological Interactions (PPIs [41]), as we are
only focused on the methods for assessing causal links within brain networks, and we do not include
brain-behavior causal interactions
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Figure 1: Causal research in functional Magnetic Resonance Imaging. The discussed meth-
ods can be divided into two families: Network Inference Methods, which are based on a
one-step multivariate procedure, and Pairwise Inference Methods, which are based on a
two-step pairwise inference procedures. As pairwise methods by definition establish causal
connections on a node-by-node basis, the network as a whole cannot be guaranteed to be
of any particular structure.

2 A note on the limitations of fMRI data

The characteristics of fMRI data impose severe restrictions on the possibility of finding
causal relations using MRI. We discuss three of them.

2.1 Temporal resolution and haemodynamics

First, and best known, the temporal resolution of the image acquisition in MR imaging is
generally restricted to a sampling rate < 1[Hz]. Recently, multiband fMRI protocols have
gained in popularity [33], which increases the upper limit for the scanning frequency to up to
10[H 2], albeit at the cost of a severely decreased signal-to-noise ratio. However, no imaging
protocol (including multiband imaging) can overcome the limitation of the recorded signal
itself: the lagged change in blood oxygenation, which peaks 3 — 6[s| after neuronal firing
in the adult human brain [2]. The haemodynamic response thus acts as a low-pass filter
which results in high correlations between activity in consecutive frames [109]. Since the
haemodynamic lags (understood as the peaks of the haemodynamic response) are region-
and subject- specific [27], it is difficult to infer causality between two time series with
potentially different haemodynamic lags [9].

2.2 Signal-to-noise ratio

Second, fMRI data is characterized by a relatively low signal-to-noise ratio. In grey matter,
the recorded haemodynamic response changes by 1-2% at field strengths of 1.5 — 2.0[T]
([100, 12]), and by 5-6% at field strengths of 4.0[T']. Moreover, typical fMRI protocols
generate relatively short time series. For example, the new Human Connectome Project
resting state datasets [31] do not contain more than a few hundred to maximally few



thousand samples. The short BOLD time series limits the option of improving signal-to-
noise ratios through averaging across samples.

2.3 Caveats associated with region definition

Third, in order to propose a causal model, one first needs to define the nodes of the network.
A single voxel does not represent a biologically meaningful portion of the brain [136].
Therefore, before attempting to establish causal connection in the network, one needs to
integrate the BOLD time series over regions of interest (ROIs): groups of voxels that are
assumed to share a common signal with a neuroscientific meaning. Choosing the optimal
regions of interest for a study is a complex problem [105, 89, 142|, and there are a few
distinct strategies to address it. First, one can define regions of interest on the basis of
brain anatomy. However, a consequence of this strategy could be that BOLD activity
related to the cognitive process of interest will be mixed with other, unrelated activity
within the ROIs. This is particularly likely to happen given that brain structure is not
exactly replicable across individuals, so that a specific area cannot be defined reliably
based on location alone. As indicated in the seminal computational study by Smith et
al. [134], and also in a recent study by Bielczyk et al. [9], such signal mixing is detrimental
to causal inference and causes all the existing methods for causal inference in fMRI to
underperform. Second, parcellation into ROIs can be performed in a functional, data-
driven fashion?. Another possibility to reduce the effect of mixing signals is to perform
Principal Component Analysis (PCA, [72, 132]) and separate the BOLD time series within
each anatomical region into a sum of orthogonal signals (eigenvariates) and choose only
the signal with the highest contribution to the BOLD (the first eigenvariate, [42]), instead
of averaging activity over full anatomical regions. Finally, one can build ROIs on the basis
of patterns of activation only (task localizers [32, 60]). However, this approach cannot be
applied to resting state research. In this work, we assume that the definition of ROIs has
been performed by the researcher prior to the causal inference, and we do not discuss it
any further.

3 Network-wise methods

The first group of models that we discuss in this review involves multivariate methods:
methods that simultaneously assess all causal links in the network - specifically, Granger
Causality, Transfer Entropy, Structural Equation Modeling and Dynamic Causal Modeling.
These methods do not pose any constraints on the connectivity structure. Granger Causal-
ity, Transfer Entropy and Structural Equation Modeling infer causal processes through
classical hypothesis testing. As there are no limits to the size of the analysed network,
these methods allow for (relatively) hypothesis-free discovery. Dynamic Causal Modeling
on the other hand, compares a number of predefined causal structures in networks of only
a few nodes. As such, it requires a specific hypothesis based on prior knowledge.

3.1 Granger causality

Clive Granger introduced Granger Causality (GC) in the field of economics [51]. GC has
found its way into many other disciplines, including fMRI research [114, 13, 127, 135]. GC
is based on prediction [28]: the signal in a certain region is dependent on its past values.
Therefore, a time series Y (¢) at time point ¢ can be partly predicted by its past values

2There are multiple strategies for functional parcellation of the brain into ROIs: it can be implemented
either through Principal Component Analysis [30], a hierarchical Independent Component Analysis known
as Instantaneous Correlation Parcellation [146], by probabilistic clustering [71, 145, 5, 6, 11] or by the new,
semi-automated classification technique by Glasser et al. [48]



Y (t —1i). A signal in an upstream region is followed by the same signal in a downstream
region with a certain temporal lag. Therefore, if prediction of Y (¢) improves when past
values of another signal X (¢t — i) are taken into account, X is said to Granger-cause Y.
Time series X (t) and Y(¢) can be multivariate, therefore they will be further referred to
as X(t), Y(t).

Y (t) is represented as an autoregressive process: it is being predicted by a linear com-
bination of its past states and a Gaussian noise®. This model is compared to a model
including the past values of X (¢):

N
Hy:Y(t) =) ByY(t—i)+o(t) (1)
=1
N N
Hi:Y(t)=> ByY(t—i)+ Y BuX(t—i)+3() (2)
=1 =1

Theoretically, this autoregressive (AR) model can take any order N (which can be opti-
mized using, e.g., Bayesian Information Criterion [124]), but in fMRI research it is usually
set to N =1 [127], i.e. a lag that is equal to the repetition time (TR). The difference in
explained variance between both models can be statistically tested, usually by means of
an F-test or permutation tests.

By fitting the parameters of the AR model, which include the influence magnitudes
By, B, the sign; as well as the strengthy of the causal direction can be readily assessed
with GC. Like all the methods in this chapter, GC does not impose any constraints on
the network architecture and therefore can yield bidirectional connectionss. As a multi-
variate method, GC fits the whole connectivity structure at once. Therefore, ideally, it
indicates the direct causal connections only,, whereas the indirect connections should be
captured only through higher order paths in the graph revealed in the GC analysis. How-
ever, this is not enforced directly by the method. In fact, in the original formulation of the
problem by Granger, GC between X and Y works based on the assumption that the input
of all the other variables in the environment potentially influencing X and Y has been
removed [51]. In theory, this would provide resilience to confoundss;. However, in reality
this assumption is most often not feasible in fMRI [53]. In a result, direct and indirect
causality between X and Y are in fact pooled. In GC, the significance of results is achieved
through classical hypothesis testingg. Since the temporal resolution of fMRI is so low, only
first order AR models with a time-lag equal to 1 TR are applicable. Therefore, there is no
need to optimize either the temporal lag or the model order, and as such the computational
cost of GC estimation procedure in fMRI is low;. The AR model imposes a mathemati-
cal restriction on the size of the network thoughg: the number of regions divided by the
number of shifts can never exceed the number of time points (degrees of freedom).

The applicability of GC to fMRI data has been heavily debated [141]. Firstly, the ap-
plication of GC requires certain additional assumptions such as signal stationarity?, which
does not always hold in fMRI data. Theoretical work by Seth et al. [128], and work by
Roebroeck et al. [113], suggest that despite the limitations related to slow haemodynamics,
GC is still informative about the directionality of causal links in the brain [127]. The face
validity of GC analysis was also recently empirically validated using joint fMRI and MEG
recordings [95], with the causal links inferred with GC matching the ground truth confirmed
by MEG. On the other hand, recent experimental findings report that GC predominantly

3There is also an equivalent of GC in the frequency domain, spectral GC [46, 47], but this method will
not be covered in this review

4Stationarity means that the joint probability distribution in the signal does not change over time. This
also implies that mean, variance and other moments of the distribution of the samples in the signal do not
change over time



identifies major arteries and veins as causal hubs [150]. This result can be associated with
a regular pulsating behaviour with different phases in the arteries across the brain. This is
a well-known effect and is even explicitly targeted with physiological noise estimates such
as RETROICOR [49].

Another point of concern is the time lag in fMRI data, which restricts the possible
scope of AR models that can be fit in the GC procedure. Successful implementations of
GC in EEG/MEG research typically involve lags of less than a hundred milliseconds [61].
In contrast, for fMRI the minimal lag is one full TR, which is typically between 0.7[s] and
3.0[s] (although new acceleration protocols allow for further reduction of TR). What is
more, the HRF may well vary across regions [56, 24|, revealing apparent causal connections:
when the HRF in one region is faster than in another, the temporal precedence of the peak
will easily be mistaken for causation. The estimated directionality can in the worst case,
even be reversed, when the region with the slower HRF in fact causes the faster one [9].
Furthermore, the BOLD signal might be non-invertible into the neuronal time series [127],
which can affect GC analysis regardless whether it is performed on the BOLD time series
or the deconvolved signal.

3.2 Transfer Entropy

Transfer Entropy (TE [121]) is another data-driven technique, equivalent to Granger
Causality under Gaussian assumptions [3], and asymptotically equivalent to GC for general
Markovian (non-linear, non-Gaussian) systems [?]. In other words, TE is a non-parametric
form of GC (or, GC is a parametric form of TE). It was originally defined for pairwise anal-
ysis, and later extended to multivariate analysis [83, 96]. TE is based on the concept of
Shannon entropy [129]. Shannon entropy H(z) quantifies the information contained in a
signal of unknown spectral properties as the amount of uncertainty, or unpredictability.
For example, a binary signal that only gets values of 0 with a probability p, and values
of 1 with a probability 1 — p, is most unpredictable when p = 0.5. This is because there
is always exactly a 50% chance of correctly predicting the next sample. Therefore, being
informed about the next sample in a binary signal of p = 0.5 reduces the amount of un-
certainty to a higher extent than being informed about the next sample in a binary signal
of, say, p = 0.75. This can be interpreted as a larger amount of information contained in
the first signal as compared to the latter. The formula which quantifies the information
content according to this rule reads as follows:

H(X) = - Z P(x;)logy P () (3)

where x; are the possible values in the signal (for the binarized signal, there are only two
possible values: 0 and 1).

TE builds up on the concept of Shannon entropy by extension to conditional Shannon
entropy: it describes the amount of uncertainty reduced in future values of Y by knowing
the past values of X along with the past values of Y

TEx .y = H(Y’Y;f—T) - H(Y‘Xt—Ta }/t—T) (4)

where 7 denotes the time lag.

In theory, TE requires no assumptions about the properties of the data, not even signal
stationarity although in most real-world applications, stationarity is required to almost
the same extent as in GC. TE is model-free and as such it does need a priori definition
of the causal process, and it may work for both linear and nonlinear interactions between
the nodes.

TE can distinguish the signum of connections;, as the drop in the Shannon entropy
can be both positive and negative. Furthermore, the absolute value of the drop in the



Shannon entropy can provide a measure of the connection strengtho. TE can also distin-
guish bidirectional connections, as in this case, both T E'x_,y and T'Ey _, x will be nonzeros.
However, the absolute value of the drop can provide a measure of the connection strengths.
Immediacy and resilience to confounds in TE depends on the implementation to a large
extent: using a simple Pearson’s correlation to compute functional connectivity increases
the amount of spurious (indirect) connections, whereas partial correlation is meant to pick
up on direct connections onlys. The inference in TE is performed through classical hy-
pothesis testingg and is highly cost-efficienty. As in GC, the maximum number of regions
in the network divided by the number of shifts can never exceed the number of time points
(degrees of freedom)s.

TE is a straightforward and computationally cheap method [148]. However, it struggled
when applied to synthetic fMRI benchmark datasets [134]. One reason for this could be
the time lag embedded in the inference procedure, which is an obstacle to TE in fMRI
research for the same reasons as for GC: it requires at least one full TR. TE is nevertheless
gaining interest in the field of fMRI [130, 84, 101, 18, 96].

3.3 Structural Equation Modeling

Structural Equation Modeling (SEM, [91]) is a simplified version of Granger Causality.
This method was originally applied to a few disciplines: economics, psychology and genet-
ics [152], and was only recently adapted for fMRI research [91]. SEM can be considered
a predecessor to Dynamic Causal Modelling [42]. SEM is used to study effective connec-
tivity in cognitive paradigms, e.g., on motor coordination [79, 155|, as well as in search for
biomarkers of psychiatric disorders [120, 17]. It was also used for investigating heritability
of large scale, resting state connectivity patterns [17].

The idea is to express every ROI time series in a network by a linear combination of all
the time series (with the addition of noise), which implies no time lag in the communication.
These signals are combined in a mixing matrix B:

X(t)=BX(t) +3(t) (5)

where & denotes the noise, and the assumption is that each univariate component X;(t)
is a mixture of the remaining components X;(t), j # 4. This is a simple multivariate re-
gression equation, and the causal inference is based on search for the regression coefficients
which correspond to the maximum likelihood (ML) solution: a set of model parameters B
that gives the highest probability of the observed data. In case of SEM, we are looking for
B parameters by minimizing the term

IX - BX]|? (6)

Under the assumption of normality of the noise, there is a closed-form solution to this
problem which gives the ML solution for parameters B, referred to as Ordinary Least
Squares (OLS) estimator for 5 [58]. In general, this estimator will give nonzero values to
all parameters B.

While the Least Squares approximation gives connection strength estimates in 3, it
does not provide a measure of confidence. It therefore cannot contrast between a weak
connection and no connection for a small B;; value. This issue can be overcome in three
ways. First, one can perform permutation testing”. Second, one can perform causal infer-
ence through model comparison: various models are fitted one by one, and the variance of
the residual noise resulting from different model fits is compared, using either an F-test,

Sgenerate a null distribution of B values by shuffling node labels across subjects and fitting B values
to these shuffied datasets, and find confidence intervals on the basis of the desired probability of errors I
and II



or goodness of fit (GFI [155]). Highly optimized software packages such as LiSREL [74]
allow for an exploratory analysis with SEM by comparing millions of models against each
other [70]. Third, one can fit the B matrix with new methods including regularization
that forces sparsity of the solution [69], and therefore eliminates weak and noise-induced
connections from the connectivity matrix.

Furthermore, in SEM applications to fMRI datasets, it is a common practice to establish
the presence of connections with use of anatomical information derived, e.g., from Diffusion
Tensor Imaging [107]. In that case, SEM inference focuses on estimating the strength of
causal effects and not on identifying the causal structure.

SEM does not constrain the weight of connections, therefore it can retrieve both exci-
tatory and inhibitory connections; as well as bidirectional connectionss. The connection
coefficients B;; can take any rational numbers and as such, they can reflect the strength of
the connectionsy. As with GC, SEM was designed to reflect direct connectionsy: if regions
X; and X are connected only through a polysynaptic causal web, B;; should come out as
zero, and the polysynaptic connection should be retrievable from the path analysis. Again
similar to GC, SEM is resilient to confounds only under the assumption that the model
represents an isolated system, and all the relevant variables present in the environment
are taken into accounts. Moreover, in order to obtain the maximum likelihood solution for
B parameters, one needs to make a range of assumptions on the properties of the noise
in the network. Typically, a Gaussian white noise is assumed, although background noise
in the brain is most probably scale-free [59]|. Inference can be performed either through
the classical hypothesis testing (as the computationally cheap version) or through model
comparison (as the computationally heavier version)g 7.

In summary, SEM is a straightforward approach: it simplifies the causal inference by
reducing the complex network with a low-pass filter at the output to a very simple linear
system, but this simplicity comes at the cost of a number of assumptions.

3.4 Dynamic Causal Modeling

Both the aforementioned network-wise methods were developed in other disciplines, and
only later applied to fMRI data. Yet, using prior knowledge about the properties of
fMRI datasets can prove useful when searching for causal interactions. Dynamic Causal
Modeling (DCM [42]) is a hypothesis testing tool which uses state space equations reflecting
the structure of fMRI datasets. This technique was also implemented for other neural
recording methods: EEG and MEG [76]). DCM is well received within the neuroimaging
community (the original article by Friston et al. [42] gained over 2,700 citations at the time
of submitting this manuscript).

In this work, we describe the original work by Friston et al. [39] because, despite
multiple recent developments [77, 140, 88, 137, 82, 23, 125, 43, 57, 37, 110, 106, 36], it
remains the most popular version of DCM in the fMRI community. The idea of DCM is as
follows. First, one needs to build a generative forward model (Fig. 2). This model has two
levels of description: the neuronal level, not directly observed in the experiment (Fig. 2,
(iii)), and the haemodynamic level observed in the experiment (Fig. 2, (v)). This model
reflects scientific evidence on how the BOLD response is generated from neuronal activity.
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Figure 2: The full pipeline for the DCM forward model. The model involves three node
network stimulated during the cognitive experiment (i). The parameter set describing
the dynamics in this network includes a fixed connectivity matrix (A), modulatory connec-
tions (B), and inputs to the nodes (C) (ii). In the equation describing the fast neuronal
dynamics, z denotes the dynamics in the nodes, and u is an experiment-related input. Red:
excitatory connections. Blue: inhibitory connections. The dynamics in this network can be
described with use of ordinary differential equations. The outcome is the fast neuronal dy-
namics (iii). The neuronal time series is then convolved with the haemodynamic response
function (iv) in order to obtain the BOLD response (v), which may be then subsampled
(vertical bars). This is the original, bilinear implementation of DCM [42]. Now, more com-
plex versions of DCM with additional features are available, such as spectral DCM [43],
stochastic DCM [23], nonlinear DCM [137], two-state DCM [88], large DCMs [125, 37| etc.

At the neuronal level of the DCM generative model, simple interactions between brain
areas are posited, either bilinear [42| or nonlinear [137]. The haemodynamic level is
more complex and follows the biologically informed Balloon-Windkessel model [16]. This
model is also being iteratively updated based on new experimental findings, for instance
to mimic adaptive decreases to sustained inputs during stimulation or the post-stimulus
undershoot [57].

The Balloon-Windkessel model [16] describes the BOLD signal observed in fMRI ex-
periments as a function of neuronal activity but also region-specific and subject-specific
physiological features such as the time constant of signal decay, the rate of flow-dependent
elimination, and the haemodynamic transit time or resting oxygen fraction. Effectively,
this haemodynamic response is a convolution with a linear kernel (Fig. 2, (iv)) which typ-
ically peaks at 4 — 6[s] after the neuronal activity takes place, to match the lagged oxygen
consumption in the neuronal tissue mentioned in Section 2.1.

In this paper, the deterministic, bilinear single node per region DCM will be de-
scribed [42]. The DCM procedure starts with defining hypotheses based on observed
activations, which involves defining which regions are included in the network (usually
on the basis of activations found through the General Linear Model [40]) and then and
defining a model space based on the hypotheses. In the latter model selection phase,
a range of literature-informed connectivity patterns and inputs in the networks (referred
to as 'models’) are posited (Fig. 2, (i)). Subsequently, for every model one needs to set
priors on the parameters of interest: connectivity strengths and input weights in the model
(Fig. 2, (ii)) and the haemodynamic parameters. The priors for haecmodynamic parame-
ters are experimentally informed Gaussian distributions [42]. The priors for connectivity
strengths are Gaussian probability distributions centered at zero® (which is often referred
to as conservative shrinkage priors). The user usually does not need to specify the priors,
as they are already implemented in the DCM algorithms.

Next, an iterative procedure is used to find the model evidence by minimizing a cost
function, a so-called negative free energy [45]. A cost function is a goodness of the model,

SExcept for self-connections, which are negative log-transformed so they are negative-constrained, and
the prior is centered on log(0)
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i.e. balance between fit and complexity (which penalizes for correlations between param-
eters, and for moving away from the prior distributions). During the iterative procedure,
the prior probability distributions gradually shift their mean and standard deviation, and
converge towards the final posterior distributions.

In DCM, causality is modeled as a set of upregulating or downregulating connections
between nodes. During the inference procedure, conservative shrinkage priors can shift
towards both positive and negative values, which can be interpreted as effective excita-
tion or effective inhibition (except for self connections, which are always only negative’,
Fig. 2, (ii), connections denoted in blue);. During the inference procedure, the neural and
hemodynamic parameters of all models postulated for model comparison are optimizeds.
The models can contain both uni- and bidirectional connections [147, 15]3. The estimated
model evidence can then be comparedg. As such, the original DCM [42] is a hypothesis-
testing tool working only through model comparison. However, now, linear version of
DCM dedicated to exploratory research in large networks is also available [37]. Testing
the immediacy, and resilience to confoundss in DCM is possible through creating separate
models and comparing their evidence. For instance, one can compare the evidence for
X — Y with evidence for X — Z — Y in order to test whether or not the connection
X — Y is direct or rather mediated by another region Z. Note that this strategy requires
an explicit specification of the alternative models and it cannot take hidden causes into
consideration®. However, including extra regions in order to increase resilience to con-
founds is not necessarily a good idea. Considering the potentially large number of fitted
parameters per region?, this may result in a combinatorial explosion. Also, models with
different nodes are, strictly, not comparable in DCM [42]. Extending the models by adding
additional nodes not only increases the computation time considerably; but also the risk
of overfitting the data. The original DCM [42] is therefore restricted to small networks of
a few nodesg!'?.

The proper application of DCM needs a substantial amount of expertise [138]|. The re-
gions of interest can be found in a data-driven fashion, through a preliminary classical
General Linear Model analysis, but the model specification requires prior knowledge of the
research problem [75|. Given the number of possible combinations of connections, even for
a network as small as three to four regions, there are millions of possible models. Apart
from very particular cases in sensory systems, the underlying connectivity of the human
brain is largely unknown, which can make it hard to reduce the model space to only a few
options. Therefore, the classic DCM cannot be used for exploratory research.

However, there are new approaches to DCM which allow more more exploratory take
on the causal discovery in fMRI. Firstly, family-wise approaches [103| group large families
of similar models together in order to test a particular hypothesis. For instance, one can
compare the joint evidence behind all the possible models that contain connection X — Y
with the joint evidence behind all the possible models that contain connection ¥ — X
(Fig. 2, (1)). Secondly, in order to extend the scope of application of the DCM analysis
to larger networks, recently the new, large-scale DCM framework for resting state fMRI
has been proposed [111|. This framework uses the new, spectral DCM [43] designed for
resting state fMRI and able to handle dozens of nodes in the network. Spectral DCM

"This self inhibition is mathematically motivated: the system characterizing the fast dynamics of the
neuronal network must be stable, and this requires the diagonal terms of the adjacency matrix A (Fig. 2,
(ii)) to be negative

8in this work, we refer to the original DCM implementation [42], but there are also implementations of
DCM involving hidden states, such as [22]

9The minimum number of nodes per region is two hemodynamic parameters and one input /output to
connect to the rest of network

10 As mentioned previously, today, large DCMs dedicated to exploratory research in large networks are
also available [125, 37|
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is then combined with functional connectivity priors in order to estimate the effective
connectivity in the large-scale resting state networks.

There are a few points that need particular attention when interpreting the results of
the DCM analysis. First, the negative free energy is a trade-off between model fit and
model complexity. This means that in case the data quality is poor and the DCM is not
able to fit the data well to any of the prespecified models, it will only regard the number of
parameters in the model. In that case, simpler models will be preferred over more complex
ones. As such, it is hard to distinguish between model winning because it best fits the
data, or because it contains few connections. Therefore, it is recommended to iterate the
process of choosing the model space until the winning model is in the middle of the range
in terms of complexity.

Second, within a winning model, not every connection is necessarily significant. For
every connection, the Variational Bayes algorithm gives a posterior probability distribution,
based on which a p-value can be computed. In case when some of these are not significant,
no conclusion about these connections can be drawn and a simpler model without these
connections is likely to win. Therefore, one should add this simpler version to the pool
of models for model comparison, and recompute the modeling procedure. However, this
simpler model is often not included in the analysis, nor is the significance of the individual
connections always reported ([86, 62, e.g.]). In general, it is advisable to check the amount
of explained variance at the end of the DCM analysis, which should determine whether or
not the winning model explains significant portion of variance in the data.

The most popular implementation of the DCM estimation procedure is based on Vari-
ational Bayes (VB, [10]) which is a deterministic algorithm. Recently, also Markov-Chain
Monte Carlo (MCMC, [10, 126] was implemented for DCM. MCMC is more computa-
tionally costly than VB because it is stochastic, but is also more likely to converge to
the global rather than local minimum of the free energy landscape because its outcome is
less dependent on the initial condition.

DCM is clearly tailored for fMRI and accounts for haemodynamic response. It is
able to test explicit hypotheses, and has been found to produce highly reproducible re-
sults [123, 116, 7]. It has been proven to be reliable when directly compared against GC
and SEM [104]. Also, the DCM procedure can provide complimentary information to
GC [39]: GC models dependency among observed BOLD responses, whereas DCM models
coupling among the hidden states generating observations. DCM seems to be equally ef-
fective as GC in certain circumstances, such as when the haemodynamic response function
(HRF) is deconvolved from the data [24, 118, 117, 149]. On the other hand, its proper
use requires knowledge on the biology and on the inference procedure. DCM also has lim-
itations in terms of the size of the possible models, and it implies a danger of overfitting
the data and of insufficient exploration of the model space in many studies. Therefore, it
has also gained some critics over the years [85].

However, DCM was further developed into multiple procedures including more sophisti-
cated generative models than the original model discussed here. The field of DCM research
in fMRI is still growing [44]. The DCM generative model is continuously being updated,
in terms of the structure of the forward model ([57], the estimation procedure|[126]), and
the scope of the possible applications [44].

4 Hierarchical network-wise models

The second group of methods consists of hierarchical network-wise models. These are also
based on multivariate methods but with one additional constraint: the network can only
include forward projections (and therefore, no closed cycles). Consequently, the resulting
models have a hierarchical structure with feed forward distribution of information through
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the network.

4.1 LiNGAM

The Linear Non-Gaussian Acyclic Model (LINGAM, [131]) is an example of a data driven
approach working under the assumption of acyclicity [143]. The model itself is simple:
every time course within an ROI X (¢) is considered to be a linear combination of all other
signals with no time lag:

X(t) =BX(t) +&(t) (7)

in which B denotes a matrix containing the connectivity weights, and & denotes noise.
The model is in principle the same as in SEM (Section 3.3), but the difference lies in
the inference procedure: whereas in SEM, inference is based on minimizing the variance
of the residual noise under the assumption of independence and Gaussianity, LINGAM
finds connections based on the dependence between residual noise components & (t) and
regressors X (t).

The rationale of this method is as follows. Let us assume that the network is noisy, and
every time series within the network is associated with a background noise uncorrelated
with the signal in that node. An example of such a mixture of signal with noise is given in
Fig. 3A. Then, let us assume that X (¢) - which is a mixture of signal X (¢) and noise ox (t)
- causes Y (t). Then, as it cannot distinguish between the signal and the noise, Y becomes
a function of both these components. Y'(¢) is also associated with noise oy (), however,
as there is no causal link Y — X, X (¢) is not dependent on the noise component oy (t).
Therefore, if Y depends on the ox(t) component, but X does not depend on the oy ()
component, one can infer projection X — Y.

An example of such a simple, directed causal relationship between two variables is
demonstrated in Fig. 3B: the relationship between age and length in a fish. If fish length
is expressed in a function of fish age (upper panel), the residual noise in the dependent
variable (length) is uncorrelated with the independent variable (age). Therefore, the noise
variance is constant over a large range of fish age. On the contrary, once the variables
are flipped and fish age becomes a function of fish length (lower panel), the noise variance
becomes dependent on the independent variable (length) as it is small for small values of
fish length and large for the large values of fish length. Therefore, the first causal model
(fish age influencing fish length) is correct.

In applications to causal research in fMRI, the LINGAM inference procedure is often
accompanied by an Independent Component Analysis (ICA, [66]) as follows. The connec-
tivity matrix B in Eq. 7 describes how signals in the network mix together. By convention,
not B itself but a transformation of B into

A=(1-B)"! (8)

is used as a mixing matriz in the LINGAM inference procedure. By using this mixing
matrix A, one can look at Eq. 7 in a different way:

X = A (9)

Now, the BOLD time course in the network X (t) can be represented as a mixture of
independent sources of noise &(t). This is the well known cocktail party problem and it was
originally described in acoustics [14]: in a crowded room, a human ear registers a linear
combination of the noises coming from multiple sources. In order to decode the com-
ponents of this cacophony, the brain needs to perform a blind source separation [21]: to
decompose the incoming sound into a linear mixture of independent sources of sounds. In
the LINGAM procedure, Independent Component Analysis (ICA, [66]) is used to approach
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this issue. ICA assumes that the noise components & are independent and have a non-
Gaussian distribution, and finds these components as well as the mixing matrix A through
dimensionality reduction with Principal Component Analysis [72, 132]. From this mixing
matrix, one can in turn estimate the desired adjacency matrix B with use of Eq. 8.
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Figure 3: LINGAM. A: The noisy time series X (¢) consists of signal X (t) and noise ox (t).
Y (t) thus becomes a function of both the signal and the noise in X (). B: Causal inference
through the analysis of the noise residuals (figure reprinted from http://videolectures.
net/bbci2014_grosse_wentrup_causal_inference/). The causal link from age to length
in a population of fish can be inferred from the properties of the residual noise in the sys-
tem. the relationship between age and length in a fish. If fish length is expressed in
a function of fish age (upper panel), the residual noise in the dependent variable (length)
is uncorrelated with the independent variable (age): the noise variance is constant over
a large range of fish age (red bars). On the contrary, once the variables are flipped and fish
age becomes a function of fish length (lower panel), the noise variance becomes dependent
on the independent variable (length) as it is small for small values of fish length and large
for the large values of fish length (red bars).

Since the entries B;; of the connectivity matrix B can take any value, LINGAM can in
principle retrieve both excitatory and inhibitory connectivity; of any strength,. However,
LINGAM makes the assumption of acyclicity, therefore only unidirectional connections
can be picked ups. Moreover, the connectivity matrix revealed with the use of LINGAM is
meant to pick up on direct connectionsy. The original formulation of LINGAM assumes no
latent confounds [131], but the model can be extended to a framework that can capture the
causal links even in the presence of (unknown) hidden confounds [63, 19]5. LINGAM-ICA’s
causal inference consists of ICA and a simple machine learning algorithm, and, as such,
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it is a fully data driven strategy that does not involve model comparisong. Confidence
intervals for the connections B can be found through permutation testing. ICA itself can
be computationally costly and its computational stability cannot be guaranteed (the pro-
cedure that searches for independent sources of noise can get stuck in a local minimum).
Therefore, the computational cost in LINGAM can vary depending on the dataset7. This
also sets a limit on the potential size of the causal network. When the number of connec-
tions approaches the number of time points (degrees of freedom), the fitting procedure will
become increasingly unstable as it will be overfitting the datag.

When tested on synthetic fMRI benchmark datasets [134], LINGAM-ICA achieved
a relatively good performance, but lower than a few other methods discussed in this paper,
such as Patel’s tau or GC. Interestingly, follow-up methods [108] for group analysis of
effective connectivity based on LINGAM, achieved performance very close to 100% on
the same benchmark datasets, which suggests that, under the assumption that causal
structures are similar between subjects, for any method for causality group analysis can
substantially improve the causal discovery. Despite the promising results obtained for
synthetic datasets, LINGAM is still rarely applied to causal research in fMRI [153], mostly
because it fits a SEM model with structural constraint and is therefore limited in terms of
the potential applications as compared to SEM.

4.2 Bayesian nets

The use of the LINGAM inference procedures assumes a linear mixing of signals underlying
a causal interaction. Model-free methods do not make this assumption: the bare fact that
one is likely to observe Y given the presence of X can indicate that the causal link X — Y
exists. For instance, if event Y occurs in 80% of the cases when event X occurs (Fig. 4A),
but the opposite is not true, the causal link X — Y is likely. Note that both model-based
and model-free approaches are probabilistic, but in a different sense. In a model-based
approach, a model is fitted to the data, and p-values associated with this fit are a measure of
confidence that the modelled causal link exists (Fig. 4A, left panel). In contrast, in model-
free approaches this confidence is quantified directly by quantifying causal relationships in
terms of conditional probabilities (Fig. 4A, right panel). Bayesian Networks (BNs [38]) are
based on such a model-free approach (Fig. 4B).

The causal inference in BNs is based on the concept of conditional dependency. Suppose
that there are two events that could independently cause the grass to get wet: either a
sprinkler, or rain. When one only observes the grass being wet, the direct cause for
this event is unknown. However, once rain is observed, it becomes less likely that the
sprinkler was used. Therefore, one can say that the variables X; (sprinkler) and X»
(rain) are conditionally dependent given variable X3 (wet grass), because X, Xy become
dependent on each other after information about Xj is provided. In BNs, the assumption
of conditional dependency in the network is used to compute the joint probability of a
given model - i.e. the model evidence - as detailed in the following paragraph!!.

Implementing a probabilistic BN requires defining a model: choosing a graph of ‘par-
ents’ who send information to their ‘children’. For instance, in Fig. 4B (i), the node X3
is a parent of nodes X4 and X5, and the node X4 is a child of nodes X7, Xo and X3.
The joint probability of the model can then be computed as the product of all marginal
probabilities of the parents and conditional probabilities of the children given the parents.
Marginal probability P(X;) is the total probability that the variable of interest X; oc-
curs while disregarding the values of all the other variables in the system. For instance,
in Fig. 4B (i), P(X;) means a marginal probability of X; happening in this experiment.
Conditional probability P(X;|X;) is the probability of a given variable (X;) occurring given

"once variables X; are conditionally dependent on X, the joint distribution P(X;, X;) factorizes into
a product of probabilities P(X;)P(X;|X;)
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that another variable has occurred (X;). For instance, in Fig. 4B (i), P(X5|X1, X3) means
a conditional probability of X5 given its parents X; and Xj.

Then, once the whole graph is factorized into the chain of marginal and conditional
probabilities, the joint probability of the model can be computed as the product of all
marginal and conditional probabilities. For instance, in Fig. 4B(i), the joint probability of
the model M yields

P(M) = P(X1)P(X2)P(X3)P(X4| X1, Xo, X3) P(X5| X1, X3) (10)
A model based approach model free approach
® 0
X(t) l Y(t) X(t) Y(t)
Y(t) = BX(t) + a(t) p(Y|X) =

p=0.2

B graphical models

X Y
I x@ lg—e
o‘é
p(l\/l) YIX)p Z|Y)
z
p(M) = p(Z|Y)p(X|Z)
P(M) = p(X1)p(X2)p(X3)... p(M) = p(X)p(YX)P(ZY)p(X|Z)...

p(X4|X1,X2,X3)p(X5]X1,X2,X3)

Figure 4: Bayesian nets. A: Model-based versus model-free approach. [: a regressor
coefficient fitted in the modeling procedure. o(t): additive noise. Both model-based and
model-free approach are probabilistic. In a model-based approach, a model is fitted to
the data, and p-values associated with this fit are a measure of confidence that the causal
link exists (left panel). In a model-free approach, this confidence is quantified directly
by expressing causal relationships in terms of conditional probabilities (right panel). B:
(i) an exemplary Bayesian net. Xj, Xy, X3: parents, X4, X5: children. (ii) competitive
Bayesian nets: one can define competitive models (causal structures) in the network and
compare their joint probability derived from the data. (iii) cyclic belief propagation: if
there was a cycle in the network, the expression for the joint probability would convert
into an infinite series of conditional probabilities.

Finally, there are at least three possible approaches to causal inference with BNs:

1. model comparison: choosing the scope of possible models (by defining their structure
a priori), and comparing their joint probability.
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2. assuming one model structure a priori, and only inferring the weights. This is com-
mon practice, related to e.g. Naive Bayes [10] in which the structure is assumed, and
the connectivity weights are estimated from conditional probabilities.

3. inferring the structure of the model from the data in an iterative way, by using a va-
riety of approximate inference techniques that attempt to maximize posterior prob-
ability of the model by minimizing a cost function called free energy ([38], similar to
DCM): expectation maximization (EM, [26, 10]), variational procedures |73], Gibbs
sampling [99] or the sum-product algorithm [81] (which gives a broader selection of
procedures than in the DCM)

BNs can detect both excitatory and inhibitory connections X — Y, depending on
whether the conditional probability p(Y|X) is higher or lower than the marginal probability
p(X);1. Like LINGAM, BNs cannot pick up on bidirectional connections. The assumption
of acyclicity comes from the cyclic belief propagation (Fig. 4B, (iii)): the joint probability
of a cyclic graph would be expressed by an infinite chain of conditional probabilities which
usually does not converge into a closed form. This restricts the scope of possible models to
Directed Acyclic Graphs (DAGs [143]), for instance ‘Peter and Clark’ [92] or Cyclic Causal
Discovery [112], that can be used for causal discovery with BNs 3. The value of conditional
probability P(Y'|X) can be a measure of a connection strengths. In principle, BNs are
not resilient to latent confounds, except for particular cases (e.g. Stimulus-based Causal
Inference, SCI [54])5. BNs can either work through model comparison or as an exploratory
techniqueg. In the first case, it involves model specification which - like in DCM - requires
a priori knowledge about the experimental paradigm. In the latter case, the likelihood is
intractable and can only be approximateds [29]. In principle, networks of any size can be
modeled with BNs, either through a model comparison or through exploratory techniques.
However, the exploratory techniques typically minimize a cost function during the iterative
search for the best model. Since together with the growing network size, the landscape of
the cost function becomes multidimensional and complex, the algorithm is more likely to
fall into a local minimumsg.

BNs cope well with noisy datasets, which makes them an attractive option for causal
research in fMRI [98]. They are, however, not widely used up to date, the main reason
being the assumption of acyclicity. Constraint-Based Causal Inference (BCCD, [20]) is
a promising new variation of the BN approach, designed for modeling causal interactions
between any sets of variables. However, to date BCCD has not been tested specifically on
(synthetic) fMRI datasets yet.

5 Pairwise inference

The last group of methods reflects the most recent trends in the field of causal inference
in fMRI. These methods all involve a two-stage inference procedure. In the first step,
functional connectivity is used to find connections, without assessing their directionality.
Unlike network-wise methods which eliminate insignificant connections post-hoc, pairwise
methods eliminate insignificant connections prior to causal inference. In the second step,
each previously found connection is analyzed separately, and the two nodes involved are
classified as an upstream or downstream region. These methods do not involve assumptions
on the global patterns of connectivity at the network level (recurrent versus feed-forward).
However, they involve the assumption that the connections are non-transitive: if X projects
to Y, and Y projects to Z, it does not imply that X projects to Z. The causal inference
is based on the pairs of nodes only, and this has consequences for the interpretation of
the network as a whole. As there is uncertainty associated with estimation of every single
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causal link, the probability that all connections are correctly estimated decreases rapidly
with the number of nodes in the network.

5.1 Pairwise Likelihood Ratios

Another example of a model-free methodology is a two step procedure first proposed by
Patel (as Patel’s tau, PT [102]). The first step involves identifying the (undirected) con-
nections by means of functional connectivity, and is achieved on the basis of correlations
between the time series in different regions. This step results in a binary graph of con-
nections, and the edges identified as empty are disregarded from further considerations,
because if there is no correlation, there is no causation.

The second step determines the directionality in each one of the previously detected
connections. The causal inference boils down to a two-node Bayesian network as the whole
concept is based on a simple observation: if there is a causal link X — Y, Y should get
a transient boost of activity every time X increases activity. And vice versa: if there
is a causal link Y — X, X should react to the activation in Y by increasing activity.
Therefore, one can threshold the signals X (¢), Y'(¢), and compute the difference between
conditional probabilities P(Y|X) and P(XY). Three scenarios are possible:

1. P(Y|X) equals P(X]Y): it is a bidirectional connection X <> Y (since empty con-
nections were sorted out in the previous step)

2. the difference between P(Y|X) and P(X|Y) is positive: the connection X — Y is
likely

3. the difference between P(Y|X) and P(X|Y) is negative: the connection ¥ — X is
likely

Recently, the Pairwise Likelihood Ratios methodology (PW-LR [67]) was proposed. It
builds on the concept of PT. The authors improved on the second step of the inference by
analytically deriving a classifier to distinguish between two causal models X — Y and Y —
X, which corresponds to the LINGAM model for two variables. The authors compared
the likelihood of these two competitive models derived under LINGAM’s assumptions [68],
and provided with a cumulant based approximation to their ratio. In particular, the authors
focused on the approximation of the likelihood ratios with third cumulant for variables X
and Y, which is an asymmetry between first (the mean) and second (the variance) moment
of the distributions of variables X and Y:

N
Cs=w Y (XY (@) = X ()Y () (11)

i=1

Then, if the value of this cumulant is positive, it indicates for the connection X — Y, and
backwards otherwise. Additionally, the authors proposed a modified version of the third
cumulant, which contains a nonlinear transformation of the signal'> PW-LR methods can-
not distinguish between excitation and inhibition;, but provide with a quantitative measure
for the strength of the connectiony. Following the interpretation from Patel, it is possible
to distinguish between uni- and bidirectionality (since scores close to zero might indicate
the bidirectionality)s. The authors proposed using partial correlation instead of Pearson’s

2%y pulling down the value of the samples with a high z-score, it is more resilient to the outliers in
the signal and reads:

Xr = log(cosh(max(X,0)))

2

Csr = x Lin (Xr()Y () = Xr(D)Y (0)?) .
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correlation in the first step of the causal inference, which aims to find direct connections
in the networky. As for the resilience to confounds, PW-LR methods were tested on
benchmark data for which common inputs to the nodes of the network were introduced
([134], simulation no 12). PW-LR gave much better performance than the best competitors
(LINGAM-ICA and PT) and reached as much as 84% of correctly classified connections
across all the benchmark data;. PW-LR works through the classical hypothesis testing,
and the confidence levels for the connections can be obtained with permutation testingg.
It has a closed form solution and is therefore computationally cheap;. As the pair-by-pair
inferences do not require network fitting procedures, this can easily be applied to larger
networksg.

On the benchmark datasets, both versions of PW-LR were performing very well, as
contrasted with the best competitors: PT and LiINGAM. In all but one out of 28 simulations
PW-LR was performing highly above chance, and in a few cases they even reached 100%
accuracy. However, PW-LR has never been validated on the real fMRI datasets.

6 New directions in causal research in fMRI

A number of methods have been discussed, but the search for new ways of extracting causal
information from fMRI data is still on, of which we want to highlight two candidates. First
of all, one can introduce more prior knowledge into the equation. This is done in lami-
nar analysis, where the layered structure of the cortex is assumed to contain information
about the signal. Another new option is a recently presented method based on fractional
cumulants of the BOLD distribution [8|, in which the statistical properties of the BOLD
fMRI signal are used for inferring causal links.

6.1 Laminar analysis

Advancements in fMRI acquisition have made it possible to scan at submillimetre resolu-
tion, which opens up the possibility of a layer specific examination of the BOLD signal.
As the different layers of the cortex receive and process feed forward and feedback infor-
mation largely in different layers ([34, 4, e.g.], these different processes could be visible in
the laminar BOLD response. In rat studies, the BOLD response was indeed shown to have
laminar specificity and have its onset in the input layer of rat motor and somatosensory
cortex [154]. And also in humans, several studies suggest laminar specificity of feedback
processes [80, 97].

These results suggest that human laminar BOLD signal may contain directional and
causal information. Hitherto, only single region laminar fMRI has been employed, but it
may well be worthwhile to investigate how output layers of one region influence the input
layer of the other.

6.2 Fractional cumulants

Certain newly developed methods take a more statistical approach to neuroimaging data.
For instance, characterizing the shape of BOLD distributions by means of fractional mo-
ments of the BOLD distribution combined into cumulants [8] can improve classification of
the two nodes in a connection into an upstream and a downstream node. These fractional
moments of a distribution have limited practical interpretation, but could still contain
valuable (causal) information.

The authors suggest to classify these momentum curves derived from BOLD distribu-
tion using predictions derived from the DCM generative model. The initial results show
that the causal classification scores similarly or better than competitive methods when
applied to the benchmark synthetic datasets [134], and better once the data is noisy or
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has uneven Signal-to-noise ratios in different nodes of the network. However, validation on
real fMRI data sets is still pending.

7 Summary

We sum up the characteristics of all the discussed methods in the following table:

| Feature | Method | GC|SEM |DCM |LN |BN |TE |PL |

group of methods net | net net dag dag net | pw
sign of connections + + + + - + -
directionality + -+ + - - ° T
connection strength + + -+ + + + +
immediacy +/- | /- - + + +/- | +
resilience to confounds || +/- | +/- | - +/- | +/- +/- |+
causality through... c mc/c | mc mltc | me/ml | ¢ c
computational cost 1 1/h h h 1/h 1 1
model-free? - - - - + T T
prespecify the graph? - - + - +/- - _
regression in time + - - - - + -
promising due to [134]7 || - n/a | n/a - - - n/a

Table 1: Summary for all the methods discussed in this paper. GC': Granger causality,
SEM: Structural Equation Modeling, DC': Dynamic Causal Modeling, LN: LINGaM, BN:
Bayesian nets, TE: Transfer Entropy, PL: Pairwise Likelihoods, net: network-wise, dag:
Directed Acyclic Graphs only, pw: pairwise, +/-: depends on implementation, mc: model
comparison, c¢: classical hypothesis testing, ml: machine learning, I: low, h: high, n/a:
non-applicable.

8 Discussion

In this review, we discussed the state-of-the-art in causal research in fMRI. In general, one
can look at the methods from different angles, and classify them into different categories.
For instance, some of the reviewed methods are based on the temporal sequence of the sig-
nals (e.g. GC or TE), others ignore the sequence in time, and solely focus on the statistical
properties of the time series (e.g. BNs).

Based on the causal structure imposed on the brain on the other hand, the methods
fall into three categories. Network-wise methods, such as GC or SEM, do not restrict
the connectivity patterns whereas Directed Acyclic Graphs (DAGs), such as BNs, assume
a hierarchical structure and unidirectional connections. In the latter category, a primary
node receives input from outside the network and distributes information downstream
throughout the network. This may be a good approximation for many processes, (see
for instance recent work on the visual cortex [93]). However, the feed-forward structure
assumes a strictly hierarchical organization, which limits its capacity to model commu-
nication between different brain networks. Under what circumstances DAGs can be an
accurate representation for causal structures in the brain, remains an open question.

Next to network-wise methods and DAGs, we also discussed a third group of methods,
referred to as ‘pairwise’. In this approach, the causal inference is done by splitting the
inference into many pairwise inferences. Prior to this, the dimensionality is reduced based
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on functional connectivity, based on the idea that (partial) correlation is a good indicator
for the existence of causal links [134] and therefore allows for simplifying the problem, both
computationally and conceptually. Since the inference in this class of methods is split into
a set of pairwise inferences, it is important to be aware of the fact that the confidence levels
are also obtained connection by connection. Therefore, for a network represented by a set
of connections with p-values p;, the joint probability of the model is roughly IT;(1 — p;) 2.
This also means that there is a trade-off between the joint probability of the graph and its
density: the joint probability of the whole network pattern can be increased by decreasing
the threshold for connectivity at more conservative p-values. Furthermore, one can look at
the pairwise inference methods as a sort of model comparison, because in the second step
of the inference, for every connection only three options are possible to choose from. The
difference with DCM procedure lies in the fact that pairwise inference methods are based
on the simple statistical properties emerging from causation in linear systems, and do not
involve minimizing the cost function — such as negative free energy — as is done in DCM.

In the fMRI community, the DCM family [42] is currently the most popular approach
to causal inference. This is partially because DCM was tailor-made for fMRI, and includes
a generative model based on the biological underpinnings of the BOLD dynamics [16].
Some of the GC studies also involve estimation of the haemodynamic response function,
and deconvolving the data before applying the estimation procedure [24, 118, 117, 65,
151, 119, 50]. This notion of the haemodynamics is both a strength and a weakness: the
generative model fits the data well, but only as long as the current state of knowledge is
accurate. New studies suggest that human haemodynamics are very dynamic and driven
by state-dependent processes (94, 55]. The influence of this complex behavior on the
performance of DCM is hard to estimate.

The DCM procedure performs causal inference through model comparison, and as
such, it is restricted to causal research in small networks containing a few nodes - since
the computational costs increase like a factorial with the number of nodes. With the rise
of research into resting state networks that contain up to 200 nodes, this may prove to be
a limiting characteristic [133]. This issue can be addressed with new methods for pairwise
inference such as PT and PW-LR, which do not impose any upper bound on the size of
the network.

It is important to remember that there are always two aspects to a method for causal
inference. First, the method should have assumptions grounded in a biologically plausible
framework, well-suited for the given dataset. For instance, a method for causal inference
in fMRI should respect: (1) the confounding, region- and subject-specific BOLD dynam-
ics [56]; and (2) co-occurance of cause and effect (since the time resolution of the data
is low compared to the underlying neuronal dynamics, the causes and their effects most
likely happen within the same frame in the fMRI data). The new methods for pairwise
inference address this issue by (1) breaking the time order, and performing causal infer-
ence on the basis of statistical properties of the distribution of the BOLD samples, and
not from the timing of events; (2) using correlation in order to detect connections. A good
counterexample here is GC. GC has been proven useful in multiple disciplines, and its
estimation procedure is impeccable: nonparametric, computationally straightforward, and
it gives a unique, unbiased solution. However, there is an ongoing discussion on whether
or not GC is suited for causal interpretations of fMRI data. On the one hand, theoretical
work by Seth et al. [128] and Roebroeck et al. [113] suggest that despite the slow haemo-
dynamics, GC can still be informative about the directionality of causal links in the brain.
On the other hand, the work by Webb [150] demonstrates that the spatial distribution of
GC corresponds to the Circle of Willis, the major blood vessels in the brain.

13In practice, confidence values for the existence of single connections are not independent, therefore
this is only a rough approximation of the joint probability
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Secondly, an estimation procedure needs to be computationally stable. Even if the gen-
erative model faithfully describes the data, it still depends on the estimation algorithm
whether the method will return correct results. DCM is a good example here: the gener-
ative model was based on detailed knowledge of the physiology of the brain, and as such,
it is currently the best representation of BOLD fMRI as a function of network dynamics.
However, the estimation procedure is stochastic, and the two available implementations of
DCM - Variational Bayes and MCMC - both involve a trade-off between computational
costs and the chance of convergence to a global minimum, and in both implementations,
obtaining the global solution is not guaranteed.

For the two aforementioned reasons, it depends on the research question, which method
should be used for the research purpose at hand.

Coming back to the main question posed in this review, can we hope to uncover causal
relations in the brain using fMRI? Although there are new concepts in the field, which
propose to consider causal interactions in the brain in probabilistic terms [87, 52|, the tra-
ditional’, deterministic models of causality are prevalent in neuroimaging. Within these
deterministic models, in the light of the existing literature, the new research directions
based on breaking the time order as the axiom of causal inference (such as PWLR, PT,
and LINGAM), prove more successful than the more ’traditional’ approaches which take
regression in time into account (such as GC or TE, [134, 67]). Also, Patel’s two-step de-
sign to achieve a causal map of connections is very promising, especially once the Pearson
correlation is replaced with partial correlation as is done in PW-LR. One note to add is
that ’success’ of any method for causal inference in fMRI depends on the forward model
used for generating the synthetic dataset. In the seminal paper by Smith et al. we are
referring to, [134], multiple methods were evaluated and critically discussed on the basis of
simulations of the DCM generative model. However, there are alternatives, e.g., generative
model by Seth et al. [128|, which might potentially yield other hierarchy of methods in
terms of success rate.

With the current rapid growth of translational research and increase in use of invasive
and acute stimulation techniques such as optogenetics [25, 117] or TMS 78], a rigid valida-
tion of methodology for causal inference becomes feasible through interventional studies.
Recently, multiple methods for inferring causality from fMRI data were validated using a
joint fMRI and MEG experiment [95], with promising results for GC and BNs. This gives
hope for establishing causal relations in neural networks, using fMRI.
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