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The ability to store information in an active and readily available state for 
short periods of time is fundamental for cognition. Working memory  
(WM) is essential for many high-level cognitive skills, including 
inference, decision making, mental calculations and awareness1. 
The prevailing models of WM posit that, in the absence of external 
stimuli, memoranda are maintained by persistent neuronal activity2,3. 
Signatures of sustained activity have been observed in a variety of brain 
areas in macaques including dorsolateral prefrontal cortex (dlPFC)4–6, 
parietal cortex7, inferior temporal cortex8,9, entorhinal cortex10, and 
medial frontal cortex (MFC)11. It is thus thought that WM relies on 
different types of persistent activity provided by a distributed set of 
brain areas. Indeed, some brain areas in nonhuman primates exhibit 
stimulus-selective4,5,7–9 persistent activity, whereas others do not12. 
However, the relationship and importance of these different kinds of 
persistent activity for human WM remain unclear.

In humans, a number of brain areas are thought to be essential for 
forming, maintaining and retrieving short-term memories13. Here 
our focus is on two of these areas: the medial temporal lobe (MTL) 
and the MFC. In neuroimaging studies, MFC activity is consistently 
related to WM14, and it has been suggested that the MFC supports 
executive functions through persistent neuronal activity15. However, 
there is at present no direct neuronal evidence of such activity in the 
human MFC. The MTL, on the other hand, is traditionally thought 
to be required for the formation of new long-term memories but not 
for WM16. However, it has become clear that the MTL also plays an 
important role for WM17 whenever subjects are distracted or are 
maintaining an amount of information close to their WM capacity. 
Indeed, studies of patients with damage to the MTL reveal deficits 
in retaining information for more than a few seconds in WM tasks 

under some circumstances17. Studies using intracranial recordings 
have also begun to reveal field-potential signatures of persistent 
activity during maintenance of WM in the MTL18, and recordings 
from human lateral temporal cortex have revealed elevated activity 
of neurons during encoding and retrieval of short-term memories19.  
However, there is presently no direct single-neuron evidence of 
persistently active MTL or MFC neurons during WM maintenance  
in humans.

Attractors are dynamically stable patterns of neuronal activity that 
have been an influential framework for conceptualizing how memories 
are maintained by persistent activity20,21. In this framework, the brain 
has large numbers of different attractors, each of which corresponds 
to a different specific memory. During maintenance, at most a small 
subset of these attractors can be active simultaneously. Consequently, 
the extent to which the pattern of persistent activity during a given 
trial remains close to the attractor(s) should predict the quality of 
the memory trace as assessed by later behavior. Indeed, in macaques, 
the extent of drift of neural activity away from attractors formed by 
persisted activity is predictive of error magnitude in recalled spatial 
location22. While a major concept in theoretical work20,21,23, there is 
little direct evidence for the existence and importance of attractors 
for WM maintenance in humans.

Here we used human single-neuron recordings performed in neu-
rosurgical patients to investigate the properties of persistent neuronal 
activity and its relationship to behavior. We recorded simultaneously 
from two areas each in the MTL, hippocampus and amygdala, and 
in the MFC, dorsal anterior cingulate cortex (dACC) and presupple-
mentary motor area (pre-SMA). As a starting point, we screened for 
highly selective and sparsely responsive ‘concept cells’. Such cells are 
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Persistent neural activity is a putative mechanism for the maintenance of working memories. Persistent activity relies on the 
activity of a distributed network of areas, but the differential contribution of each area remains unclear. We recorded single 
neurons in the human medial frontal cortex and medial temporal lobe while subjects held up to three items in memory.  
We found persistently active neurons in both areas. Persistent activity of hippocampal and amygdala neurons was stimulus-
specific, formed stable attractors and was predictive of memory content. Medial frontal cortex persistent activity, on the other 
hand, was modulated by memory load and task set but was not stimulus-specific. Trial-by-trial variability in persistent activity 
in both areas was related to memory strength, because it predicted the speed and accuracy by which stimuli were remembered. 
This work reveals, in humans, direct evidence for a distributed network of persistently active neurons supporting working 
memory maintenance. 

http://dx.doi.org/10.1038/nn.4509
http://www.nature.com/natureneuroscience/


©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature neurOSCIenCe	 VOLUME 20 | NUMBER 4 | APRIL 2017 591

a r t I C l e S

characterized by a highly selective and invariant response for abstract 
concepts, such as a particular person or building24,25. Here we tested 
whether concept cells exhibited persistent activity and whether such 
activity was related to WM. As in previous work24, we used a screen-
ing task to select the images with the best response prior to starting 
our actual experiment. We then used only the images for which selec-
tive neurons were present in the subsequent WM task.

RESULTS
Task and behavior
Subjects (14 sessions from 13 patients) performed a WM task, (the 
‘Sternberg task’). In each trial, subjects were asked to memorize 
(encode) 1–3 images that were presented sequentially for 1 s each. 
After a waiting (maintenance) period of at least 2.5 s and at most 2.8 s,  
subjects were asked to judge whether a probe stimulus was iden-
tical to one of the 1–3 images held in memory (Fig. 1a). We refer 
to the number of images held in memory as ‘load’ throughout this 
paper. Subjects pressed either the ‘yes’ or ‘no’ button to provide their 
answers (button identity was reversed in the middle of the experi-
ment). Subjects performed well: average accuracy was 89.55% ± 5.66%  
(Fig. 1c), and median reaction time (for correct trials only) was  
1.09 ± 0.28 s (± s.d.). For all subsequent analysis, we used only cor-
rect trials unless indicated otherwise. Reaction time (RT) increased 
as a function of load (Fig. 1d; F2,26 = 4.11; P = 0.025, permuted 
repeated-measures ANOVA). In addition, RT was significantly faster 
in response to probes that were held in memory (IN = 1.03 ± 0.29 s) 
compared to probes not held in memory (OUT = 1.2 ± 0.3 s; permuted 
paired t-test: t13 = 3.35; P = 0.005). Moreover, correct in/out deci-
sions were made more quickly than incorrect decisions (1.09 ± 0.28 s  
versus 1.52 ± 0.74 s, permuted paired t-test: t13 = 3.81; P = 0.0005). 
Together, this shows that our subjects performed the task accurately 
and exhibited the expected patterns of RT differences26.

Screening task
We customized the set of images to be memorized for each subject. 
Each subject performed a screening task 2–3 h before the experi-
ment. During this task, 54–64 images were presented in random order 
six times for 1 s each. We then processed the data to identify the 
five images with the best image-selective responses (Supplementary  
Fig. 1 and Online Methods), which were then used for the WM exper-
iment. We will refer to these images as Images A–E throughout the 
manuscript (the choice of Image A, B, C, D or E was set arbitrarily 
but fixed for each subject).

Electrophysiology
Across all subjects, we isolated 651 (47 ± 22.1 per session) putative 
single units from the dACC (n = 120), pre-SMA (n = 184), amygdala 
(n = 195) and hippocampus (n = 152) (Fig. 1b shows the locations 
of recording sites in MNI (Montreal Neurological Institute) space). 
Spike sorting quality was assessed quantitatively (Supplementary  
Fig. 2). Throughout the manuscript, we use the terms neuron and cell 
interchangeably to refer to a putative single unit.

Classes of neuronal responses
We selected for and quantified the properties of three groups of  
neurons: (i) visually selective concept cells; (ii) maintenance neurons, 
which exhibited elevated activity in the absence of visual stimuli;  
and (iii) probe neurons, which responded only during retrieval. 
Together, these three groups of cells provide a comprehensive 
inventory of cellular activity during WM encoding, maintenance 
and retrieval.

Identification of concept cells
We identified concept cells24 by testing whether their firing rate sig-
nificantly covaried as a function of picture identity (using a permuted 
one-way ANOVA with x groups, where x was the number of unique 
images followed by a permutated t-test for the image with the maxi-
mal response among all images). In the initial screening sessions, 
99 cells (of 670, 14.77%) qualified as concept cells. In the Sternberg 
task, 93 cells (of 465, 14.2%) qualified as concept cells (Fig. 2a). Most 
concept cells were located either in the amygdala (Fig. 2b; 25.4% of 
all amygdala cells, permutation test, P = 0.002 versus chance) or the 
hippocampus (12.1%, permutation test, P = 0.002 versus chance). 
The number of concept cells was not larger than expected by chance 
in the dACC (4.35%, permutation test, P = 0.21) or pre-SMA (2.55%, 
permutation test, P = 0.806). We will use the term ‘preferred image’ 
for the picture for which a given cell was selective and the term ‘non-
preferred images’ for all other pictures. The responses of concept  
cells were highly selective: the average depth of selectivity index 
was 0.68 (Supplementary Fig. 1b and Online Methods). During  
the screening task, only 9.61% ± 9.2% (± s.d.) of the presented pictures 
evoked a selective response in at least one cell. In contrast, during  
the Sternberg task, on average 56.92% ± 36.37% (± s.d.; permuted 
paired t-test, t12 = 5.48, P = 0.001) of all presented pictures elicited 
a response in at least one concept cell (Fig. 2c). Of the units that 
were identified as significantly selective in the screening task, 86% 
remained selective for the same visual stimulus during the Sternberg 
task. This indicates that the screening procedure was effective,  
that recordings were stable and that most neurons maintained their 
tuning between sessions.

Activity of concept cells during working memory maintenance
We found that concept cells located in the MTL (hippocampus and 
amygdala) remained active during memory maintenance if the pre-
ferred image of a cell was presently held in memory (Figs. 3a–d and 4a,  
and Supplementary Fig. 3a,b). Note that the preferred and nonpre-
ferred images for each cell were defined based only on the activity 
observed during encoding, making this analysis unbiased. We used 
the picture selectivity index (PSI) to quantify the activity of each 
concept cell during maintenance (Online Methods). During mainte-
nance, the PSI for concept cells recorded in the amygdala (n = 57) was  
49.2 ± 65.88 (permuted paired t-test, t56 = 4.79, P = 0.0005 versus zero; 
Fig. 4b). Similarly, the PSI for concept cells recorded in the hippoc-
ampus (n = 21) was 28.8 ± 51.85 (permuted paired t-test, t20 = 2.54, 
P = 0.0025 versus zero). Tested individually for each neuron, 44.9% 
(n = 35) of the concept cells in the MTL exhibited persistent activity 
during WM maintenance (P < 0.05, one-tailed test). This suggests that 
persistent activity of concept cells in the MTL supported WM. If so, 
we expected that the PSI would systematically covary with memory 
load and success or failure in maintaining a memory. We next inves-
tigated this hypothesis.

We found that the higher the load, the lower the PSI (permuted 
repeated-measures 1 × 3 ANOVA, F2,112 = 7.31, P = 0.0005 for amy-
gdala and F2,40 = 8.48, P = 0.0005 for hippocampus; Fig. 4c). Amygdala 
neurons had significant PSI values for all loads, whereas hippocampal 
neurons maintained above chance values only for loads 1–2. We next 
tested whether the drop in PSI as a function of load could be explained 
by lingering visually evoked activity. If so, persistent activity should 
only be present for the last picture encoded9. However, we found no 
significant relationship between the position during encoding (using 
loads 2–3 only) and neither the PSI in load 2 (permuted paired t-test, 
t77 = 0.38, P = 0.702) nor that in load 3 (permuted repeated-measures 
1 × 3 ANOVA, F2,231 = 0.135, P = 0.873; Figs. 3c,d and 4d). Thus, 
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the persistent activity during maintenance could not be explained by 
lingering visually evoked activity.

We next tested whether the activity of concept cells during the 
maintenance period correlated with the correctness of the later 
response. For the subset of trials during which the preferred stimulus 
of a concept cell was held in memory, persistent activity of concept 
cells was significantly larger in correct compared to incorrect trials 
(permuted paired t-test, t77 = 4.92, P = 0.005; Fig. 4e). In contrast, 
when the preferred stimulus of a cell was not held in memory, there 
was no significant difference between correct and incorrect trials  
(Fig. 4e; permuted paired t-test, t77 = 0.76, P = 0.48).

Lastly, if cells showed persistent activity, it should be possible to 
select for concept cells using only maintenance activity (load 1 only). 
Indeed, we found that in both the amygdala (14.9%, n = 29, permuta-
tion test, P = 0.002) and the hippocampus (11.8%, n = 18, permutation  
test, P = 0.002), a significant proportion of neurons qualified as  
concept cells using this approach.

Together, this shows that concept cells exhibited selective persistent 
activity during maintenance of items in WM and that the amplitude of 
this activity was correlated with the quality of the memory trace.

Maintenance neurons
The second group of neurons we characterized was maintenance neu-
rons. These neurons increased their firing rate relative to baseline dur-
ing the maintenance period regardless of the stimulus that was held 
in memory. While we observed maintenance neurons in all recorded 

areas (Fig. 5c), they were most prominent in the two areas of the 
MFC (χ2

1 = 25.08; P = 5.473 × 10−6): pre-SMA and dACC, in which 
31.3% and 21.2% of all recorded neurons were maintenance neurons, 
respectively. Was the activity of maintenance neurons predictive of 
which image(s) were held in memory? Using the same approach as in 
the case of concept cells (Online Methods) we found that the activity  
of maintenance neurons was not indicative of the images held in 
memory; only 5 of 126 neurons (3.97%) showed significant differ-
ences (P = 0.829 versus scrambled data).

We next tested whether the firing rates of maintenance neurons were 
associated with load and retrieval performance (RT and accuracy). 
Indeed, during maintenance, the firing rates of subsets of maintenance 
neurons in dACC (10.7%) and pre-SMA (46.3%) covaried systemati-
cally with load (Fig. 5d and Supplementary Fig. 3c). Additionally, 
in pre-SMA, the majority of such neurons decreased their firing rate 
as a function of load (9.2% versus 37%; Fig. 5a,d). In addition, the 
activity of 18.5% of maintenance neurons recorded in the pre-SMA 
and 10.3% (3 cells) of amygdala maintenance neurons differentiated 
between slow and fast later memory retrieval (median split computed 
independently for each load and for in and out conditions; median 
was computed individually for each subject to account for individual 
differences in RT; Fig. 5e and Supplementary Fig. 3d). Lastly, the 
mean firing rate of maintenance neurons in both dACC and amy-
gdala, but not in pre-SMA or hippocampus, was significantly higher 
in trials that were later correctly remembered (Fig. 5f). Together, this 
shows that the MFC contained neurons with persistent activity during 
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maintenance. This persistent activity was not indicative of memory 
content but correlated with memory load and later performance.

Probe neurons
The third group of cells we characterized was probe neurons. These 
neurons increased their firing rate only during the presentation of 
the probe stimulus, relative to encoding and maintenance (Fig. 6a,b 
and Online Methods). The response of probe neurons was not visu-
ally selective: only 5 of 77 neurons (6.49%) showed image selectiv-
ity (P = 0.385 versus scrambled data). Additionally, probe neurons  
did not respond to the identical stimuli when presented during encod-
ing (P = 0.0005, permutation test; Fig. 6d). We identified probe neu-
rons in all areas, but most prominently in pre-SMA (χ2

1 = 44.21;  
P = 2 × 10−11; Fig. 6c), where 26.2% of neurons were probe neurons. 
Next, we tested whether the response of these neurons was related 
to visual input or movement initiation by computing the maximal 
firing rate after aligning to stimulus onset and to button press (RT). 
Aligning the response with stimulus onset resulted in significantly 
higher peak firing rates (mean for all probe neurons: 8.82 Hz ± 8.74)  
compared to the peak firing rate when aligned to button press  
(5.85 Hz ± 7.5, permutation t-test: t76 = 8.71; P = 0.0005, Fig. 6a,b). 
This suggests that these neurons responded to the probe itself rather 
than to movement initiation.

What was the relationship between the activity of probe neurons 
and behavior? A minority of the probe neurons recorded in pre-SMA 
(15.6% of probe neurons) showed a differential response as a function 
of the WM-based decision (in versus out; Fig. 6e). Similarly, a small 

number of neurons differentiated the button (left or right) used to 
communicate the decision (Fig. 6f). However, the large majority of 
probe neurons (84%) signaled neither. Instead, these neurons showed 
a strong but indiscriminate increase in firing rate to all pictures shown 
as probes. We hypothesize that probe neurons signaled a change of 
task phase, i.e., a switch from maintenance to retrieval of information 
held in WM (see “Discussion” section below).

Separability of neuronal categories
Were the three neuronal classes we identified separate or were  
there neurons that qualified as multiple types? Note that concept 
and maintenance cells were observed preferentially in separate ana-
tomical areas (MTL versus MFC), supporting the argument that they  
were separate. Nevertheless, there was some overlap in the same  
areas (Supplementary Fig. 4a). However, further analysis of the 
correlations between effect sizes attributable to different factors 
showed that the three types we identified constituted three largely 
separate categories of neurons (Supplementary Fig. 4b,c). Lastly, 
we confirmed that the effects observed did not differ between neu-
rons recorded within versus outside of epileptic tissue later resected 
(Supplementary Fig. 4d).

Decoding of information held in WM
We next assessed how well neuronal activity during maintenance pre-
dicted the identity of remembered images and/or performance in a 
given trial. For this, we trained a decoder on a pseudopopulation of 
all neurons recorded of a given kind (for example, only MFC neurons 
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or only concept cells) on a subset of trials and tested its performance 
on an independent set of test trials (Online Methods). We used this 
decoding approach to assess whether activity during maintenance 
was strong enough to be read out at the single-trial level. We found 
that neurons in the MTL, but not in MFC, carried information about 
picture identity during load 1 trials (Fig. 7a). Because there were 
multiple correct answers for loads 2 and 3, we used a separate binary 
decoder (trained in load 1 trials) for each image to predict whether 
it was currently in memory or not in load 2 and 3 trials, and we aver-
aged performances across all five images. This allowed us to com-
pare performances between all load conditions. The average decoding 
accuracy for amygdala and hippocampal neurons during load 1 was 
83.5% and 63.4%, respectively (Fig. 7a and Online Methods; P = 0.002 
and P = 0.007, respectively, estimated using scrambled data; chance 
was 50%). We observed a sharp drop in decoding accuracy as a func-
tion of increasing load (Fig. 7a) in both amygdala and hippocampus. 
Nevertheless, decoding performance was above chance for loads 2 and 
3 in the amygdala (load 2: 60.7%, P = 0.008; load 3: 56%, P = 0.039) 
but not in the hippocampus (load 2: 54.2%, P = 0.25; load 3: 47.7%, 
P = 0.73). We also performed the same analysis using concept cells 
only (for load 1 trials). We found little difference in decoding accuracy 

between using only concept cells and using the whole population 
of all recorded neurons (Fig. 7a, P = 0.88 for amygdala comparison 
and P = 0.32 for hippocampus). Thus, the information decodable 
about picture identity from the population was carried principally 
by concept cells.

We next tested whether information present in the neuronal firing 
rate of concept cells was carried by a static or dynamic code27,28. We 
tested this by evaluating whether a decoder trained at one point in 
time could decode information obtained from a different timepoint. 
We found that regardless of the time the decoder was trained, decod-
ing performance was significantly above chance (Fig. 7b): for example, 
the average decoding accuracy during the maintenance period of a 
decoder trained based on the activity during the encoding period time 
(300 ms after image exposition) was 0.58 (chance level = 0.2, P = 0.002  
versus chance as estimated using a permutation test). Together, this 
shows that concept cells coded for the identity of the items held in 
memory using a static code. We next tested whether activity dur-
ing maintenance was indicative of the number of items (load) held  
in memory. We found that decoding memory load was possible in 
both pre-SMA (decoding accuracy: 67.96%, P = 0.002, chance = 33%; 
Fig. 7c) and dACC (accuracy = 42.88%, P = 0.027) but not in amygdala 
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or hippocampus (Fig. 7c). When we restricted the decoder to only 
information provided by the previously identified maintenance neu-
rons, we found that load decoding performance in pre-SMA did not 
change significantly (59.8% versus 67.96%, P = 0.061). In contrast, in 
dACC, allowing access only to maintenance neurons reduced decod-
ing performance to chance levels (performance accuracy = 38.04%,  
P = 0.164). Thus, activity of MFC cells did not carry information 
about the content of the memory itself but rather about other aspects 
of the memory: the current load. Additionally, we observed that in 
pre-SMA maintenance neurons carried most of the information about 
memory load. Note that the activity of concept cells in the MTL also 
varied as a function of load (Fig. 4c) but only for the preferred stimu-
lus of a cell. In contrast, the activity of MFC cells varied as a func-
tion of load regardless of the stimulus held in memory (as the above 
decoding results demonstrate).

Finally, we tested whether it was possible to predict the RT taken 
to make the in-versus-out decision at the end of the trial based on 
the activity of neurons during the maintenance period (Fig. 7d). 
Stronger memories generally lead to faster, more accurate and more 

confident decisions29. We found evidence for this behavior in our 
task, because incorrect decisions took longer (see “Task and behavior” 
section above). Based on this rationale, we split correct trials into two 
groups based on the median RT of each subject (slow and fast groups). 
We did this separately for each load and in or out group (resulting 
in six groups total) to account for the systematic RT differences 
that resulted from different loads and in-versus-out decisions. We 
found that RT could be predicted from neurons located in pre-SMA  
(accuracy = 65.28%, chance = 50%, P = 0.002; Fig. 7d) and amyg-
dala (accuracy = 60.86%, P = 0.0027; Fig. 7d) but not from dACC 
or hippocampal neurons. Repeating the same analysis using only 
maintenance neurons revealed similar performance in pre-SMA  
(accuracy = 59.8%, P = 0.0157 versus chance). In amygdala, decoding 
based on maintenance neurons only reduced performance to chance 
levels (accuracy = 52.65%, P = 0.2).

Together, this shows that information about the content of working 
memory was provided by the firing rate of concept cells in the MTL 
(Fig. 7a) and that information about the quality of memories (load, later 
RT) was encoded predominantly by neurons in the MFC (Fig. 7c,d).
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Figure 4 Population analysis of MTL concept cells. (a) Average firing rate of all concept cells identified in the amygdala (n = 57) in the different  
phases of the task. Shaded areas represent ± s.e.m. across neurons. Gray vertical bars mark periods of time during which an image was on the screen. 
Bottom panel marks points of time during which the activity of the cells was significantly different (black) between trials when a preferred image was  
in memory vs. when it was not (corrected for multiple comparisons based on cluster size; Online Methods). Colors mark different trials as indicated.  
For subplots a–d, only correct trials were used. (b) PSI during encoding, maintenance and retrieval for all identified concept cells (each data point  
is one neuron; data points are sorted according to the encoding phase of the task). Neurons in both amygdala and hippocampus, but not in dACC,  
maintained their selectivity throughout the task and showed persistent activity. Significance was computed against chance (PSI = 0). (c) PSI for  
different load conditions indicated that neurons maintained persistent activity for loads 1–3 in amygdala and 1–2 in hippocampus, but did not do 
so in dACC. (d) PSI for loads 2 and 3 as a function of whether the preferred image was shown first, second or third during encoding. This shows that 
images that were shown directly before the maintenance period did not have greater selectivity (load 2, P = 0.702; load 3, P = 0.873). (e) Relationship 
between firing rates of concept cells in the MTL and behavior. The firing rate was significantly higher for correct compared to incorrect trials only when 
the preferred stimulus was held in memory. For c–e, PSI and firing rate were calculated for the entire maintenance period. *P < 0.05, **P < 0.01  
and ***P < 0.001 as estimated with permutation tests. In b–e, thick and thin blue lines represent the mean and ± s.e.m., respectively. Pre-SMA  
is not shown in this figure because we did not identify any concept cells in this area.
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Working memory as attractors in state space
We next quantified the dynamics of neuronal activity during memory 
maintenance. An attractor is a location in state space, which in our 
case was formed by the activity of all recorded neurons. Here an 
attractor was thus a pattern of firing rates. Theoretical work suggests 
that during WM maintenance, the neural trajectories reside close to 
a point in this state space (the attractor) to maintain information 
in WM. This space could potentially assume a variety of patterns, 
including a static code22, dynamic patterns28 or combination of 
both30. Our goal was to determine whether the neuronal trajectories  

during the maintenance period were compatible with an attractor 
formed by a static code. We used demixed principal component  
analysis (dPCA) as a dimensionality reduction technique31 to derive 
basis functions into which all neural activity was projected. The  
projection matrix of dPCA was computed based only on activity  
during encoding period 1 (first image) on all neurons. Afterwards,  
we projected the activity during the other encoding and the main-
tenance periods into this same space without recomputing the  
basis functions, making this analysis unbiased. We used dPCA  
with picture identity as the marginalized variable31. We found that a 
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1 = 21.1; P = 4.353 × 10−6) 
compared to areas in the MTL. (d) Percentage of maintenance neurons whose firing rate during maintenance differed as a function of load. Notably, 
in pre-SMA, 37% of cells decreased their firing rate as a function of load. (e) Percentage of maintenance neurons whose activity during maintenance 
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four-dimensional space formed by four demixed principal compo-
nents (components 1, 2, 3 and 5) separated the neural trajectories 
well (30.7% explained variance) between the five different image 
identities and had the highest percentage of variance attributed to 
picture identity (Fig. 8a,b and Supplementary Figs. 5 and 6d; see 
also Supplementary Video 1).

We first analyzed the rate of change (velocity) in this four-dimen-
sional neural state. As expected, velocity was highest during encoding 
due to the strong visual-onset transients of concept cells (Fig. 8c). 
In contrast, velocity was substantially reduced at baseline (fixation 
cross). Unexpectedly, the amount of change in the activity during 
maintenance was reduced: the velocity during maintenance was not 
significantly different from that during baseline (P = 0.233; Fig. 8c). 
We next quantified the pairwise distance between the neural trajecto-
ries associated with different images held in memory (only for load 1 
because pairwise distance was ill defined if several items were held in 
memory; Fig. 8d and see below for other loads). Distances were maxi-
mal during encoding but were maintained significantly above baseline 
levels during maintenance (P = 0.0005; Fig. 8d). Thus, the neural 
trajectories during the maintenance period were drawn to particular 
locations in state space, which is the definition of an attractor21,32. 
Therefore, our data suggests that neural activity during maintenance 
clustered around attractors (Fig. 8d).

We next tested whether the distance of the neural trajectories from 
a given attractor was correlated with behavior (accuracy and RT).  
We defined the attractor location based on the activity during  
maintenance of one item and quantified the distance of the neu-
ral activity to this activity in each trial using a distance metric  
(distance-to-attractor or DA; Online Methods). DA was defined as 
the Euclidian distance across trials between the attractor center for 
a particular image divided by the average distance of this attractor 
from all other attractors representing all the other pictures (Fig. 8e). 
We found that the DA was smaller for trials in which the item in 
memory was correctly remembered compared to trials where the 
item was forgotten (permutation test: P = 0.002, computed for loads 
1–3 separately and averaged; Fig. 8f and Supplementary Fig. 6c). 
This difference was abolished when we excluded concept cells from 
the population, but excluding maintenance neurons did not alter this 
effect (Fig. 8f). Similarly, excluding neurons recorded in MFC did 
not affect this result, whereas excluding MTL neurons eliminated 
the observed differences (permutation test, P = 0.002 and P = 0.664, 
respectively; Fig. 8f). We also tested whether the distance from the 
attractor predicted later decision time. We tested this for the subset  
of trials in which the probe was held in memory (IN trials). Faster 
decisions were associated with smaller DA values, indicating that 
neural trajectories (during maintenance) were closer to the given 
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Figure 6 Probe neurons reflect WM-retrieval related evoked activity in MFC.(a) Firing rates of an example probe neuron recorded from the pre-SMA, 
shown separately for trials in which the probe was held (IN, cyan) or not held (OUT, magenta) in memory. Top: PSTH (bins, 200 ms; step size, 2 ms; 
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attractor (Fig. 8g). As before, that was true only when concept cells 
and MTL were present in the population.

We next repeated the same analysis only using simultaneously 
recorded neurons (n = 5 subjects who had at least four simultane-
ously recorded concept cells). As in the pseudopopulation results, 
trial-by-trial, the distance to the closest attractor was predictive of 
whether the answer given by the subject in a trial would be correct 
or incorrect (permutated t-test, t624 = 3.33, P = 0.003; Fig. 8h). This 
shows that attractors could be seen in individual subjects and that the 
distance to the attractor was informative in individual trials.

In conclusion, our results show that persistent activity during 
maintenance created attractors and that the distance of the neural 
trajectory in a given trial predicted the quality of the memory trace 
as measured by reaction time and accuracy.

DISCUSSION
We found neurons with two different types of persistent activity in 
MTL and MFC during WM maintenance. In the MTL, concept cells 
were persistently active, and this activity was characterized by a high 
degree of selectivity. In the MFC, on the other hand, we observed a 

group of neurons (Fig. 5c) that tonically increased their activity dur-
ing maintenance, but this activity was indifferent to the identity of 
the memoranda currently held in the memory.

Preceding the WM task, we used a screening task to identify  
visually selective ‘concept cells’ similar to those first identified  
by Quiroga et al.24,33–35. Such concept cells responded strongly 
and selectively only to the preferred images but not to the nonpre-
ferred images (Supplementary Fig. 1a). Notably, we identified more  
concept cells in the amygdala (25.4%) than in the hippocam-
pus (12.1%), a trend compatible with that observed previously34.  
It remains an open question whether concept cells also exhibit per-
sistent activity for stimuli other than images, such as text or audio34. 
In addition to transient activation by visual input, concept cells can 
also be activated by free recall of episodic memories36 and visual 
imagery37. While this has so far been interpreted as representing recall 
from long-term memory, we now show a direct relationship between 
persistent concept-cell activity and WM. Specifically, we found that 
the response strength (firing rate) of concept cells for images held  
in memory decreased as a function of memory load, an observation 
that fits models of persistent activity38.
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We found that the dynamics of self-sustained persistent activity were 
well described as an attractor state. Attractor-like behavior has been 
observed in animal experiments as well as in theoretical work20–22,39.  
Modeling work shows that attractor networks can hold multiple pieces 
of information encoded by separate attractors40 in a robust and noise-
resistant manner39. Theoretical work further indicates that the activity  
of attractor networks can drift during the maintenance period due to 
proximity to other attractors in state space20,39. This prediction has 
been confirmed experimentally in macaque recordings with a single 
item held in memory, where the extent of drift away from an attractor 
was predictive of errors22. Here we present evidence that the activity 
of human neurons during WM maintenance is compatible with that 
expected if attractors were present. We show that this prediction of 
the model holds for discrete attractors and for multiple items held 
in memory, because we found that the quality of a memory trace 

could be predicted by the drift (distance) away from the attractor 
representing a given image (Fig. 8). In addition, we found that it  
was principally concept cells in the MTL that supported attractors 
(Fig. 8f,g). Here we defined each attractor based on the pattern 
of activity observed when only a single item was held in memory. 
However, when multiple items were held in memory (loads 2–3), 
multiple concept cells were persistently active. Consequently, the 
population activity was different from that defined by the single-item 
attractors as demonstrated by increased DA values (Supplementary 
Fig. 6c). Despite this, the distance to the attractors defined in this 
manner was predictive of memory content and quality even in loads 
2 and 3 (Supplementary Fig. 6c). This was possible because of the 
high dimensionality of the state space, which made it possible for 
an individual attractor to be closest to several attractors while being 
far away from all the others40. Overall, our findings reveal a direct 

dPC 3 dPC 2

dP
C

 5

–6
–4

–2
0

2 –2
0

2
4

–4

–2

0

2

***
**

* * *

D
is

ta
nc

e 
fr

om
at

tr
ac

to
r 

(D
A

)

0.4

0.6

0.8

1.0

1.2

Fast RTs 
Slow RTs

*** *** ***

Whole
population

Without
concept

cells

Without
maintenance

cells

Only
MTL

Only
MFC

Whole
population

Without
concept

cells

Without
maintenance

cells

Only
MTL

Only
MFC

D
is

ta
nc

e 
fr

om
at

tr
ac

to
r 

(D
A

)

0.4

0.6

0.8

1.0

1.2

Correct
Incorrect

Img A attractor

Img B attractor

Img C attractor

Img D attractor

Img E attractor

0.
3

0.5

0.
7

0.7

0.9

MDS 1 

a c

d

h

g

f

e

0.2 s

0.2 s

0.2 s

**

Correct

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Incorrect
Trial type 

D
is

ta
nc

e 
fr

om
 a

ttr
ac

to
r 

(D
A

)

M
D

S
 2

***

***
***

M
ul

tid
im

en
si

on
al

ve
lo

ci
ty

 (
H

z 
pe

r 
s)

Fixation
cross

Encoding Maintenance

Fixation
cross

Encoding Maintenance

0

1

2

3

0

0.5

1.0

1.5

M
ul

tid
im

en
si

on
al

di
st

an
ce

 (
H

z)

dPC 1dPC 2

dP
C

 3

-5 0 5-6-4-202

-2
0
2
4

dPC 1

dPC 2

dP
C

 3

–4 –2 0 2 4 6

–6–4–2 0 2

–3

–2

–1

0

1

2

3

4

5

Img B encoding
Img C encoding
Img D encoding
Img E encoding

b

0.2 s

0.2 s

0.2 s

Img A encoding or Img A maintenanceor

Incorrect trials

Correct trials

Figure 8 Persistent activity during maintenance forms attractors. (a) Illustration of the mean trajectories in neuronal state space formed by the three 
demixed principal components (dPCs) associated with picture identity during encoding (thin line) and maintenance (thick line). The dot indicates 
the timepoint 200 ms after image onset and the arrow indicates the direction of change. Colors mark different images (img; only 4 of the total 5 are 
shown for clarity). (b) Rotated view of a. (c) Multidimensional velocity of the population in the different phases of the task (shown for all load 1 trials). 
The velocity during maintenance was significantly slower than that during encoding and was not significantly different from that during baseline. 
(d) Multidimensional pairwise distance between all possible pairs of attractors during maintenance (load 1). The distance during maintenance was 
significantly larger than that during baseline (P = 0.0005). Together, c and d are indicative of attractors. The significance of the population metrics 
shown in c and d was computed by randomly subsampling a subset of trials and neurons (Online Methods). (e) Schematic representation of the 
distances between the attractors (attractors are defined based on correct load 1 trials) for each image (small filled dots) and the average position 
in state space for Image D for two behaviors: remembered (correct) and forgotten (incorrect) computed for all loads separately and averaged. This 
representation was determined based on multidimensional scaling of the state space (Online Methods). Isolines depict areas of equal distance from the 
attractor for Image D. (f) DA was significantly smaller for correct than for incorrect trials only when concept cells were part of the population. Note that 
DA < 1 indicates that the trajectory is closer to the correct attractor than to all the other attractors. (g) The DA corresponding to the remembered image 
was indicative of the speed of the response. This relationship was observed only for concept cells. (h) DA predicts performance on individual trials.  
Each dot is one trial. In c and d, boxplots represent quartiles (25%, 75%); horizontal lines indicate medians; whiskers show ranges up to 1.5 times  
the interquartile range; and dots above whiskers show outliers. *P < 0.05, **P < 0.01 and ***denotes P ≤ 0.002.
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neuronal correlate for discrete attractors in humans. This shows that 
persistent activity can be viewed as forming attractors and that per-
sistent activity is a mechanism capable of supporting information 
maintenance during WM.

A lack of evidence for stimulus-specific persistent activity in some 
studies28,41 has led to alternative proposals on how WM is main-
tained. A key new proposal is that information in WM can be carried 
by salient states encoded through synaptic weight changes42,43 or by 
oscillatory bursts41. Our analysis now shows that persistent activity 
compatible with the original model existed in the human MTL. This 
argues that the original WM model is a valid way to conceptualize 
persistent activity during Sternberg-like WM tasks. However, this 
does not rule out the possibility that mechanisms other than persistent 
activity also contribute to WM.

Our data shows that the activity of MTL neurons during WM main-
tenance carried information about the items held in memory. This 
raises questions about the role of the MTL for WM. While it has 
been previously observed that intracranial field potentials recorded 
from the MTL are modulated by load18,44, these differences are not 
stimulus-selective. Subjects with bilateral MTL damage do not exhibit 
WM deficits in some circumstances17, but sufficiently difficult WM 
tasks or the presence of distractors17 reveal WM deficits in the same 
subjects. Based on this, it has been suggested that the MTL is critical 
in conditions when WM alone is insufficient17. Therefore, a possible 
role for the persistent MTL activity we observed is the maintenance of 
memory engrams so that they can be used to recover information in 
WM that has been lost due to shifts in attention triggered by distrac-
tors or when the capacity of WM is saturated.

We found amygdala neurons with prominent persistent activity. 
Notably, amygdala persistent activity was more easily decodable than 
activity in the hippocampus. This is in contrast to episodic memory-
related activity during free recall36, which is prominent in the hippoc-
ampus but not the amygdala. This raises the novel possibility that the 
amygdala could have a role in supporting WM. While encoding new 
long-term memories does not require the amygdala, the amygdala 
prominently modulates this process by enhancing or suppressing 
the encoding of new memories45. Notably, patients with amygdala 
lesions frequently have working memory deficits46. Additionally, 
rats with amygdala lesions have a specific impairment in visual WM 
tasks47. While it is recognized that the amygdala can boost general 
vigilance, and thereby facilitate execution of demanding tasks45, our 
data indicate that the amygdala might directly contribute to WM 
maintenance by storing specific memoranda with the help of persist-
ently active neurons.

The persistent activity of MFC neurons did not carry informa-
tion about the content of the memory. Nevertheless, this activity was  
relevant for WM, because it was predictive of later behavior (accu-
racy and RT) and memory load. This is similar to findings from  
some recordings in macaques, which also revealed nonselective per-
sistent activity in the MFC12. However, other macaque studies have 
revealed MFC single units that are stimulus-selective11,48. Whether 
stimulus-specific persistent activity in the human MFC exists in 
other tasks or for other stimuli, such as tactile vibration stimuli11, 
sounds11 or task contexts48, remains an open question. Note that in 
this study we did not record from dlPFC, which is frequently associ-
ated with stimulus selective persistent activity4,5,7. It therefore remains 
an open question whether human dlPFC neurons have stimulus- 
specific persistent activity. Nevertheless, our finding that the activity  
of maintenance neurons in the MFC during delay was predictive  
of RT and accuracy is consistent with the hypothesized role of the 
MFC in attentional control49.

The dACC and pre-SMA are both part of the cingulo-opercular 
system. It is thought that the activity of this network supports imple-
mentation of different task sets15. Indeed, lesion studies have found 
that subjects with MFC lesions are impaired in switching between 
different response and instruction sets50. Our task consisted of three 
task sets (encoding, maintenance, retrieval). A role of the MFC in 
controlling switches between these three task sets is compatible with 
our finding that differences in activity due to load and RT appeared 
prominently only in the initial part of the maintenance period  
(Fig. 5a,b). This is because in each trial, the set size was unknown to 
the subject. Therefore, starting the maintenance period after encoding 
only one picture was more unpredictable than starting it after encod-
ing three pictures. Thus, switching to maintenance after encoding one 
picture would be more attentionally demanding. Indeed, we found that 
pre-SMA cells were most active for load 1 and less so for loads 2 and 3  
(Fig. 5). Similarly, the firing rate of MFC maintenance neurons was 
most predictive of RT early during the maintenance period (Fig. 5b), 
 which might also be related to switching from the encoding to the 
maintenance mode. We suggest that these neurons support attentional 
control and, together with probe neurons (see below), the implemen-
tation of task sets. Future work is needed to determine whether main-
tenance and concept neurons interact during WM tasks.

Finally, we also observed a group of probe neurons in pre-SMA 
that only became active during the retrieval phase of the task.  
The activity of these neurons was better explained by the time of 
visual stimulus-onset than the timing or nature of the motor response. 
Probe neurons did not respond to the same stimuli during encoding, 
demonstrating that they were not simply visually tuned or responsive. 
In the context of task sets15, probe neurons signaled the transition to 
the retrieval phase of the task, i.e., the switch from maintenance to 
retrieval of information held in WM. Together, this reveals a direct 
correlate of neurons implementing transitions between different tasks 
sets in human MFC.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
task. We used a modified Sternberg task with images (instead of the usual digits) 
as material for memorization (Fig. 1a). Each trial started with a fixation cross 
shown for 900–1,000 ms. Next, we sequentially presented the images to be memo-
rized (‘encoding’) in a given trial. Each picture was presented for 1 s, followed by 
a blank screen for 1–200 ms (randomized). Subjects were asked to memorize the 
1–3 images shown in each trial. We use the terms ‘encoding 1’, ‘encoding 2’ and 
‘encoding 3’ to refer to the 1–3 images shown in a trial. After encoding, there was 
a maintenance (delay) period lasting at least 2.5 s and at most 2.8 s. During this 
time, the word “hold” was shown on the screen. Lastly, after the end of the main-
tenance period, a probe stimulus was displayed. Subjects were asked to decide 
whether the probe stimulus shown was one of the preceding 1–3 images or not. 
Participants responded by pressing the green or red buttons on a response pad. 
Which color corresponded to ‘yes’ and which to ‘no’ was shown at the top of the 
screen during each probe trial. We used this approach to switch the location of the 
yes and no buttons in the middle of the experiment as a control. We asked subjects 
to respond as fast as possible. The probe picture was presented until subjects made 
a response. In each session, subjects performed 108 or 135 trials depending on 
the task variant. Pictures were shown in pseudorandom order.

The pictures used for each participant were different and were determined 
by the results of a screening task conducted 2–3 h earlier (except for one subject 
who did not undergo a screening procedure and who was shown images used 
with a previous subject). For the screening task, images were chosen based on 
a subject’s interests.

During screening, we showed 54–64 images. Each image was shown six times 
in randomized order for 1 s. As a control, every few trials (randomized) we asked 
a control question related to the image shown immediately before (i.e., “Did the 
last image present a person/landscape/animal?”). After the screening task, we 
immediately analyzed the data to choose the five images with the best responses 
as judged by the mean response in a 200- to 1,000-ms window relative to stimulus 
onset (based on an F-statistic computed by a one-way ANOVA with image as a 
factor). In sessions in which less than five neurons showed significantly selective 
responses (6 of 13 sessions), we picked the remaining images according to the 
strongest nonselective responses. In these instances, we used a combination of 
the F-statistic (with image as a factor) and neuronal isolation quality (amplitude 
of waveform) to choose the next best nonselective response. These five images 
were subsequently used for the Sternberg task. Both tasks were implemented 
in Matlab using the Psychophysics Toolbox51. Note that the statistical tests run 
during the screening and Sternberg task were statistically independent, because 
they were run at distinct periods of time.

Data collection and analysis were not performed blind to the conditions  
of the experiments.

Subjects. Thirteen subjects participated in the study (Supplementary table 1). 
All of them were implanted with depth electrodes for possible surgical treat-
ment of epilepsy. They volunteered for the study and gave informed consent. 
This study was approved by the Institutional Review Boards of the Cedars-Sinai 
Medical Center, the Huntington Memorial Hospital and the California Institute 
of Technology. Electrodes were localized based on pre- and postoperative T1 
structural MRIs. We used the following processing pipeline to transform the 
postoperative MRI into the same space as a template brain. We extracted the 
brains from the pre- and postoperative T1 scans52 and aligned the postopera-
tive to the preoperative scan with Freesurfer’s mri_robust_register53. We then 
computed a forward mapping of the preoperative scan to the CIT168 template 
brain54 using a concatenation of an affine transformation followed by a symmetric 
image normalization (SyN) diffeomorphic transform, computed by the ANTs 
software package55. This resulted in a postoperative scan overlaid on a version of 
version of the CIT168 template brain54 registered in MNI152 space. We then used 
Freesurfer’s Freeview program to mark the electrodes as point sets to determine 
where the tips of the microwires were located. For visualization only, electrode 
locations were projected onto the 2D sagittal plane (Fig. 1b).

Spike sorting and quality metrics of single units. Each macroelectrode  
contained eight 40-µm diameter microwires56. We recorded broadband  
(0.1–9,000 Hz filter) data from 64 channels sampled at 32 kHz using a Neuralynx 
Atlas system. Signals were locally referenced to one of the eight microwires  
in each brain area.

The raw signal was filtered with a zero-phase lag filter in the 300- to 3,000-Hz 
band, and spikes were detected and sorted using a semiautomated template-
matching algorithm23. We computed several spike sorting quality metrics 
for all identified putative single units to assess the quality of identified units 
(Supplementary Fig. 2): (i) the percentage of interspike intervals (ISIs) below 3 ms  
was 0.42% ± 0.68%; (ii) the ratio between the s.d. of the noise and the peak ampli-
tude of the mean waveform of each cluster was 6.18 ± 4.09 (peak SNR); (iii) the 
pairwise projection distance in clustering space between all neurons isolated on 
the same wire was 14.39 ± 6.2 (projection test; in units of s.d. of the signal)57;  
(iv) the modified coefficient of variation of variability in the ISI (CV2) was  
0.94 ± 0.14; and (v) the median isolation distance58 was 30.9. We calculated the 
isolation distance in a ten-dimensional feature space (energy, peak amplitude, 
total area under the waveform and the first five principal components of the 
energy normalizes waveforms58).

Statistics. Statistical comparisons were conducted using permutation tests 
based on a null distribution estimated from B = 2,000 runs on data with scram-
bled labels using the EEGLAB toolbox59. For comparisons with two groups, 
we used the permuted t-test statistic and for comparisons with more than two 
groups, we used F-statistics. Note that we used permutation tests throughout 
to avoid the assumption of normality. We used ANOVAs instead of linear 
regressions to test for effects of load because linear regressions introduce the 
additional assumption of a monotonic relationship between load and behavior.  
Note that the reported P-values may differ from those expected from the t- and 
F-distributions because P-values were based on the empirically estimated null 
distribution. No statistical methods were used to predetermine sample sizes, but 
our sample sizes are similar to those reported in previous publications in the 
field56. A Supplementary methods checklist is available.

Selection of neurons. For each recorded neuron, we ran three statistical tests to 
determine whether a cell qualified as a concept, maintenance or probe neuron. 
Tests were independent and some cells qualified as multiple types. To identify 
concept cells we counted spikes in a window 200–1,000 ms following stimulus 
onset of the first encoding period. Concept cells were selected (P < 0.05) using 
a permuted one-way ANOVA with five groups (the number of unique images).  
In addition, we required that the activity for the image with the maximal response 
be significantly larger than that of all other images (P < 0.05, permutation t-test). 
The value of this latter test was also used as the effect-size metric to compare 
the neuronal groups (see “Separability of neuronal categories” section, above).  
For the analysis of persistent activity of concept cells, we used all concept cells 
found during the Sternberg task regardless of whether they were also significant 
in the screening task.

To identify maintenance cells, we tested whether the mean firing rate during 
the maintenance period (0–2,500 ms) was significantly larger (permutation t-test, 
P < 0.05) than the firing rate during the 500-ms long fixation-cross period before 
trial start. If a maintenance cell was also a concept cell, we additionally required 
that its maintenance activity for the nonpreferred stimuli be significantly higher 
than baseline. This second criteria was to ensure that strong concept cells, which 
only increase their firing rate to a single stimulus, didn’t automatically qualify 
as maintenance cells.

Probe neurons were identified by comparing the firing rate during presenta-
tion of the probe stimulus (spikes counted during the period 200–1,000 ms after 
probe onset) to that during both the encoding (P < 0.05, 200–1,000 ms) and 
maintenance periods (P < 0.05, 0–2,500 ms, permutation t-test).

Single-cell metrics. We used a Picture Selectivity Index (PSI) to quantify the 
response of concept cells: 

PSI
preferred image nonpreferred image

baseline
=

−
×

FR FR

FR
100

Where FR is the mean firing rate in a 200- to 1,000-ms window relative to  
stimulus onset for encoding and probe, 0 to 2,500-ms window for mainte-
nance and −500- to 0-ms window for baseline. When comparing correct  
and incorrect trials, we computed firing rates and PSI values independently  
for the three load conditions (1, 2 and 3) and then averaged the results to  
eliminate bias resulting from the different numbers of incorrect trials for  
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each load. We also used the depth of selectivity index6 to quantify the sparsity  
of concept cells (Supplementary Fig. 1): 

S

n
R

R

n

i

=
−











−

∑
max
1

Where n is the number of images presented, Ri is the firing rate of the neu-
ron during the presentation of the ith picture, and Rmax is the largest firing rate 
across all presented images. A neuron with S = 0 would respond identically to 
all images, whereas a neuron with S = 1 would respond only to a single image 
and not at all to others.

To compare time courses of neuronal activity, we counted spikes in 200-ms  
bins with a step size of 2 ms. We corrected for multiple comparisons using  
a cluster-based approach60. In this method, a cluster is defined as a group of  
adjacent significant tests. We tested, for all identified clusters, whether the 
summed value of the test statistic in a given cluster was larger than the 95th 
percentile of the same value estimated from scrambled labels. For comparing 
firing rates across cells, we standardized the firing rate of each neuron using the 
mean and s.d. of the firing rate of each cell during the baseline (fixation cross, 
−500-ms to 0-ms window before encoding 1). To evaluate whether the propor-
tion of significant neurons in an area was larger than that expected by chance, 
we computed a null distribution based on randomly scrambled labels (B = 500) 
and then estimated an empirical P-value as described.

Population decoding. We used a pseudopopulation of neurons pooled across 
all recording sessions and subjects to determine decoding performance. To pool 
images from different subjects, we arbitrarily labeled the individual images of each 
subjects as Images A–E. We then pooled the images with the same label across 
all subjects. Note that each subject saw a different set of pictures. Nevertheless, 
neurons can be considered a pseudopopulation for decoding purposes, a proce-
dure that is frequently used to pool single-neuron recordings across sessions and 
animals61. This is because for the learning algorithm, all that matters is that each 
subject saw five distinct images regardless of their identity. The decoder assigns 
a weight to each neuron independently, i.e., the decoder identified all neurons 
that signaled the presence of Image A in all subjects, regardless of the identity 
of Image A. This pooling procedure provides, at every point of time, an N × T 
matrix, where N is the total number of neurons recorded from all subjects in given 
brain area and T is the smallest number of trials of a given type observed in all 
subjects. This matrix thus represented, as a function of time, the neural state in 
an N-dimensional space. We then trained a decoder to separate patterns in this 
high-dimensional space. Spikes were counted in 1,500-ms bins moved with a 
step size of 250 ms. For decoding, we used a support vector machine (SVM) as 
implemented in the ndt toolbox61 and the LIBSVM library62. We used leave-one-
out cross-validation to estimate performance: one trial was randomly assigned for 
each neuron from each class as the test trial and the remaining trials were used 
for training. All possible train–test combinations were computed, and we used  
500 randomly chosen train–test combinations to estimate the cross-validated test-
ing error. For decoding image identity, we trained a classifier on the load 1 condi-
tion and then applied it to loads 2 and 3 to determine the accuracy by which the 
algorithm could determine whether a given image was in held in memory. To test 
whether any given decoding performance was significantly better than chance, 
we created null distributions by decoding using the same approach as described 
above but with scrambled labels. We repeated this computation 500 times.  
Note that thus the minimal possible P-value was 0.002, and we used this P-value 
if no value in the null distribution exceeded the observed value. Similarly, for 
comparisons between decoding accuracy of different decoders—for example, all 
neurons compared to maintenance-only neurons—we created a null distribution 
of differences in a given comparison by subtracting the null distribution created 
for the whole population (in this example) from the null distribution created for 
maintenance neurons only. We then estimated the P-value for this comparison 
by counting the number of times the null distribution exceeded the observed 
difference of performance between the two decoders.

Analysis of neuronal activity dynamics. To analyze the dynamics of activity  
of the entire neuronal population, we reduced dimensionally using demixed  

principal component analysis (dPCA)29. We used dPCA instead of PCA because 
PCA stretches components ‘blindly’, based on the percentage of explained vari-
ance as a criterion. As a result, the dimensions chosen often lack a meaningful 
interpretation and thus are not helpful in a particular analysis. In contrast, dPCA 
has an advantage in that it stretches components along dimensions, not only to 
explain overall signal variance but also to explain variance attributable to vari-
ables of interest (such as image identity in our case). For dPCA analysis, we used 
a pseudopopulation of all recorded neurons (as defined above). We used dPCA 
with picture identity and time as the marginalized variable. We binned neuronal 
firing in 2-ms non-overlapping bins and smoothed the resulting time course by 
convolution with a Gaussian kernel (200 ms wide). In addition, we z-scored all 
time-courses based on the mean and s.d. estimated from the baseline (−500 to 
0 ms relative to onset of first image). We computed the basis functions of dPCA 
(demixing weights) based only on the data recorded 200–1,000 ms following onset 
of the first image (encoding 1). We rank-ordered the dPCs by their explained vari-
ance and used the first 15 dPCs. These together accounted for 51.58% of the total 
signal variance. To prevent overfitting, we used a regularization procedure to find 
the optimal lambda parameter (Supplementary Fig. 6f). In addition, we tested 
whether the percentage of explained variance for picture identity was higher than 
that observed for data with scrambled image identity labels. Indeed, the portion 
of variance that was attributed to image identity by the 15 largest dPCs of the real 
data was 45.13%, whereas for the scrambled data it was only 13.64% (permutation 
test, P = 0.002; Supplementary Fig. 6e). We projected the data from the mainte-
nance period onto the basis functions computed from the encoding 1 period.

We used the multidimensional Euclidean distance d(p,q) to quantify how dif-
ferent the population activity was between the neural activity vector p(t) and q(t) 
(which here are the neuronal states during two different conditions at time t):

d p t q t p q t
i

n
i i( ( ), ( )) ( )( ) ( )= −

=
∑
1

2t

In addition, we quantified the speed by which the population activity changed 
at a given point of time t as V(t):

V t
n

p p t t

t
i
n

i i
( )

( )( ) ( )
= ×

− −=∑1 1
2t ∆

∆

Where n is the number of dimensions in dPCA space (n = 4), ∆t is 50 ms and 
p is the neural activity vector. We used the first four dPCs (ids 1, 2, 3 and 5) that 
had the highest percentage of variance attributed to picture identity during load 
1 trials (Fig. 8a,b and Supplementary Figs. 5 and 6d; see also Supplementary 
Video 1). In contrast, dPC 4 had variance that was only attributable to time but 
not to image identity (Supplementary Fig. 5). Additionally, the next biggest dPCs 
(id 6) accounted for only 2.55% of the variance attributed to picture identity. We 
also recomputed our analysis using the 8 or 12 dPCs with the highest percentage 
attributed to image identity and found that results were very similar to the analysis 
based on 4 dPCs (Supplementary Fig. 6a,b). Both V and d are population-level 
metrics not computable for single neurons. To estimate the variance of V and d, we 
bootstrapped the confidence intervals of V and d by randomly picking a subset of 
10% of trials and computed V and d for each such subset (repeated 50 times).

For each possible remembered stimulus k, we defined the location of its cor-
responding attractor Ak as the center (mean across time) of the neuronal trajectory 
observed during maintenance of that image during the load 1 condition. There 
were five attractors (a–e), one for each image used. To quantify the distance of a 
neuronal trajectory from an attractor in a given condition, we used a DA metric: 

DA t
d t

C
d t

i

j i
C

j
( )

( )

( )
=

− ≠∑1
1

Where dj(t) = d(Aj,p(t)) is the Euclidean distance of the neuronal trajectory p(t) 
from the attractor Aj. C is the total number of attractors (C = 5). We computed 
DA(t) separately for loads 1–3 and for each time point t during maintenance 
(0–2,500 ms), and then averaged DA(t) over all points of time and loads to get a 
single value DA for every trial. Note that DA = 1 implies that the neural trajectory 
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was equidistant between the tested (di) and all other attractors, which indicates no 
memory. On the other hand, DA < 1 indicates that the neuronal state was closer 
to one attractor than to all the other attractors.

Like d and V, DA is a population-level metric not computable for single neu-
rons. We thus assessed the significance of differences in DA between correct and 
incorrect trials and fast and slow RT conditions by estimating a null distribution 
of DA based on data with scrambled labels. For visualization of distances between 
attractors in 2D space (Fig. 8e), we used nonmetric multidimensional scaling 
(MDS). We used Euclidean distance as the pairwise distance measure. MDS was 
used for visualization only.

For the single-subject analysis (Fig. 8h), we used the same approach as 
described for the pseudopopulation but used only neurons recorded simultane-
ously from a given subject. For each session, we used the first four dPCs that 
explained the highest proportion of variance and computed DA accordingly.

data availability. The data that support the findings of this study are available 
on reasonable request from the corresponding author. The data are not publicly 
available because they contain information that could compromise research  
participant privacy/consent.

code availability. Analysis was performed in Matlab using the publicly avail-
able software packages Osort, ndt and EEGLAB together with custom-developed 
analysis routines.
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Erratum: Persistently active neurons in human medial frontal and medial 
temporal lobe support working memory
Jan Kamiński, Shannon Sullivan, Jeffrey M Chung, Ian B Ross, Adam N Mamelak & Ueli Rutishauser
Nat. Neurosci. 20, 590–601 (2017); published online 20 February 2017; corrected after print 4 May 2017

In the version of this article initially published, the pink and gray symbols were switched in the key to Figure 7d and the plot of the outlier data 
points was mis-scaled relative to the axes. In Figure 6d, the x axis was numbered 0 through 1 instead of –1 through 0. The errors have been cor-
rected in the HTML and PDF versions of the article.
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