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Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential 
neurotransmitter pathology of schizophrenia remains poorly defi ned, despite huge advances over the past half-century in identifying 
neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of 
the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate 
system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and 
inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the 
NMDA-receptor subtype in the aetiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of 
phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent 
fi ndings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in 
opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes 
in excitation–inhibition (E/I) balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, 
particularly in gamma frequency oscillatory activity, will be discussed.
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INTRODUCTION
Schizophrenia, which affects approximately 1% of the world population 
(Rossler et al., 2005), is characterized by episodic positive symptoms 
such as delusions, hallucinations, paranoia and/or psychosis and per-
sistent and progressive negative symptoms such as fl attened affect, 
impaired attention, social withdrawal, and cognitive impairments (Ban 
et al., 1984; Pearlson, 2000). It has been the dopamine hypothesis 
that has originally provided much of the momentum for neurochemical 
research in schizophrenia. It maintains that dysfunction of the dopamine 
neurotransmitter system underlies the behavioural abnormalities that 
accompany the disease. The dopamine hypothesis is based on the 
observation that drugs effective in treating schizophrenia share the 
common feature of blocking dopaminergic receptors, thereby allevi-
ating positive and negative symptoms (Anden et al., 1970). However, 
altered levels of dopamine or dopamine receptors have not gener-
ally been observed upon post-mortem examination of the brains of 
schizophrenic patients (Knable et al., 1994) and it has since been pro-
posed that the dopaminergic overactivity may be secondary to primary 

changes in other neurotransmitter systems (Coyle, 2004). Negative 
symptoms are less responsive to the current treatments with typical 
and atypical neuroleptic D2-receptor antagonists, furthermore suggest-
ing a non-dopaminergic mechanism underlying these components of 
the symptomatology (Kirkpatrick et al., 2001).

In many clinical cases, second-generation neuroleptics have been 
suggested to be a more effective and less side-effect-riddled treatment 
option, than typical antipsychotics, acting via a combination of dopamin-
ergic and serotonergic antagonism. 5-HT-receptor antagonism seems to 
be essential in alleviating hallucinations and other positive schizophrenic 
symptoms in a more effective way (Jones et al., 1998). The dopamine/
serotonin hypothesis has been examined in many post-mortem studies 
of schizophrenic brain tissue (Hashimoto et al., 1991; Mita et al., 1986), 
as well as in pharmacological studies (Krystal et al., 1993). However, the 
results similarly remain inconclusive. This has prompted the proposition 
that the neurochemical pathology is not  limited to monoaminergic  systems 
and that those changes may rather be secondary knock-on effects. In 
recent years, the attention has therefore shifted to the glutamate system, 
the major excitatory neurotransmitter in the CNS (Coyle, 2006). Since 
the proposition of the infl uential NMDA-hypofunction theory (see below) 
and the research which followed, increasing lines of evidence point at an 
abberant glutamate system in schizophrenia. Phencyclidine animal mod-
els, in which a NMDA-hypofunction state is induced, enable the testing of 
research hypotheses of the NMDA-hypofunction model at the molecular, 
cellular and network level.

The purpose of this review is to summarize recent fi ndings from work 
on these animal models with special emphasis on the role of altered E/I 
balance on aberrant network activity in NMDA-hypofunction models of 
schizophrenia.
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THE NMDA-HYPOFUNCTION THEORY AND 
GLUTAMATERGIC ANIMAL MODELS OF 
SCHIZOPHRENIA
There are four main lines of research which provide strong evidence in 
favour of pathological changes in the glutamatergic system in schizophre-
nia, specifi cally at the level of the NMDA-receptor subtype (Mouri et al., 
2007). These are pharmacological studies using NMDA-receptor antago-
nists (Morris et al., 2005), brain imaging studies (Ohrmann et al., 2007; 
van Elst et al., 2005), genetic studies (Eisener et al., 2007; Harrison and 
Owen, 2003; Tan et al., 2007) and postmortem investigations (Akbarian 
et al., 1996; Dracheva et al., 2001; Guilarte et al., 2008).

The mounting evidence indicating a central role for glutamate and 
the NMDA-receptor subtype in the aetiology of schizophrenia has, in the 
mid-90s, led to proposition of the infl uential NMDA-hypofunction model 
of schizophrenia (Olney and Farber, 1995). It suggests that schizophrenia 
is associated with a loss of NMDA receptors, particularly on interneu-
rons. The theory pertains, that this loss of inhibition leads to a secondary 
overstimulation in the glutamatergic and monoaminergic neurotrans-
mitter systems. Taken together, the dopamine/serotonin hypothesis 
and glutamate hypothesis are in the process of being empirically uni-
fi ed and recent developments point towards a complex interaction of 
the dopaminergic and glutamatergic systems in schizophrenia (Carlsson 
et al., 1999; Flores and Coyle, 2003; Javitt and Zukin, 1991). Whereas 
numerous lines of research have aimed at identifying mechanisms by 
which the glutamate system infl uences dopaminergic neurotransmis-
sion, causing the dopamine-associated symptoms treatable with clas-
sical and non-classical antipsychotics, Olney et al. (1999) suggest that 
the dopaminergic system can exert a major functional infl uence over the 
NMDA system, thereby explaining the effi cacy of dopaminergic antago-
nists by an indirect action on the glutamate system (Olney et al., 1999). 
The mechanism they propose is that D2-receptors may regulate glutama-
tergic transmission, thereby reinstalling the normal levels of glutamate 
activation (Sesack et al., 2003).

One further consequence of NMDA-hypofunction is an excessive 
release of glutamate (Adams and Moghaddam, 1998; Moghaddam et al., 
1997), as well as acetylcholine (Kim et al., 1999) in cortical regions. 
One assumption of the NMDA-hypofunction theory is that this increased 
release of excitatory neurotransmitter leads to an overstimulation of 
downstream excitatory neurons, as well as to a further disinhibition 
through a lack of NMDA receptor excitation on interneurons and a con-
sequent loss in overall network inhibition (Homayoun and Moghaddam, 
2007). According to this model, this complex disinhibitory syndrome 
leads to a hyperstimulation in primary corticolimbic networks and to the 
development of positive and negative psychotic symptoms. The fact that 
loss of NMDA receptors is presumed to affect primarily cortical interneu-
rons suggests that functional changes in network behaviour should 
result, representing a substrate underlying aspects of the schizophrenic 
symptomatology at the electrophysiological level. Since interneurons are 
involved in the generation, maintenance and timing of oscillatory pat-
terns (for review see Bartos et al., 2007), which are thought to establish 
the temporal framework of cognitive processing, a loss of inhibition is 
likely to functionally compromise these complex population activities and 
thereby cause a range of cognitive symptoms.

The NMDA-hypofunction theory can also account for the develop-
mental vulnerability associated with schizophrenia, as well as for its 
typical age of onset in early adulthood (Thompson et al., 2004). Thus 
it has been shown, that during the early developmental stage of syn-
aptogenesis, neurons carrying NMDA receptors are extremely sensitive 
towards the level of glutamatergic activation they receive, reacting with 
excitotoxic neurodegeneration towards excessive levels (Ikonomidou 
et al., 1989) and with apoptosis towards defi cient glutamate stimula-
tion (Ikonomidou et al., 1999). Therefore an imbalance in glutamate 
concentrations during this stage, which could be triggered by a simple 
mechanism such as in utero compression of the umbilical cord, will lead 

to a selective loss of NMDA-bearing neurons, resulting in a structurally 
implemented NMDA-hypofunction state (Olney et al., 1999). This vul-
nerability is assumed to come into play only in early adulthood, when 
further developmental processes, such as synaptic pruning, render the 
brain susceptible to these disease factors (Granger, 1997). It has been 
shown that the systemic application of phencyclidines during develop-
ment can lead to neurodegenerative patterns in corticolimbic regions 
(Corso et al., 1997; Ellison, 1994; Ellison and Switzer, 1993; Wozniak 
et al., 1998), which resemble the structural changes associated with 
schizophrenia (Heckers et al., 2002; Konradi and Heckers, 2001).

PHENCYCLIDINE MODELS OF 
SCHIZOPHRENIA
Already in the 1950s it had been recognized that the anaesthetic com-
pound phencyclidine could induce positive and negative symptoms which 
closely resemble those observed in schizophrenic patients (Javitt and 
Zukin, 1991; Luby et al., 1959). Later it was conclusively shown that the 
mechanism behind these effects was the blockade of the glutamatergic 
NMDA receptor (Lodge and Anis, 1982).

Early studies suggested aberrations in glutamate levels in schizophrenic 
patients (Kim et al., 1980), the ability of phencyclidine to mimic psycho-
sis in healthy subjects and to induce an aggravation of the symptoms in 
schizophrenic patients (Lahti et al., 1995). These studies prompted the use 
of NMDA-antagonists, such as ketamine or MK-801, as model systems 
for schizophrenia and the proposition of a glutamatergic/NMDA-related 
disease mechanism in schizophrenia. Phencyclidines are non-competitive 
antagonists of the N-methyl-D-aspartate subtype of glutamate receptor 
and protect cortical neurons against ischemia. Paradoxically, phencyclid-
ines produce neurotoxic effects in corticolimbic regions, including neurons 
of the entorhinal cortex (EC) (Olney et al., 1989). The mechanisms underly-
ing these paradoxical effects and their potential relationship to psychotic 
symptoms are still unknown.

The use of phencyclidine models has also furthered our understanding 
of the pharmacological and functional points of convergence between the 
implicated monoaminergic neurotransmitter systems. Pharmacological 
studies have revealed that MK-801 increases dopaminergic and seroton-
ergic neuronal activities in several brain regions (Hiramatsu et al., 1989; 
Loscher et al., 1991). Antipsychotic dopamine receptor antagonists are 
also effective in preventing phencyclidine-induced abnormal behaviour 
such as hyperlocomotion and stereotyped behaviours in animals (Kitaichi 
et al., 1994; Noda et al., 1995).

A number of phencyclidine compounds, such as dizocilpine, phencyc-
lidine and ketamine have been used to model schizophrenia in rodents, 
either by acute or chronic systemic exposure or by focussing on the period 
of withdrawal after repeated application (Jentsch and Roth, 1999; Mouri 
et al., 2007). Acute and repeated exposure to phencyclidine induces 
positive symptoms such as increased locomotor activity (Nabeshima 
et al., 1983; Nagai et al., 2003) and supersensitivity in hyperlocomotion 
(Jentsch et al., 1998; Kitaichi et al., 1995), effects which can be reversed 
by typical and atypical neuroleptic medication (Kitaichi et al., 1994). 
Correlates of human negative symptomatology induced by NMDA-receptor 
antagonists include impairment in social interaction (Qiao et al., 2001; 
Sams-Dodd, 1995, 1996) and decreased motivation (Murai et al., 2007; 
Noda et al., 1995, 1997). Furthermore cognitive defi cits can be observed 
in these animals, such as impairments in memory and learning (Abdul-
Monim et al., 2003; Idris et al., 2005). Further evidence for the validity 
of the phencyclidine models of schizophrenia and the associated NMDA-
hypofunctional state comes from recent studies, which show that the 
repeated exposure to ketamine can produce changes in the expression 
of hippocampal proteins, such as parvalbumin and nitric oxide synthase, 
similar to the changes seen in human schizophrenia (Keilhoff et al., 2004) 
and also mimic the changes of cortical gene expression seen in schizo-
phrenics (Kaiser et al., 2004). Taken together this evidence indicates that 
acute and chronic phencyclidine animal models of schizophrenia induce 
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effects which are comparable to the human symptomatology and may be 
valuable in exploring the pathophysiology of schizophrenia (Braun et al., 
2007; Enomoto et al., 2007; Rujescu et al., 2006; Wang et al., 2007).

Systemic injections of MK-801 or ketamine in mice and rats were 
therefore used as a model of the acute psychotic state, inducing the char-
acteristic hyperlocomotion and stereotyped behaviours (Dugladze et al., 
2004; Gloveli et al., 1997; Kehrer et al., 2007; Vaisanen et al., 1999). 
Systemic administration of MK-801 selectively alters the fi eld potentials 
evoked in layer III of the medial EC (Gloveli et al., 1997). Moreover, phen-
cyclidine may have an infl uence on signal transfer from the EC to the 
hippocampus (Dugladze et al., 2004). It was shown, that MK-801 causes 
disinhibition of layer III projection cells and may therefore cause strong, 
pathological activation of the direct layer III-CA1 pathway (Dugladze 
et al., 2004), a fact which indicates that changes at the network level may 
be a likely result. In a more recent study, the kainate-induced gamma 
frequency oscillations in the area CA1 were shown to be signifi cantly 
increased in MK-801 pretreated animals, a fi nding in line with in vivo 
observations that systemically injected MK-801 leads to increased spon-
taneous gamma activity in freely behaving rats (Ma and Leung, 2000). 
Interestingly in this study the authors could block the behavioural effects 
of MK-801 and reverse the increases in CA1 gamma activity by apply-
ing muscimol, a GABA-A receptor agonist onto the medial septum. Since 
the DG and CA2/3 receive projections from the medial septum, whilst 
the septal input connectivity to CA1 stems mainly from horizontal and 
ventral diagonal band areas (Yoshida and Oka, 1995) this result dem-
onstrates an indirect effect of the muscimol-induced changes on the 
electrical activity in CA1, mediated by other hippocampal subfi elds. This 
suggests that DG and CA3 network activity can have limiting effects on 
CA1 gamma activity, which is supported by in vitro fi ndings showing that 
control slices with cut Schaffer collateral connections exhibited signifi -
cantly more increased kainate-induced gamma band activity than slices 
which had been spared and in which the CA1 was not isolated from the 
CA3 synaptic input (Kehrer et al., 2007). A number of studies have shown 
that the CA1 region of schizophrenics is the least affected hippocampal 
subfi eld. This holds true for markers of glutamatergic activity (Gao et al., 
2000; Harrison et al., 2003; Heckers et al., 2002) as well as GABAergic 
activity (Kalkman and Loetscher, 2003; Lewis et al., 2005). Therefore the 
hippocampus in schizophrenics is functionally compromised at the level 
of CA1 inputs, whilst sparing the CA1 circuit to a greater extend.

Similar to clinical observations, in the NMDA-hypofunction models 
of schizophrenia both increased (Kehrer et al., 2007; Pinault, 2008) and 
decreased gamma activities (Cunningham et al., 2006) have been dem-
onstrated. Therefore, further investigation needs to be undertaken to 
address possible model- and region-specifi c alterations in the gamma 
network oscillatory activity in animal models of the NMDA-hypofunction 
state. Establishing the contingencies of increased versus decreased 
gamma band activity is of high importance since aberrant network oscilla-
tory activity may underlie the cognitive decline observed in schizophrenic 
patients and may furthermore offer vital clues as to the relationship 
between positive and negative symptoms in schizophrenia at a network 
level (Bucci et al., 2007; Cho et al., 2006; Ford et al., 2007).

SCHIZOPHRENIA AND NETWORK 
OSCILLATORY ACTIVITY
Inhibition-based population activities
Oscillatory population activity can be observed in a number of different 
brain regions, occurring at different, characteristic frequencies associ-
ated with specifi c tasks (Buzsáki and Draguhn, 2004). Gamma and theta 
rhythms can coexist or occur separately in the hippocampal formation, 
in which they form major components of the recordable, rhythmic activ-
ity (Bragin et al., 1995; Csicsvari et al., 2003). In the hippocampus of 
rodents, theta rhythms (4–12 Hz) can be detected during exploration 
and walking (Vanderwolf, 1969; for review see Buzsáki, 2002), whilst 
gamma band activity (30–80 Hz) emerges during immobility, periods 

of rest and sleep. Network oscillations are thought to be important in 
sensory processing (Averbeck and Lee, 2004; Laurent and Davidowitz, 
1994), motor programming (Murthy and Fetz, 1996) associative learning 
(Buzsáki, 2002) and attention (Jensen et al., 2007). Furthermore it has 
been proposed to be the key mechanism enabling perceptual binding 
(Roelfsema, 1998; Singer, 2001). It has been hypothesized that rhyth-
mic population activity is the temporal framework in which patterns of 
neurons that fi re concomitantly are grouped together, thereby enabling 
information to be presented via combinations of neuronal output patterns 
(Singer and Gray, 1995).

Inhibition based gamma oscillations in cortical and hippocampal 
slice preparations can be elicited in a number of ways, amongst them 
puff and bath application of kainate or carbachol, metabotropic gluta-
mate receptor activation or high frequency tetanic stimulation protocols 
(Dugladze et al., 2007; Fisahn et al., 1998; Gloveli et al., 2005a; Mann 
et al., 2005; Whittington et al., 1995; for review see Bartos et al., 2007). 
Recent observations suggest that certain types of GABAergic interneu-
ron have different and most likely unique roles in the generation and 
maintenance of oscillatory activity. It has been shown in vitro, that hip-
pocampal oscillations also depend upon the specifi c orientation of the 
cross section, in such a way that longitudinal slices of hippocampus will 
show predominantly theta-frequent population activity, whilst the trans-
verse slice preparation mainly exhibits gamma oscillations upon kain-
ate receptor activation (Gloveli et al., 2005b). The reason for this is an 
orthogonal arrangement of interneuron microcircuits alongside the lon-
gitudinal and transverse axis, and the fi ring properties of certain classes 
of interneurons during theta and gamma frequency oscillations (Gloveli 
et al., 2005a; Kopell et al., 2007; Tort et al., 2007). Specifi cally the par-
valbumin-containing, soma-inhibiting interneurons and the neuropeptide 
somatostatin-containing, distal dendrite-inhibiting interneurons fi re at 
gamma and theta frequencies respectively in the active network, due to 
their intrinsic and synaptic properties, and are thought to play key roles 
in the generation of gamma and theta activity (Gloveli et al., 2005a; Mann 
et al., 2005; Somogyi and Klausberger, 2005).

Altered gamma oscillatory activity in schizophrenia
Since there is ample evidence for the importance of oscillatory popula-
tion activity in perceptual processing, it has been proposed that some or 
all of the positive and cognitive symptoms may result from pathological 
changes in rhythmic network activity (Lee et al., 2003a). It is the fi nely-
tuned and balanced interplay between excitation and inhibition which is 
thought to be crucial to the functioning of population activity, such as 
theta and gamma band activity (Bartos et al., 2007). Due to the extensive 
evidence indicating changes in the major neurotransmitter systems and 
subclasses of interneurons, it is reasonable to assume that the functional 
network behaviours which they support may be altered within the schiz-
ophrenic brain (Ford et al., 2007). The investigation of this assumption 
is somewhat hindered by the low resolution of the EEG at the level of 
subcortical structures. Phencyclidine animal models and in vitro electro-
physiology may therefore offer a second route to investigating changes in 
population activity following the NMDA-hypofunction state.

It has been proposed that the cognitive impairments associated with 
schizophrenia may be related to a failure in integrating sensory inputs at 
the level of local and distributed neuronal circuits, fi ring in precisely timed 
rhythms (Lee et al., 2003b). The synchronous fi ring of large populations of 
neurons in cortical regions in the gamma frequency range has been pro-
posed as a candidate mechanism for the integration of complex sensory 
percept and is also thought to be involved in higher-order memory func-
tions. The cognitive symptoms observed in schizophrenia point at a failure 
in integrative processing, suggesting that mechanisms of gamma activity 
may be compromised in these patients (Herrmann and Demiralp, 2005).

Since interneurons are central to the genesis and maintenance of 
complex network behaviours, the proposed disinhibition caused by the 
NMDA-hypofunction state suggests the possibility of consecutive changes 
at the network level. Llinas and colleagues compared the EEG gamma 



K e h r e r  e t  a l .

Frontiers in Molecular Neuroscience  |  April 2008  |  Volume 1  |  Article 6

4

activity of patients with different neurological and psychiatric diseases 
with those of controls and found positive symptoms across conditions 
to be associated with increased amplitudes of gamma frequency activity 
(Llinás et al., 1999). A number of other pathologies were similarly found 
to be accompanied by unidirectional or bidirectional changes in gamma 
activity. Increased gamma activity has been noted in unmedicated chil-
dren suffering from attention-defi cit hyperactivity disorder (Yordanova 
et al., 2001) and in epilepsy patients (for review see Herrmann and 
Demiralp, 2005), whilst decreases in gamma activity were observed in 
Alzheimer’s disease in regards to overall activity (Loring and Largen, 
1985, for review see Herrmann and Demiralp, 2005) and in response to 
visual and auditory stimulation (Politoff et al., 1995, 1996). During mental 
tasks on the other hand, Alzheimer disease patients showed increased 
gamma activity (Loring and Largen, 1985) pointing at the complexity and 
regional specifi city of changes in gamma frequent EEG rhythms in neu-
rological disease.

A number of studies have shown changes in EEG activity in the 
gamma band in schizophrenic patients. Reduced gamma activity was 
found in stimulus-dependent responses in the auditory and visual cortex 
of schizophrenics (Clementz et al., 2003; Kwon et al., 1999; Lee et al., 
2001; Spencer et al., 2008). Similarly changes in neuronal synchrony 
during high frequency activity have also been found in schizophrenics 
(Spencer et al., 2004). Although most studies have found reductions 
in gamma band activity in schizophrenics (Slewa-Younan et al., 2001), 
there appears to be a symptom specifi c pattern in the alterations in 
gamma activity indicating that increases in amplitude and power are 
associated with positive symptoms, particularly hallucinations and real-
ity distortions, whereas negative symptoms, such as psychomotoric 
defi cits are linked to decreased gamma activity (Baldeweg et al., 1998; 
Bucci et al., 2007). To determine the mechanisms of these changes at 
a molecular level, research now turns to phencyclidine animal models 
of schizophrenia.

GABAergic interneurons in schizophrenia
The major inhibitory neurotransmitter, GABA, was fi rst implicated in the 
pathophysiology of schizophrenia by E. Roberts in 1972 (Roberts, 1972). 
Since his proposal, a role for GABA in the pathophysiology of schizo-
phrenia continues to be formulated in the context of complex interac-
tions between GABA and other neurotransmitter systems (Lewis and 
Moghaddam, 2006). An abnormality in GABAergic regulation of dopamine 
cell bursting has been postulated to underlie some of the symptoms 
of schizophrenia (Grace, 1991; Moore et al., 1999). Others have noted 
the direct modulation of the dopaminergic system by GABAergic neu-
rons, a potential mechanism whereby an abnormality in the GABAergic 
system could be involved in the dopaminergic dysfunction in schizo-
phrenia (Carlsson, 1988). In the original model, Olney and Farber (1995) 
proposed that the NMDA hypofunction state may either be caused by 
intrinsically hypofunctioning NMDA receptors or through the excitotoxic 
loss of NMDA receptor-bearing GABAergic neurons. Loss of GABAergic 
interneurons in the hippocampal formation, possibly secondary to exci-
totoxic injury (Benes, 1999) or to loss of glutamatergic neurons has also 
been hypothesized (Deakin and Simpson, 1997). A dysfunction of the 
5-HT2A receptors on GABAergic interneurons in the frontal cortex has 
been proposed as a further putative site of pathophysiology in schizo-
phrenia (Dean, 2001).

GABAergic interneurons can be broadly classifi ed into several classes 

on the basis of different criteria, such as action potential fi ring proper-
ties, somato-dendritic architecture and axonal ramifi cation pattern, 
neurochemical content, voltage and ligand-gated conductances as well 
as plastic changes in excitatory synaptic transmission (for reviews see 
Freund and Buzsaki, 1996; McBain and Fisahn, 2001). Functionally, at 
least three main GABAergic cell types coexist in hippocampal networks: 
perisomatic inhibitory neurons controlling the fi ring of principal cells, 
 dendritic inhibitory interneurons regulating dendritic electrogenesis, syn-
aptic input and Ca2+ signalling (Miles et al., 1996), and GABAergic cells 

specifi cally innervating other inhibitory interneurons (Miles et al., 1996; 
Somogyi and Klausberger, 2005).

Previously it has been reported that phencyclidines induce  paradoxical 
neurotoxic changes in specifi c layers of the cingulate and retrosplenial 
cortices (Olney et al., 1989). It was speculated that specifi c NMDA-
 receptor-subtypes on GABAergic interneurons could be responsible for 
loss or impairment of inhibition in the cingulate cortex and other subcor-
tical regions of patients with schizophrenia (Olney and Farber, 1995). In 
line with this, interneurons in the entorhinal cortex receive strong NMDA 
receptor-mediated input (Jones and Buhl, 1993) whereas some other 
interneurons (e.g. some hippocampal GABAergic cells) may have low 
synaptic NMDA receptor content (Nyíri et al., 2003) or not have NMDA 
receptors at all (McBain and Dingledine, 1993). These differences may 
contribute to regional vulnerabilities in phencyclidine-induced neurotox-
icity, as well as to subtle changes in network behaviours produced by 
selective alterations in subpopulations of interneurons. The chandelier or 
axo-axonic subclass of GABAergic interneurons containing the calcium 
binding protein parvalbumin have attracted the most scrutiny in studies 
of schizophrenia (Behrens et al., 2007; Howard et al., 2005; Sakai et al., 
2008; Wang et al., 2007). This cell type provides inhibitory synapses at 
the axon initial segments of principal cells very close to the site of action 
potential generation, and thus is positioned to powerfully regulate the 
output of pyramidal cells (Howard et al., 2005). Recent results further-
more indicate that chandelier cells may also act as uniquely powerful 
excitatory neurons in the neocortex, instead of solely inhibiting the axon 
initial segments of pyramidal cells (Szabadics et al., 2006). Therefore, 
the functional consequences of their alterations in schizophrenia remain 
unclear.

Determining the causes and consequences of altered GABAergic 
transmission in the cortical and hippocampal networks of schizophren-
ics requires knowledge of which subpopulations of GABAergic neurons 
are affected. Interneuron alterations in schizophrenia, especially par-
valbumin and somatostatin containing interneurons are likely to have 
signifi cant effects on the network oscillatory activity and therefore on 
cognitive processes depending on the integration of neuronal signals in 
the brain (Gonzalez-Burgos et al., 2007; Morris et al., 2008). However, 
extensive functional studies of specifi c interneuron populations at the 
cellular and systems level in different brain regions were hampered 
by the diffi culty of identifying these neurons during experiments. Using 
enhanced green fl uorescence protein expressing mice under the control 
of different (e.g. parvalbumin or somatostatin) gene promoters has sig-
nifi cantly facilitated the identifi cation of these types of cells in the acute 
slice preparation (Meyer et al., 2002; Oliva et al., 2000). In addition, given 
the relative ease with which oscillatory activity can be induced in slice 
preparations, it follows that these network activities and the participating 
interneurons can be investigated in vitro in NMDA-hypofunction models 
(see e.g. Behrens et al., 2007; Braun et al., 2007; Cunningham et al., 
2006), thereby increasing our understanding of complex electrophysi-
ological behaviours in the NMDA-hypofunction model of schizophrenia.

CONCLUSIONS AND PERSPECTIVES
The potential of phencyclidines in mimicking schizophrenia has led to 
their use in the development of animal models, enabling researchers to 
investigate the predictions of the NMDA-hypofunction theory in vivo and 
in vitro. It has thus become possible, with the use of these models, to 
investigate the electrophysiological changes observed in schizophrenia, 
thereby increasing our knowledge of the electrophysiological implica-
tions of NMDA-hypofunction at the cellular and network level. In order 
to assess the functional mechanisms underlying changes in population 
activity in schizophrenic patients at the cellular and network level in vivo 
and in vitro investigation of these properties in phencyclidine animal 
models of schizophrenia constitute a novel and powerful approach, which 
can advance our knowledge of the interface between cognitive processing 
and cortical cellular and network activity.
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