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Abstract Techniques based on imaging serial sections of
brain tissue provide insight into brain structure and function.
However, to compare or combine them with results from
three dimensional imaging methods, reconstruction into a
volumetric form is required. Currently, there are no tools
for performing such a task in a streamlined way. Here we
propose the Possum volumetric reconstruction framework
which provides a selection of 2D to 3D image reconstruc-
tion routines allowing one to build workflows tailored to
one’s specific requirements. The main components include
routines for reconstruction with or without using exter-
nal reference and solutions for typical issues encountered
during the reconstruction process, such as propagation of
the registration errors due to distorted sections. We vali-
date the implementation using synthetic datasets and actual
experimental imaging data derived from publicly available
resources. We also evaluate efficiency of a subset of the
algorithms implemented. The Possum framework is dis-
tributed under MIT license and it provides researchers with
a possibility of building reconstruction workflows from
existing components, without the need for low-level imple-
mentation. As a consequence, it also facilitates sharing and
data exchange between researchers and laboratories.
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Introduction

In modern neuroscience we use multiple imaging tech-
niques to study brain structure and function. The usage
of complementary approaches is considered indispensable
in characterizing the spatial organization of neuronal struc-
tures and their circuitry (e.g. Annese 2012; Leergaard et al.
2012; Osten and Margrie 2013). Despite exciting develop-
ments in brain imaging there is still no perfect technique
which would allow for a comprehensive insight into all
aspects of the brain over a wide range of spatial and tem-
poral scales. From a practical point of view this means that
data from non-destructive and destructive imaging methods
have to be integrated.

The non-destructive techniques are methods to evalu-
ate the properties of a brain without causing damage in a
way allowing further experimental procedures on a spec-
imen. The most common examples are different varieties
of magnetic resonance imaging (MRI) or diffusion tensor
imaging (DTI). These techniques allow one to obtain inher-
ently three-dimensional (3D), virtually undistorted images,
which deliver quantitative information on macroscopic tis-
sue properties (e.g. Johnson et al. 2012), and can be applied
in vivo.

Such techniques are commonly used to quantitatively
characterize the morphology of brain structures (e.g. Badea
et al. 2007; Herculano-Houzel et al. 2008), and their varia-
tion in populations (Ma et al. 2005), disease models (Sawiak
et al. 2009), or behavioral studies (Lerch et al. 2011). Con-
tinuing improvement in spatial resolution of structural MR
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images (e.g. Johnson et al. 2007; Ullmann et al. 2012) made
them methods of choice for deriving spatial references for
multimodal brain atlases (e.g. Johnson et al. 2010; Papp
et al. 2014; Hashikawa et al. 2015), including connectivity
atlases (Veraart et al. 2011; Jiang and Johnson 2011).

Despite their versatility, such techniques suffer from sev-
eral drawbacks. The most important are lower imaging
resolution and lower specificity in comparison with meth-
ods based on microscopic imaging of sections stained with
various techniques or injected with tracers.

The destructive techniques of brain imaging are methods
which once applied prevent most further experimental pro-
cedures. They rely on obtaining series of two-dimensional
images of brain tissue while sectioning or once the sec-
tions are cut and mounted on slides. Due to their specificity
and microscopic scale of imaging they facilitate studies
of fine properties of brain tissue at the cellular and sub-
cellular levels. Typical examples are description of cyto- and
chemoarchitecture of the neural tissue (e.g. Zilles 1985; Hof
and Sherwood 2005) or axonal-level connectivity (e.g. Rosa
et al. 2009; Zaborszky et al. 2015) via injections of differ-
ent tracers. Other examples include autoradiography (e.g.
Hess et al. 1998; Lebenberg et al. 2011), imaging unstained
sections (Palm et al. 2010; Annese et al. 2014), or imag-
ing sections which underwent in-situ hybridization process
(Jagalur et al. 2007; Morris et al. 2010).

The capabilities of the 2D sectioning techniques have
been elevated in recent years by high-throughput process-
ing of sections and imaging methods (e.g. Chung et al.
2011; Ragan et al. 2012; Osten and Margrie 2013) along
with relevant computational routines. This made it possi-
ble to conduct large-scale projects on gene expression (Lein
et al. 2007), connectivity (Oh et al. 2014), and relating brain
changes to behavior (Vousden et al. 2014; Kim et al. 2015).

The main drawback of sectioning approach is the neces-
sity of physical dissecting of the brain which means it looses
its three-dimensional integrity (e.g. cannot be sliced in a dif-
ferent plane). This is an undesirable side effect, since the
brain is three dimensional and the imaging data should
also be analyzed in a three-dimensional context. Addition-
ally, comparison of section-based imaging data with results
of 3D imaging methods requires the former to be brought
into volumetric form (e.g. Dauguet et al. 2009; Johnson
et al. 2010) which calls for adequate computational meth-
ods. Therefore, the integration of stacks of 2D images of
stained sections into volumetric form is an indispensable
aspect of modern neuroimaging and relevant methods and
software for section alignment are actively developed.

The process of reconstruction of a series of 2D images
into volumetric form is considered a difficult and time
consuming task due to tissue distortions introduced dur-
ing processing of the experimental material (Breen et al.

2005; Dauguet et al. 2007). These typically include global
shrinkage and dehydration due to fixation in formaldehyde,
freezing or paraffin embedding. Moreover, during cryosec-
tioning, mounting and staining, additional distortions are
incurred. Shearing, tearing and displacement of individual
parts of the sections, non-uniform shrinkage due to chemi-
cals used during staining procedures are common artifacts.
Workflows aiming to faithfully reconstruct the 3D image
of the brain have to account for such distortions (Qiu et al.
2011).

In its simplest form, the reconstruction can be performed
by sequentially aligning consecutive sections to a reference
section, usually the middle one (Kiessling 2011, p. 329).
However, this approach is known to be volatile and sensitive
to alignment imperfections and sections’ distortions (e.g.
Nikou 2003). Moreover, the reconstructions performed this
way tend to deviate from the true, anatomical shape. This
phenomenon was nicknamed the banana effect (Malandain
et al. 2004) and can be overcome by introducing a shape
prior—a reference 3D image, which can be an MR image,
collection of images of the face of the cutting block, atlas
delineations, or a set of fiducial markers, which enforce the
anatomical shape of the reconstruction.

Among the many reconstructions attempted, the recent
work on the whole human brain stands out (Amunts et al.
2013; Annese et al. 2014). In both cases photographs of
the face of the cutting block were taken while cryosec-
tioning the brain. Individual sections were stained for cell
bodies and then affinely aligned to corresponding blockface
photographs which allowed to recover the anatomical brain
shape. Additionally, the sections were nonlinearly corrected
for section specific distortions which produced reconstruc-
tion of higher quality and made further coregistration to an
MR image easier.

Adler et al. (2014) conducted a reconstruction of stained
sections of human hippocampus using post mortem MR
images as a shape prior. The process was first performed
with multiple series of affine transformations followed by a
correction of spatial artifacts performed by warping sections
to their immediate neighbors and to the MR image simul-
taneously. Similarly, Chakravarty et al. (2006) performed
a reconstruction of human basal ganglia and thalamus
by applying affine alignment step followed by nonlinear
corrections based on simultaneous warping towards both
immediate neighbors of a given section.

Similar, multi stage reconstruction strategies were
applied in non-human primate projects. For instance, in
Choe et al. (2011) myelin-stained sections of owl monkey
brain were registered to two-dimensional blockface images
using a combination of linear and nonlinear methods prior
to linear and nonlinear registration of the blockface vol-
ume to the MR image. An analogous strategy was used by
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Dauguet et al. (2009) in order to create a 3D digital atlas
of the thalamus based on a series of stained histological
sections of a baboon brain.

In reconstructions of rodents’ and other small animals’
brains similar strategies are employed. Some reconstruc-
tions are performed with the help of blockface images
to which corresponding histological sections are aligned
affinely (e.g. MacKenzie-Graham et al. 2004; Bertrand and
Nissanov 2008; Mailly et al. 2010). Other approaches, like
alignment based on landmarks, are also used (e.g. Hess et al.
1998).

Looking through the literature it seems that the present
methodology crystallized around multistage workflows
involving some form of a shape prior as an intermediate
modality to which, after preprocessing, images are aligned
affinely. Afterwards, nonlinear corrections are applied to
account for distortions of individual sections. The resulting
volume is then registered to a reference template which is
either histology- or MR-based. Such strategies were utilized
in, for instance, Lein et al. (2007), Uberti et al. (2009), and
Lebenberg et al. (2011).

While it may seem that the reconstruction of images of
serial sections should be a routine and standardized proce-
dure, this is not the case. The above mentioned projects had
specific goals, relied on different data modalities, used var-
ious numbers of specimens, etc. Additionally, the majority
of the described reconstructions were done using workflows
tailored to the goals of a particular project and appropri-
ate software was not released publicly. Therefore, there is
a lack of generic tools for handling this type of three dimen-
sional reconstruction from serial sections. The available
image registration tools for both 3D and 2D images (e.g.
Klein et al. 2010; Avants et al. 2011; Peng et al. 2011) as
well as for series of images (Thévenaz et al. 1998; Ribes
et al. 2010; Cardona et al. 2012; Wang et al. 2015) per-
form excellently in their respective domains but they are
not sufficient for reconstructions based of the whole brain
histology for higher animals, from rodents to human and
non-human primates, in a way mentioned in the earlier part
of the introduction. A good example of these difficulties can
be seen e.g. in Fig. 5 of Wang et al. (2014). The software
proposed therein as a solution, despite implementing sev-
eral useful methods (Wang et al. 2015), does not incorporate
a reference image in the reconstruction process. Therefore,
the issue of reconstructing section cut in an arbitrary plane
(e.g. oblique) cannot be addressed and the banana effect
cannot be mitigated.

In this article we present the Possum volumetric recon-
struction framework, which is open software providing
building blocks for constructing computational pipelines
for reconstruction of 3D images based on serial sections.
The software was created by selecting frequently utilized

components of such workflows including: 1) naive affine
sequential reconstructions, 2) affine sequential reconstruc-
tions designed to counteract the propagation of the artifacts,
3) routines for reconstruction with the presence of a shape
prior, 4) deformable reconstruction workflow intended to
account for distortions of individual sections. All workflows
were implemented assuming that slices are ordered and have
a constant thickness.

In addition to implementing the routines, we also validate
the software using synthetic datasets illustrating proper-
ties of the provided algorithms. Additionally, we test the
framework against publicly available MR and histology-
based datasets. The validation results are reproducible and
available as a part of the framework.

The problem addressed by the proposed software is the
reconstruction of 3D images from series of stained sections.
There is no attempt to handle coregistration of multiple 3D
images as such a task is successfully addressed by existing
software for intensity-based (e.g. Klein et al. 2010; Avants
et al. 2011) or landmark-based (e.g. Peng et al. 2011) 3D
image registration software.

Methods

The framework has been developed using multiple technolo-
gies and comprises a collection of fundamental workflows
used to generate 3D reconstructions and accompanying
image processing routines. The body of the framework
was implemented in the Python programming language
(http://www.python.org) while the examples are available
as shell scripts for easy customization and interaction with
Linux-based operating systems.

InsightToolkit (ITK, RRID:nif-0000-00319, Schroeder
2005, http://www.itk.org/) compiled with Python wrappings
(WrapITK, Lehmann et al. 2006), Convert3d (Yushkevich et al.
2006b, http://www.itksnap.org/, RRID:nif-0000-00317) and
ImageMagick (http://www.imagemagick.org/) packages
cover basic image processing operations such as reslicing,
resampling, various kinds of filtering, cropping, stacking
2D images into volumetric form, data type conversion, etc.
They also handle operations performed on transformations
(e.g. composition).

The Possum framework relies on the Advanced Nor-
malization Tools (ANTS, RRID:nlx 75959, Avants et al.
2011) software for conducting image registration. The
ANTS package is used to perform both affine (includ-
ing rigid) and deformable types of registration. The lat-
ter are carried out with the symmetric image normal-
ization (SyN) method of Avants et al. (2008). Three
image similarity metrics are used in the framework: cross-
correlation coefficient (CC, Avants et al. 2008), Mattes’
mutual information (MI, Mattes et al. 2001) and mean
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square intensity difference (MSQ, Schroeder 2005) defined
as:

MSQ(A, B) = 1

N

N∑

i=1

(Ai − Bi)
2,

where Ai , Bi are the intensities of the i-th pixels of images
A and B, and N is the number of pixels comprising the
images.

The Neuroimaging Informatics Technology Initiative
file format (NIfTI, http://nifti.nimh.nih.gov/nifti-1) was
selected as the data format of choice. It is capable of holding
spatial information about the image (origin, spacing, orien-
tation, anatomical directions, etc.) and storing 2D and 3D
images using multiple data types (e.g. 8 bit, 16 bit, dou-
ble and 24 bit per pixel RGB images which are used in the
framework).

All command line software is invoked from Python
scripts using a set of wrappers which allows for triv-
ial parallelization using GNU Parallel (Tange 2011).
Workflows were designed for execution in the par-
allel mode on either multi-core machines or on a
computational clusters under supervision of a resource
manager like TORQUE (http://www.adaptivecomputing.
com/products/open-source/torque/) or SLURM (https://
computing.llnl.gov/linux/slurm/).

Graph-Based Affine Sequential Alignment

Graph-based sequential alignment (Yushkevich et al. 2006a)
is a procedure for 3D reconstruction intended to minimize
accumulation of registration errors and to identify highly

distorted sections which might disturb the reconstruction
process.

The implementation provided in the Possum framework
is presented in Algorithm 1. In the first step every image
is affinely aligned to ε neighboring sections towards either
end of the stack. The CC metric with values rescaled to
〈−1, 0〉 (the lower the value the more similar are the images)
between each coregistered pair is recorded. Afterwards,
a weighted graph (G) is built with vertices (V) representing
individual images and edges (E) representing weights based
on similarity between the images.

A reference section Ir is then selected, usually from the
middle of the stack, and a transformation from Ir to any
other image Ii is obtained by computing the least cost path
Wr,i in the graph G using the Dijkstra algorithm (https://
networkx.github.io/). This corresponds to a chain Tr,i of
partial affine transformations ti,j to be composed.

The number of chained transformations might be shorter
than the nominal distance between the sections Ir and
Ii . This is interpreted as skipping those sections which
are difficult to align to their neighbors. The preference
to skip outstanding sections is adjusted with parameter λ

which modulates the edges’ weights. Small positive λ favors
section skipping while larger tends to preserve sections from
being omitted in the transformation chain. Note that naive
sequential alignment is a special case of this workflow for
ε = 1 regardless of the λ value (Kiessling 2011).

Iterative Affine Pairwise Alignment

The iterative affine pairwise alignment workflow allows one
to construct a 3D image from a series of serial sections in
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the presence of a shape prior. It is particularly suitable for
reconstructions in which the cutting plane of sections does
not match the corresponding plane in the reference image,
e.g. when coronal sections were cut at an angle with respect
to the coronal plane defined in an atlas (Malandain et al.
2004; Yang et al. 2012; Adler et al. 2014).

This procedure simultaneously improves alignment of
the reconstruction to the reference image by calculating a
global 3D affine transformation between the reconstruction
and the reference. At the same time it aligns the experi-
mental sections to the corresponding virtual reference cuts
(see Algorithm 2). Eventually, the algorithm converges to
a reconstruction which is affinely aligned to the the refer-
ence image and in which the sections are broadly consistent
between one another.

Coarse-to-fine Alignment

The coarse-to-fine reconstruction approach proposed by
Yushkevich et al. (2006a) uses a reference image (shape
prior) in which each experimental section has a correspond-
ing section from the reference image assigned. The method
is intended to account for the accumulation of registration
errors, a Z-shift (the banana effect), and to mitigate severe
discontinuities in the reconstruction.

The overall idea of the approach is to perform and
then combine two series of rigid registrations to produce
a faithful reconstruction. The first, coarse-scale registration,
relies on aligning images being reconstructed to corre-
sponding sections of the reference image. Such sections
can be obtained, for instance, by using the Iterative Affine
Pairwise Alignment and then resampling the transformed
reference image in the space defined by the stack of his-
tological images. This series of transformations recovers
the overall shape of the brain but does not yield accurate
section-to-section alignment.

The second series of transformations, the fine-scale reg-
istration, is realized by any kind of sequential alignment
workflow (e.g. naive or graph-based), and aims to provide
pairs of neighboring sections well aligned to one another.
A Z-shift might be introduced in this stage and the over-
all shape of the reconstruction might be different from the
reference one.

To obtain the final result, the high-frequency com-
ponent of the fine-scale alignment is combined with
the coarse-scale registration. This is done by Gaussian
smoothing of individual parameters of the fine-scale trans-
formation (translation and rotation angle) across the z
(stack) dimension and filtering them out before com-
bining with the parameters of the coarse-scale registra-
tion. This yields a reconstruction which preserves both
the global shape of the brain and local anatomical
details, combining advantages of both coarse and fine
registration.

Deformable Reconstruction

The method for deformable refinement of the reconstruction
of the histological volume stems from an assumption that
a change of shape of a brain structure is slower than the
section thickness. Thus the neighboring images are similar
to one another in a formal sense (Chakravarty et al. 2006;
Ju et al. 2006; Adler et al. 2014). Analysis of the theoretical
properties of the method was provided by Gaffling et al.
(2014).

The elementary step of the method consists of registra-
tion of the image of a given section Mi to a fixed image Fi

obtained by averaging images of sections in ε-neighborhood
of section Mi . Such an alignment is performed for each
image in the stack which constitutes a single iteration
(Algorithm 3). An arbitrary number of iterations can be con-
ducted and the deformable registration parameters may vary
between consecutive iterations.

This process eliminates high frequency discontinuities
caused by section-specific distortions effectively separating
the anatomy from the deformation (Gaffling et al. 2014).
This translates into smoother and easier to distinguish
anatomical structures.
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Results

Coarse-to-fine Workflow

To illustrate the properties of the coarse-to-fine reconstruc-
tion workflow, a training T2–weighted MR image with an
isotropic voxel resolution of 1 mm3 of a curved banana was
used (IS , Fig. 1a). The image was distorted by randomly
translating and rotating each of the 200 individual banana
slices (Fig. 1b). The amount of translation was drawn from
a Gaussian distribution with μ = 0 mm, σ = 10 mm for
translation in each direction and μ = 0◦ and σ = 10◦
for rotation. Then, a coarse-to-fine reconstruction was per-
formed during which the distorted image was reconstructed
using the undistorted image IS as a shape prior. In the
coarse-scale step, the images were aligned rigidly to the
corresponding section of the undistorted image, andMI sim-
ilarity metric was used. The fine-scale transformation series
was calculated using the naive sequential alignment, with
110th section designated as the reference, rigid alignment
and MI similarity metric. The transformation merge was
performed with σ = 5 sections for both translation and
rotation parameters of the rigid transformations.

The results of the coarse-scale reconstruction (IC ,
Fig. 1c) show that it recovered the true shape of the phan-
tom, however, the neighboring sections are only roughly
aligned to one another; MSQ(IS, IC) = 55. The fine-scale
step (IF , Fig. 1d) resulted in reconstruction in which sec-
tions were well aligned to one another although with notable
z-shift and volume twist; MSQ(IS, IC) = 663.

The merge of the two transformation series (IM ,
Fig. 1e) provided a reconstruction which preserves the true

Fig. 1 Results of the coarse-to-fine reconstruction workflow (Yushke-
vich et al. 2006a) applied to a synthetic dataset based on an MR image
of the banana, sagittal cross-sections. a The initial, undistorted image,
IS ; b a distorted image; c a coarse-scale reconstruction obtained by
aligning individual sections from panel b to corresponding sections
from panel a, IC ; d a fine-scale step—naive sequential alignment, IF ;
deviation from the true shape is clearly visible; e the result of merging
coarse- and fine-scale steps, IM ; f) the discrepancy between images IS

and IM

global shape and has a high section-to-section coherence;
MSQ(IS, IM) = 39, (Fig. 1f).

Graph-Based Affine Reconstruction

An MR image of the naive-sequentially aligned banana
(Fig. 1d) was used to prepare a synthetic dataset to assess
the efficiency of the graph-based sequential alignment. The
image was distorted by applying randomly generated affine
transformations independently to each section (Fig. 2a).
Additional distortions were introduced by manually remov-
ing approximately a half of the banana slice on 15 sections.
In particular, groups of three and then two successive dis-
torted sections were created in this way.

The distorted image underwent the graph-based sequen-
tial alignment with various reconstruction settings. Tested
values of the neighborhood radius were ε = 1, 2, 5 and λ

values of 0 and 0.5 were used (Fig. 2b).
The results of the reconstruction (Fig. 2c, d) depend on

values of both parameters, ε and λ. The primary difference
is the amount of the recovered shape for different values
of the ε parameter. For ε = 1, which is equivalent to the
naive sequential alignment, highly distorted sections cannot
be omitted regardless of the lambda value (see ε = 1 in
Fig. 2c, d). This is enhanced when several heavily distorted
sections follow in a row.
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a c d

b

Fig. 2 Assessment of the graph-based sequential alignment. aA sagit-
tal cross-section of the distorted MR image of the banana. White
rectangular markers indicate sections in which some parts were
removed to introduce severe distortion; 15 sections were prepared in
this way including groups of three and two consecutive distorted sec-
tions. Example sections with severe distortions are shown below the

cross section. b Graph edge weight multiplier depending on distance
between sections and value of λ parameter according to Algorithm 1,
line 6; c, d Cross sections of the reconstructions performed with dif-
ferent λ and ε parameters. White rectangular markers show heavily
distorted sections which have not been omitted while wedges indicate
sections successfully recognized as standing out

Increasing the neighbor size to 2 makes it possible to
handle two successive distorted sections. Consequently, fur-
ther increment of the ε value allows the method to detect
and omit more distorted sections for both tested λ values
(ε = 2, 3 in Fig. 2c, d). Comparing the reconstructions per-
formed with different λ values confirms that the higher the
λ the fewer distorted sections are skipped which is in accor-
dance with the assumptions of the method and curves shown
in Fig. 2b.

Deformable reconstruction

The dataset used to illustrate the deformable reconstruction
routine was a T2*-weighted MR image of an 80 days old
Wistar rat brain (Johnson et al. 2012). The original image
was downsampled to 25 × 50 × 50 μm3 voxel size which
corresponds to 1600×400×400 (coronal, sagittal, horizon-
tal planes, accordingly) voxels. The image was sliced in the
coronal plane and the in-plane resolution of 50 × 50 μm2

was preserved while the thickness of the synthetic coronal
sections, d, ranged from 20 to 100 μm in the intervals of
5μm in different reconstruction trials. The reference images
obtained with this procedure for a given section thickness d

will further be denoted by Rd .
Subsequently, the synthetic coronal sections were non-

linearly distorted to mimic deformations naturally occurring
during the preparation of the histological sections. The dis-
tortions were modeled by an application of a 2D displace-
ment field Tσ , with σ characterizing spatial correlations.
Each component of the displacement field was constructed

from a 2D white noise image smoothed with a Gaussian fil-
ter with kernel size of σ = 300 μm rescaled to 〈−r, r〉. The
deformation amplitude r was chosen so as to set the median
magnitude of the displacement vector 〈Tσ 〉 = 50 μm
which is a value obtained for Nissl-stained sections (Majka
2014, p. 47). The procedure was repeated for all sections
in the stack yielding a 3D image with individually distorted
coronal sections denoted by Dd . Such an image underwent
the procedure of deformable reconstruction.

We used the ANTS software to perform registration
between individual images in the deformable reconstruction
process using the following procedures: SyN transforma-
tion model with the gradient step of 0.025 and CC similarity
metric with a kernel size of 2 voxels; Gaussian regulariza-
tion with a sigma of 1 voxel for both similarity gradient and
displacement field; five level multi-resolution registration
scheme with 1000 iterations at each level. These settings
remained unchanged for all trials. Each reconstruction trial
consisted of 20 iterations. The neighborhood parameters
were ε = 1, 2, . . . , 10, and the synthetic coronal section
thickness was d = 20, 25 . . . , 100 μm. For each pair of
parameters (ε, d) three reconstruction trials were conducted
which amounted to 510 trials. Reconstructed image after
iteration i corresponding to distorted image Dd is denoted
as Bd,ε,i .

Next, we studied the reconstruction accuracy. To deter-
mine how close the reconstructions were to the initial image,
for each reconstruction trial we computed the MSQ similar-
ity measure between the reference image Rd , the distorted
image Dd , and the reconstructed image Bd,ε,i .
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In the first step we determined the values of ε for which
the reconstructions were most similar to the original. For a
tuple of three parameters (d, ε, i) the value of ε was chosen
so that

ε∗ = argmin
ε

MSQ(Rd, Bd,ε,i)|d,i .

In 46 cases out of 51 the most accurate reconstructions were
achieved for ε∗ = 1, in the remaining 5 cases it was ε∗ = 2.
We set ε = 1 for further analyses.

In the next step the number of iterations yielding optimal
reconstruction was identified by choosing the iteration index
i∗ leading to the highest improvement in comparison with
the initial distorted image:

i∗ = argmin
i

〈
Sd,ε=1,i

〉

= argmin
i

〈
MSQ(Rd, Bd,ε=1,i )

MSQ(Rd, Dd)

〉

3 trials
. (1)

We will refer to the measure used here as relative similarity.
The results show that the thinner the section is (the

larger the number of sections) the larger number of itera-
tions is required to reach the most accurate reconstruction
for the given section thickness (Fig. 3a). For the 20 μm
sections the optimal number of iterations was 19 and it sys-
tematically lowered with increasing thickness so that for
the section thickness of 100 μm (400 sections) only 5 iter-
ations were required to get the reconstruction most similar
to the undistorted image. Note that when the number of
iterations grows, the reconstruction diverges from the refer-
ence image, thus one needs additional measures to identify
the optimal reconstruction. In practical applications, when
the undistorted image is unknown, the stop-point can be
determined, for instance, either by letting a neuroanatomist
to decide which reconstruction is the most satisfactory or
by tracking the changes (e.g. calculating the MSQ value)

between consecutive reconstructions and terminating the
process once the difference reaches an arbitrarily defined
value or the first local minimum.

Additionally, the reconstruction accuracy lowered as the
section thickness increased. This is expressed by the val-
ues of the relative similarity which grew linearly with the
section thickness (Fig. 3b). For the initial 20 μm thickness
it was 0.27 and increased up to 0.55 for the 100 μm sections
with the factor of 4 · 10−4 per μm.

To assess how the deformable reconstruction workflow
scales up with the different number of sections being recon-
structed, the total CPU time elapsed on each reconstruction
trial (consisting of twenty iterations) was recorded (Fig. 3c).
The time increased from 21.2 CPU hours (1.1 hour per itera-
tion) for 400 sections (section thickness of 100μm) to 118 h
(5.9 h per iteration) for 2000 sections (20 μm thick). On
average, the time required to conduct a single reconstruction
trial increased with a factor of 0.0031 CPU hours (11.36 s)
per section per iteration. The tests were performed under
Ubuntu 10.04 operating system deployed on a dual Intel®
Xeon® E5620 (16 × 2.40 GHz logical processors) server
equipped with 32 GB of RAM.

An example reconstruction conducted for the section
thickness of 50 μm, ε = 1 and i∗ = 9 (yellow point
in Fig. 3a) was selected for presentation in Fig. 4. We
can see that the reconstruction was the most accurate in
regions where the brain structure changed the least and
for structures of low curvature, e.g. neocortex, thalamus,
hypothalamus, midbrain, pons (empty triangles in Fig. 4e).
On the other hand, structures with complex internal details
and substantial curvature, e.g. cerebellar cortex, striatum,
suffered from some reconstruction artifacts like segment-
wise overstraightening and general difficulty in recovering
fine details of curvature (filled triangles in Fig. 4e). Some of
the artifacts are noticeable also in the olfactory bulb.

a b c

Fig. 3 Results of the deformable reconstruction workflow assessment.
a A heatmap showing the accuracy of the reconstruction (1) depend-
ing on the thickness of the synthetic coronal sections and the number
of iterations in the trial. The red points and accompanying line indi-
cate the number of iterations for which, on average, the reconstruction
was the most accurate given the section thickness (i∗, see Eq. 1). The

reconstruction trial marked with the yellow point corresponds to the
case shown in Fig. 4. b Values of the relative similarity of the most
accurate reconstruction trials depending on the section thickness. c
The total processing time per iteration (CPU hours) elapsed on the
reconstruction trials depending on the number of sections
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Fig. 4 Sagittal cross sections of a single trial in the assessment of the
deformable reconstruction workflow during consecutive stages of pro-
cessing. a The reference image R50μm, b a distorted image D50μm,
c the difference between images a and b showing high discrepancy
close to the brain outline, inside the cerebellum, olfactory bulb, and

striatum, d a reconstructed image Bd=50 μm,ε=1,i∗=9, e the difference
between images presented on panels a and d showing that the dis-
crepancy was significantly reduced after conducting the reconstruction
process. Empty triangles denote regions in which the reconstruction
was successful while filled triangles indicate worse performance

Evaluation on an Open Histological Dataset

To demonstrate the capabilities of the framework we per-
formed a reconstruction based on the Waxholm Space
Mouse Brain Atlas (Johnson et al. 2010). The dataset

included (21.5 μm)3 isotropic T2*-weighted MR image of
the 80 days old CJ57BL/6 mouse brain and a series of
312 images of horizontal Nissl-stained sections of the same
brain. To streamline the calculations and make the data con-
venient to share as an example, the original MR image

cba

Fig. 5 Results of a 3D reconstruction of the Nissl-stained sections
(Johnson et al. 2010). Column a: the outline of the 3D reconstruc-
tion of the brain (gray model) and the location of the cuboid shown in
the column (b). Coronal (a1), lateral (a2), and horizontal (a3) projec-
tions. The plane shown in panel (a1) was used to obtain oblique cuts
through the reconstruction and the reference image presented in col-
umn (c). Column b: Fragments of the reconstructions showing dentate

gyrus and neighboring structures during consecutive stages of process-
ing, 1) pairwise alignment, 2) graph-based sequential alignment, 3)
deformable reconstruction, the final stage, 4) the reference MR image.
Column c: Oblique cuts through the reconstructions: 1) the final recon-
struction, 2) the reference MR image. Red arrows on panel c1 indicate
successful, detailed reconstructions of olfactory bulb, piriform cortex,
hippocampus, and cerebellum
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was downsampled to isotropic (43 μm)3 resolution and the
high-resolution Nissl-stained sections were downsampled
to pixel size of 50 × 50 μm2. A reconstruction workflow
comprising the following four steps was applied.

To begin with, ten iterations of the pairwise registration
workflow were conducted. During this step the histologi-
cal images were rigidly aligned to the corresponding virtual
sections obtained by affinely aligning the reference image
to the stack of histological images being reconstructed. Cor-
relation coefficient (CC) was used as the image similarity
metric. This stage resulted in a rough registration of the
histological image stack to the reference MR image.

Subsequently, graph-based sequential alignment with
ε = 5 and λ = 0 was applied to the results of the
previous step. The image of the 110th section was used
as the reference to which all the remaining section were
aligned sequentially using rigid transformations and MI as
the image similarity metric.

The last step was to apply eight iterations of the
deformable reconstruction workflow. During this process
the following parameters were used: ε = 1; CC image sim-
ilarity metric with the kernel size of 2 voxels; gradient step
of 0.01; Gaussian regularization with kernel size of 100 μm
for similarity gradient and 50μm for the displacement field;
six-level image pyramid with 1000 iterations per level.

Ultimately, transformations from all the intermediate
steps for every section were merged and used to reslice
this section. The reconstruction yielded 3D brain image
coregistered affinely to the reference MR image (Fig. 5).
Additionally, the same transformations were applied to the
masks of sections which provided a reconstruction of the
brain outline (Fig. 5a).

Discussion and Summary

In this article we introduced the Possum framework,
software addressing the task of reconstruction of three-
dimensional images of the brain based on series of two-
dimensional images of stained sections. To develop the
framework we reviewed and selected workflows which
accomplish versatile reconstruction tasks according to
today’s best practices. Additionally, we demonstrated prop-
erties of individual routines and illustrated which recon-
struction task they are suitable for.

The framework design paradigm was to utilize reliable
open source components and follow guidelines for design-
ing and evaluating scientific software (e.g. Tustison et al.
2013). This decision resulted in both increase of the frame-
work’s stability and reduction of the development efforts.
The primary external component is the ANTS software,
chosen because it is a thoroughly tested (Klein et al. 2009),
customizable, and task-agnostic image registration tool. By

using open source and well maintained image processing
libraries (e.g. ITK) and NIfTI file format which are de facto
standards (Poline et al. 2012; Avants et al. 2015) in neu-
roimaging we increased the interoperability between the
framework and other pre- and post-processing tools. How-
ever, the chosen paradigm caused an overhead due to data
exchange between individual components and resulted in
hampering, to some extent, the efficiency of the framework.
Replacing external dependencies with dedicated compo-
nents is a part of undergoing maintenance work. The scala-
bility of the software is mainly a result of enabling parallel
processing without which handling sizable datasets would
be inconvenient. Due to the nature of the data—multiple
images which usually can be processed independently—
naive parallelization turned out to be a sufficient solution.
To assess the scalability we tested the framework against
both, relatively small synthetic datasets of the banana as
well as large ones, containing up to two thousand sections.
The framework managed to handle both situations well.

The implemented workflows constitute a software col-
lection which allows one to conduct typical tasks of recon-
structing 3D brain images from series of stained sections
assuming they are properly ordered and of constant thick-
ness. Graph-based affine sequential alignment and coarse-
to-fine routines allow one to conduct affine reconstructions
with or without using a shape prior while at the same time
reducing Z-shift, skewing, banana effect, and propagation
of the alignment errors due to the sections’ distortions. The
iterative alignment workflow makes it possible to perform
the reconstruction within the coordinate space of the refer-
ence image accounting for the fact that the sections were cut
in a different plane than the corresponding sections in the
reference image. The deformable reconstruction workflow
uses nonlinear transformations to compensate for section-
specific distortions, eliminating discontinuities, improving
overall reconstruction quality, and making it easier to con-
duct further 3D to 3D coregistration tasks. Individual recon-
struction routines can be stacked to create pipelines tailored
to specific projects.

With the example of Nissl stained sections of the Wax-
holm Space Mouse Brain we showed that the framework is
capable of tackling data from demanding research projects.
The workflow used there addresses a typical reconstruc-
tion task in which a 3D brain image is reconstructed from
a series of stained sections and a reference image. Addi-
tionally, during its development, the framework was used to
create stereotaxic atlas of the Monodelphis opossum brain
(Majka et al. 2013) and to construct a workflow for connec-
tivity data mapping in the common marmoset brain (Majka
et al. 2014).

One aspect of 3D reconstruction not addressed by meth-
ods presented in this article is repairing highly distorted
sections (e.g. detached parts of the tissue, tears, etc.).
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Different approaches have been utilized to mitigate such
distortions. For instance, Choe et al. (2011) corrected dis-
placed parts of sections by identifying them manually
in, both, histological and reference (blockface) images.
A more automated approach was proposed by Dauguet et al.
(2007) where semi-automatic hemisphere separation was
performed assuming that the processed sections were sym-
metric. A more elaborate approach was used by Amunts
et al. (2013), who iteratively perform 3D reconstruction
and remove minor artifacts while severe distortions are still
identified and corrected manually.

For detached and torn pieces of tissue methods sim-
ilar to those proposed by Pitiot et al. (2006) and Pitiot
and Guimond (2008) seem to be a good remedy. Briefly,
their algorithms model such distortions with several rigid
or affine local transformations embedded in an elastic one.
Not only it allows to automate repairing heavily distorted
sections but also makes it possible to encode such correc-
tions as displacement fields which is important from the
reproducibility standpoint.

Framework in the Context of Digital Brain Atlasing

The presented software addresses the key issue of cre-
ating 3D images from serial sections before deformable
mapping to a three-dimensional reference space using exist-
ing software. By reducing the efforts of establishing 3D
reconstruction pipeline and providing reliable routines, the
Possum framework gives the researchers an opportunity to
conduct projects involving histological data integration by
themselves. The framework might be used for instance to
facilitate delineation of brain structures based on both, MR
images and histology (e.g. Kumazawa-Manita et al. 2013;
Ullmann et al. 2015), or in brain connectivity studies (Kuan
et al. 2015; Sukhinin et al. 2015).

Another example might be processing legacy data by
which we understand histological experimental material
which has been collected without intention to reconstruct in
it 3D but which may still constitute a valuable neuroscien-
tific resource and therefore would benefit from integration
with other digital atlasing resources, such as Zakiewicz et al.
(2015).

Further Directions and Outlook

The directions of further development are twofold. In terms
of the framework functionality, the next step is to provide
routines for preprocessing of the input data, e.g. interfaces
for managing collections of input images, implementing
routines for correcting section staining inhomogeneities
(e.g. Chakravarty et al. 2006; Yelnik et al. 2007; Ceritoglu
et al. 2010), fixing tears or severe displacements of the tissue
(e.g. Dauguet et al. 2007; Pitiot and Guimond 2008) before

conducting the actual reconstruction process. With regard
to the framework architecture, the next step is to develop
a mechanism for easy connecting, interfacing between con-
secutive steps and monitoring execution of the pipeline (e.g.
Gorgolewski et al. 2011; Friedel et al. 2014). We ultimately
envision the framework as a back-end of a web service con-
nected to high resolution image repositories (e.g. Mikula
et al. 2007) which would allow one to compose and execute
various reconstruction pipelines.

Information Sharing Statement

The source code of the framework is distributed under the
terms of the MIT license and is available to download from
the GitHub repository: https://github.com/pmajka/poSSum.
The repository contains also the code and data necessary to
reproduce examples shown in this article.

A preconfigured virtual machine with ready-to-use
installation of the framework as well as the code used to
perform the reconstruction of the Waxholm Space Mouse
Brain Reference can be found at: http://www.3dbar.org/
wiki/barPosSupp.
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Dauguet, J., Condé, F., Hantraye, P., Frouin, V., & Delzescaux, T.
(2009). Generation of a 3D atlas of the nuclear division of the
thalamus based on histological sections of primate: Intra- and
intersubject atlas-to-MRI warping. IRBM, 30(5-6), 281–291.

Dauguet, J., Delzescaux, T., Condé, F., Mangin, J.-F., Ayache, N.,
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