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Virtual microscopy involves the conversion of histological sections
mounted on glass microscope slides to high-resolution digital images.
Virtual microscopy offers several advantages over traditional micro-
scopy, including remote viewing and data sharing, annotation, and
various forms of data mining.

We describe a method utilizing virtual microscopy for generation of
internet-enabled, high-resolution brain maps and atlases. Virtual
microscopy-based digital brain atlases have resolutions approaching
100,000 dpi, which exceeds by three or more orders of magnitude
resolutions obtainable in conventional print atlases, MRI, and flat-bed
scanning. Virtual microscopy-based digital brain atlases are superior
to conventional print atlases in five respects: (1) resolution, (2)
annotation, (3) interaction, (4) data integration, and (5) data mining.

Implementation of virtual microscopy-based digital brain atlases is
located at BrainMaps.org, which is based on more than 10 million
megapixels (35 terabytes) of scanned images of serial sections of primate
and non-primate brains with a resolution of 0.46μm/pixel (55,000 dpi).

The method can be replicated by labs seeking to increase
accessibility and sharing of neuroanatomical data. Online tools offer
the possibility of visualizing and exploring completely digitized sections
of brains at a sub-neuronal level and can facilitate large-scale
connectional tracing, histochemical, and stereological analyses.
© 2006 Elsevier Inc. All rights reserved.

Introduction

Internet technologies have revolutionized the way we access
and share data (Martone et al., 2004). In recent years, the merging
of internet and digital technologies with conventional microscopy
has created revolutionary new capabilities for online viewing and
navigation through high-resolution digitized “virtual” slides
(Ferreira et al., 1997; Afework, 1998; Felten et al., 1999; Romer
and Suster, 2003). These new digital capabilities are commonly
referred to as “virtual microscopy”.

Virtual slides facilitate data sharing by transmission over
computer networks and offer considerable advantages over
conventional glass microscope slides in terms of ease and speed
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of navigation and inspection of large numbers of brain sections.
Virtual slides also facilitate visualization and neuroanatomical
analysis. With current scanners, it is possible to achieve resolutions
of digitized slides at more than 100,000 dpi, enabling the creation
of brain atlases at microscopic resolution that far exceeds the
resolutions obtainable through the use of other digital scanning
technologies, MRI, or in conventional print media. The immense
size of high-resolution neuroanatomical image data sets, however,
presents an obstacle to visualization, manipulation, and analysis,
especially when used online.

At BrainMaps.org, we have created a zoomable high-resolution
digital brain atlas and virtual microscope that is based on more than
10 million megapixels of scanned images of serial sections of
primate and non-primate brains. In this technical report, we
describe how the atlas has been created, how it is integrated with a
high-speed database for querying and retrieving data about brain
structure and function over the internet, and describe how readily
available software tools can be applied in visualization of the high-
resolution images.

The resolution of the images, 0.46 μm/pixel, is considerably
higher than any histological atlases currently available, either in
print or in digital form, and is approximately three orders of
magnitude greater than the resolution of MRI acquired brain
images. The atlas permits a viewer to zoom in from the gross
sectional outline to the sub-neuronal level, exactly as if viewing the
sections through a microscope.

Materials and methods

Fig. 1 outlines the major steps in going from stained or
immunocytochemically or histochemically processed slide-
mounted sections of brains to a Web-accessible image pyramid.
Each of the individual steps is considered below.

Acquisition of glass slide data sets

Various data sets were available, made up of serial sections of
brains stained by the Nissl stain or by histochemistry or
immunocytochemistry. Species included were Macaca mulatta,
Macaca fascicularis, Chlorocebus aethiops, Homo sapiens, Felis
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Fig. 1. High-throughput virtual microscopy. Block diagram outlining the
major steps in going from immunocytochemically or histochemically
processed slide-mounted tissue to a Web-accessible image pyramid.

Table 1
Data sets from various species utilized in this study

Species Data sets Sections

H. sapiens 6 163
M. mulatta 15 703
M. fascicularis 1 6
C. aethiops 1 740
F. catus 9 195
M. musculus 13 994
T. alba 4 182
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catus, Mus musculus, and Tyto alba (Table 1). Brains were
sectioned frozen or after embedding in celloidin in the frontal,
horizontal, or sagittal planes. Three of the M. mulatta brains
contained fiduciary marks made by inserting electrodes at fixed
stereotaxic coordinates prior to perfusion with fixative.

Generating virtual slides

Glass-mounted sections were scanned at 20× (0.46 μm/pixel) in
an Aperio ScanScope T3 scanner (Aperio Technologies, Vista, CA,
USA), specially adapted to accommodate 3ʺ×2ʺ slides to generate
virtual slides. The 3ʺ×2ʺ slide size limitation prevents larger
sections such as whole human brain slices from being scanned in
toto, which would require at least an 8ʺ×6ʺ slide size. Montaging
is one way around the slide size limitation, though it was not
employed in this study. Thus, our human brain virtual slide data
consists of sections from smaller blocks of brain such as the
diencephalon. The image file format used for the virtual slides is
JPEG-compressed TIFF, which results in 1/15 compression ratio
(and corresponding reduction in file size) with no perceptible loss
of image quality. The raw size of each virtual slide is typically
about 25 gigabytes uncompressed, but as a JPEG-compressed
TIFF, is reduced to 1.5 to 2.5 gigabytes.

Since the width of each virtual slide commonly exceeds
100,000 pixels, the slides cannot be saved solely as JPEG since
JPEG files cannot exceed 30,000 pixels in either width or height.
The TIFF file format has a maximum size of 4 gigabytes, making
the use of TIFF alone not an option for images greater than this
maximum. However, as JPEG-compressed TIFFs, it is possible to
save 25 gigabyte images of 100,000 pixel width, thereby making
JPEG-compressed TIFF currently the sole option for use with the
very large images used in constructing the database. The
compression schemes offered by DJVU and JPEG2000 present
alternatives to JPEG but were not employed due to incompatibility
with tiling software used to generate image pyramids. Other
“lossless” file formats, such as PNG, are not practical at this stage
due to the excessive disk space that would be consumed
(commonly exceeding 25 gigabytes per image).

JPEG compression, although it has been designed with the goal
to compress images in a manner that loss of information is not
perceptible by the eye, is still not entirely “loss-less” and may be
problematic for certain types of image processing algorithms, such
as image derivatives used in automated analysis.

Generating image pyramids

Following virtual slide generation, virtual slides are uploaded to
the image hard drives on the server, via File Transfer Protocol
(FTP) or other network protocols.

In the final step, virtual slides are converted to a digital format
that permits rapid Web-based navigation and visualization using
software customized for working with very large images.
Specifically, they are tiled to multiple small (256×256 pixels)
JPEG images to generate composite hierarchically organized,
multiresolution image pyramids (Fig. 2) and are integrated into a
relational database.

Strictly speaking, the image pyramid is still considered a
“virtual slide”, although it consists of multiple files (image tiles)
instead of a monolithic image file.

Image tile generation, placement, and retrieval
The Zoomifier EZ tool (Zoomify Inc., Santa Cruz, CA, USA) is

used to produce the tiled image pyramid. It generates the image tiles
at multiple resolutions (each resolution differs from the preceding one
by a multiple of two), places them into a canonical directory, and
writes an information file (ImageProperties.xml) at the top of the
directory. The meaning of the terms used in ImageProperties.xml are
shown in Table 2, along with the terms used in this paper.

Image tiles are named using the pattern http://baseName%20/
TileGroupG/T-C%1ER.jpg in which baseName represents the path
to the directory containing ImageProperties.xml, G is an integer
such that 0≤G≤ [N/256], T is the tier number of the desired image
such that 0≤T≤ [log2 (max(W, H)/T)], and C and R are the column
and row (each numbered from 0) of the tile in the image at tier T.

The data in ImageProperties.xml, along with the knowledge of
data file placement, are key to retrieving the image tiles necessary
to reconstruct the desired image. It is also helpful to know that
logically the tile image files are created and stored in row-order
starting with Tier 0 in TileGroup0, and that each TileGroup
directory is completely filled with 256 entries before another is
started. A detailed example of image tile retrieval can be found in
Appendix A.

Total quantity of virtual slides

A total of 3035 sections of primate and non-primate brains were
scanned at 0.46 μm/pixel, digitized, and uploaded to the server at
BrainMaps.org. The total quantity of image data currently directly
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Fig. 2. The concept behind an image pyramid. Each virtual slide, representing a single monolithic image file, is chopped up (i.e., tiled) to generate a multi-
resolution image pyramid composed of small image tiles with a maximum size of 256×256 pixels. Image pyramids allow for rapid online navigation through
very large images by loading only the image tiles that are currently being viewed.
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accessible online is 10,569,936 megapixels (or 31.71 terabytes,
uncompressed) (Fig. 3).

Server architecture

The server architecture (Fig. 4) can be divided into four main
components: (1) the Web server (Microsoft IIS), (2) the relational
database management system (MySQL), (3) the internal hard disk
drives, denoted HDD (PHP), for holding Web server PHP scripts
and MySQL database files, and (4) the external image data hard
disk drives, labeled HDD (1) and HDD (2), for holding image data
(LaCie, 2TB LaCie Biggest, RAID 5). The first three components
are straightforward to implement and require no additional
explanation except to note that the first component, the IIS Web
server, utilizes the PHP active scripting language to dynamically
generate HTML and embed the graphical user interface. Regarding
the fourth component, multiple external image data HDD’s can be
added as additional image data are added to the server. Each LaCie
(LaCie USA, Hillsboro, OR, USA) external HDD disk array holds
2 terabytes. The external HDDs are configured as a RAID 5 array,
which has redundancy spread over disks so that, in the event of
hard disk failure, no data will be lost. Buffalo Technology (Buffalo
Technology Inc., Austin, TX, USA) produces a similar 2 terabyte,
RAID 5 disk storage system.
Table 2
Terms used in ImageProperties.xml

Constant This paper Meaning

TILESIZE T Dimensions of square image tile in pixels
WIDTH W Width of full-sized image in pixels
HEIGHT H Height of full-sized image in pixels
NUMTILES N Total number of all images tiles in this

image pyramid

The first column is the variable as shown in the file, the second column is the
term used in this paper, and the third column describes the meaning of the
term.
Online navigation and graphical user interfaces

Clients interact with the Web server (Fig. 4) to access image
data or retrieve database information. Clients can access the image
data either through a Web browser (Client A in Fig. 4) or a
different desktop application (Client B in Fig. 4). If accessed
through a Web browser, then the graphical user interface (GUI) to
the image data is coded through Flash, AJAX, or Java. If accessed
through a different desktop application, then the GUI can be
written in other programming languages, such as C.

We have coded GUIs for the brainmaps.org image data in Flash,
Java, and C. The brainmaps.org GUI can also be coded in AJAX.
Each programming language has its own strengths and weaknesses
for the GUI. For example, Java is relatively slow for a GUI and
Fig. 3. Distribution of image sizes at BrainMaps.org as of 09-25-2006. The
total size of the brain images is 10,569,936 megapixels, or 31.71 terabytes.
The total number of images is 3035, with an average size of 3482.68
megapixels/image (or 10.45 gigabytes/image).



Fig. 4. Server organization. The client interacts with the server through a
Flash or Java based front-end that interacts with the image file system and
relational database. The active scripting language, PHP, is used as a ‘glue’ to
tie all the components together.
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requires a separate browser plug-in, but it has the advantage of
more sophisticated programming. The C programming language is
fast and versatile but is operating system dependent and driver
dependent. Flash is fast but requires a browser plug-in (which,
however, is present on over 90% of browsers). AJAX is fast, but
may have browser compatibility issues and requires that Javascript
be enabled (about 10% of users disable Javascript).

Fig. 5 shows an example of navigation through virtual slides
using the C. aethiops Nissl data set. All images are screen shots
from a Web browser and are what a visitor to brainmaps.org sees:
(Fig. 5a) An array of virtual slides for the C. aethiops data set,
shown as clickable thumbnails that, when clicked on, launch a new
browser window allowing navigation through the high-resolution
image (Fig. 5b). The image in Fig. 5b is 95,040×74,711 pixels and
20 gigabytes in size. The thumbnail in the upper left is for
navigation purposes. Shown also are overlying labels of brain areas
that can be toggled on and off. (Fig. 5c) Zooming in on the slide in
Fig. 5b. The red box in Fig. 5b corresponds to Fig. 5c. (Fig. 5d)
Zooming in to full resolution in Fig. 5c, showing details of
individual neurons in the insular cortex. The red box in Fig. 5c
corresponds to Fig. 5d.

Fig. 6 shows an example of a Flash-based GUI for viewing the
high-resolution images. The label-specific context menu in the
upper right enables the user to retrieve related information, including
the position of the label in the labeling hierarchy, connectivity, and
gene expression patterns derived from other slide data sets.

Image labeling

The terminology employed for online labeling of virtual slides
is derived from that of Berman (1968), Berman and Jones (1982),
Olszewski (1952), and Jones (1985, 2006). It incorporates many of
the terms found in NeuroNames (Bowden and Martin, 1995) and
other brain atlases, including the atlases of Swanson (1998),
Paxinos et al. (2000), and Emmers and Akert (1963). A total of
19,702 labels were made. An example of labels overlaying a Nissl
section is shown in Fig. 6 for “Pa”, “MD”, “AD”, “AV”, “Pc”, and
“SM”, indicating the paraventricular, mediodorsal, anterodorsal,
anteroventral, and paracentral nuclei of the thalamus and the stria
medullaris.

Speed of online image accessibility

Fig. 7 shows a 2D scatter plot with marginal histograms
indicating tile fetch times (in ms) on the Y-axis and tile sizes (in kb)
on the X-axis. The number of data points is 1000 and corresponds
to a random selection of tiles in an image pyramid for a single
monkey section of size 95,040×74,061 pixels. The mean image
tile fetch time is 84.4 ms and the mean image tile size is 4.11 kb.
From the tile size marginal histogram, there are two prominent
peaks, with the one centered at 1–2 kb corresponding to non-tissue
containing image tiles (which tend to be predominantly white and
contain low-frequency components) and the one centered at 12 kb
corresponding to tissue containing image tiles (which tend to
contain high-frequency components, such as cells). Note that tile
fetch times are not related to tile size.

Discussion

Prior to recent advances in virtual microscopy, slides were
commonly digitized by various forms of film or flatbed scanner
and image resolutions rarely exceeded 5000 dpi. Nowadays, it is
possible to achieve more than 100,000 dpi and thus resolutions
approaching that directly visible under the optical microscope. This
increase in scanning resolution comes at a price: a typical flatbed or
film scanner ranges in cost from $200 to $600; a 100,000-dpi slide
scanner ranges from $80,000 to $180,000.

The virtual microscopy technology described in this manuscript
first appeared 2 years ago and is currently offered by several
companies, including Aperio (Aperio Technologies, Vista, CA,USA),
MicrBrightField (MicroBrightField Inc., Williston, VT, USA) , Zeiss
(Carl Zeiss Inc.), DMetrix (DMetrix Inc.), and Bacus Laboratories
(Lombard, IL, USA). The virtual microscopy solutions offered by
these companies vary. Aperio’s line scanning technology and
DMetrix’s array-microscope technology enable the fastest acquisition
of virtual slides. In this paper, we have demonstrated that the
technology scales to at least 10 million megapixels.

Scalability is an important issue. Scalability involves (1) image
storage, (2) database storage, (3) visitor demands (or bandwidth),
and (4) CPU. The most obvious question, when dealing with multi-
terabyte image storage, is how will the server architecture (Fig. 4)
scale with increasing image storage requirements. With each LaCie
external HDD disk array holding 2 terabytes, it is realistic to have
over 35 terabytes on a single server (the upper limit is over 2
petabytes but space limitations make this unfeasible). To scale
beyond 35 terabytes on a single server, it will be necessary to have
multiple servers with multiple multi-terabyte image repositories,
possibly geographically distributed. This is readily feasible with
current technology and would allow for almost unlimited scaling of
image storage. The distributed nature of image storage would be
invisible to an end-user, who would only see petabytes or more of
image data accessible from an apparently centralized Web location.
Scaling with respect to database storage does not present a problem
as most of the database storage would be for storing pointers to
image locations (which may or may not be distributed and could
reside on different servers). Consequently, the size of the database
for storage of image locations would be very small and would not
be expected to exceed one gigabyte, even for hundreds of



Fig. 5. An example of navigation through virtual slides at brainmaps.org using the African green monkey Nissl data set. All images are actual screen shots from a
Web browser and are what a visitor to brainmaps.org would see. (a) An array of virtual slides for the data set, shown as clickable thumbnails that, when clicked
on, launch a new browser window allowing navigation through the high-resolution image (b). The image in panel b is 95,040×74,711 pixels and 20 gigabytes in
size. The thumbnail in the upper left is for navigation purposes. Shown also are overlying labels of brain areas that may be toggled on and off. (c) Zooming in on
the slide in panel b. The red box in panel b corresponds to panel c. (d) Zooming in to full resolution in panel c, showing details of individual neurons in the insula.
The red box in panel c corresponds to panel d.
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thousands of virtual slides. Scaling with respect to visitor demands
(or bandwidth) is not currently an issue with 1000–2000 unique
users visiting BrainMaps.org on a daily basis to access virtual
slides. However, it will be necessary to assess how well the server
architecture (Fig. 4) will scale with increasing visitor demands.
Finally, there is the issue of scalability with respect to computer
CPU. Our experience is that CPU demands are minimal and rarely
exceed 1% even during peak visitor usage. Thus, we expect that
scalability with respect to CPU will not be an issue in the
foreseeable future. In sum, we expect our server architecture (Fig.
4) to scale at least up to 35 terabytes of compressed image storage,
and thereafter that a distributed server and image storage solution
can be readily implemented to accommodate potential petabyte-
sized image storage and beyond.

How does the BrainMaps.org database, containing more than
10 million megapixels (or 35 terabytes), compare with other image
databases? The Allen Brain Atlas (brain-map.org), featuring in situ
hybridizations for 20,000 genes, contains 200,000 serial sections of
the mouse brain at 100 megapixels per section and is estimated to
have 20 million megapixels (or 60 terabytes). MicroBrightField’s
neuroinformatica.com, which offers functionality in many respects
similar to what is described here, is estimated to have less than 1
million megapixels. Perhaps the best known and arguably most
massive image databases is Google Maps (maps.google.com),
which provides high-resolution satellite image data covering the
entire earth, and is estimated to have 50–100 million megapixels
(with an upper bound of 460 million megapixels). If the trend
towards increasingly massive online image databases continues,
we expect not only increasing numbers of online image databases
of the kind that we describe here to appear, but also that the size of
these databases will also increase. The largest image databases in
existence today, including brainmaps.org, brain-map.org, and
maps.google.com, are terabyte-size databases. Given the pace of
technology, we can expect the appearance of petabyte-size image
databases within the next 5–10 years. Neuroanatomical image
databases of this size would contain more data than any individual
lab could accumulate and would necessitate the formation of a
community of data contributors and sharers. The end-users would
be the entire public. The implications of this massive sharing of
neuroanatomical data have yet to be fully appreciated, particularly



Fig. 6. An example of a Flash-based graphical user interface for viewing
high-resolution neuroanatomical images at BrainMaps.org. Note the over-
laying labels (“Pa”, “MD”, “AD”, “AV”, “Pc”, and “SM”) and the label-
specific context menu in the upper right that enables the user to retrieve
related information, including the position of the label in the labeling
hierarchy, connectivity, and patterns of gene expression.
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when additional tools are provided for visualization and neuroa-
natomical exploration of the data.

Virtual microscopy, although having many advantages, is
unlikely to replace real microscopy any time soon. For one thing,
it still depends on the preparation of conventional slides where
quality must be controlled in the first instance by microscopic
observation. For the time being, it nicely complements and extends
the capabilities of real microscopes. Virtual microscopy, however,
facilitates (1) data sharing and remote access, (2) data management
and annotation, and (3) various forms of data mining. Data
Fig. 7. 2D scatter plot with marginal histograms showing tile fetch times (in ms) o
1000 and corresponds to a random selection of tiles in an image pyramid for a sing
time is 84.4 ms and the mean image tile size is 4.11 kb.
management and data mining by microscopic observation of
conventional slides are time consuming and costly. Virtual
(digitized) slides make this possible at minimal cost. The online
distribution and sharing of virtual slides with anyone with an
internet connection ensures the rapid dissemination and compar-
ison of neuroanatomical data that is otherwise extremely difficult.

While virtual slides have many benefits, they also lack certain
attributes. It is not possible to change focus in a virtual slide as it is
in a real slide. For visualization, this is not a problem since the
preparation of virtual slides tends to bring them into a single plane
of focus. However, the inability to change the plane of focus in a
virtual slide rules out its use in unbiased stereological estimation
methods that require optical dissectors (West and Gundersen,
1990). Nonetheless, biased stereological estimation methods, or
unbiased methods not using optical dissectors, are still possible.
Another potential drawback is that the resolution of the virtual
slide is limited to the optical lens used in the scanner. For example,
if we generate a virtual slide at 20× and subsequently want to
examine part of the slide at 40×, then it is necessary to rescan the
entire slide using a higher power objective, which in some cases, is
not possible due to file size restrictions or hardware issues. Finally,
at the time of writing, virtual microscopy does not deal well with
fluorescence because of low illumination and the bleaching of
fluorophores during scanning.

Virtual microscopy-based digital brain atlases are superior to
conventional print atlases in (1) resolution, (2) annotation, (3)
interaction, (4) data integration, and (5) the variety of data that can be
obtained from them. The resolution of conventional print brain
atlases typically does not exceed 7200 dpi, whereas virtual
microscopy-based digital brain atlases attain 100,000 dpi and offer
the ability to zoom in and out. Annotation can be more complete in
virtual microscopy-based digital brain atlases, with options to
display some types of annotations and make the rest invisible and it
can be modified readily when necessary. Greater interactivity means
n the Y-axis and tile sizes (in kb) on the X-axis. The number of data points is
le monkey section of size 95,040×74,061 pixels. The mean image tile fetch
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that the user can zoom in/out and pan through brain image data,
which is not possible in print-based atlases. Data integration
capabilities, including the integration of connectivity and gene
expression data, are superior for the virtual microscopy-based digital
brain atlases. And finally, the ability to extract other forms of data
from virtual microscopy-based digital brain atlases, and from images
of connection tracing and in situ hybridization section, is not
available for print-based atlases. This kind of data mining involves,
for example, extraction of implicit, previously unknown, and
potentially useful information and patterns from image data. An
example could be the application of granulometry analysis for
determining distributions of cell body sizes (assumed to be roughly
spherical) throughout the brain. High-throughput image analysis is
also possible through the use of programs that interact directly with
the BrainMaps.org server. Many examples of such programs exist
and certain ones are freely available at BrainMaps.org.

In summary, we have implemented a method for digitizing at
microscopic resolution histological, histochemical, and immunocy-
tochemical section data and making the content easily and
conveniently accessible online. We have shown that Web-accessible
virtual microscopes and brain atlases can be developed using
existing computer and internet technologies that offer universal data
sharing, and that rapid and seamless navigation through vast image
data sets can be achieved using hierarchically organized, multi-
resolution images in conjunction with a graphical user interface. By
offering the possibility of interactively visualizing completely
digitized brains at the sub-neuronal level, our online tools will
prove useful for very large-scale histochemical, gene expression,
and eventually stereological analyses. Our method will be
straightforward to replicate by other labs seeking to increase
accessibility and facilitate sharing of their neuroanatomical data.
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Appendix A

A.1. Image tile retrieval example

Here we consider a detailed example from the Generating
image pyramids section of image tile retrieval. Consider the image
pyramid of one of the monkey images, RH4-0801: From
ImageProperties.xml, we make the following assignments:
W=93707, H=70262, N=134841, and T=256. There are 10
Tiers, numbered 0 to 9 ([log2 (max(93707, 70262) /256)]+1=9).
The directory containing ImageProperties.xml itself contains
directories TileGroup0 to TileGroup526. TileGroup0 contains files
0-0-0.jpg, 1-0-0.jpg to 1-1-1.jpg, 2-0-0.jpg to 2-2-2.jpg, 3-0-0.jpg
to 3-5-4.jpg, 4-0-0.jpg to 4-11-8.jpg, and 5-0-0.jpg to 5-22-3.jpg.
The remainder of the Tier 5 files are contained in TileGroup1 (256
files) and TileGroup2, which contains the remainder of Tier 5. The
remainder of TileGroup2 contains 6-0-0.jpg up to 6-45-3.jpg for a
total of 256 files. All of the TileGroup directories contain exactly
256 files with the possible exception of the last (TileGroup526 in
this case), which will contain N mod 256 files, if this value is
greater than zero; otherwise, it will contain the full 256 files. In this
example, it contains 134841 mod 256=185 files.
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