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Abstract. Brain-Computer Interface (BCI) allows for non-muscular communication with external world, which may be the only way of
communication for patients in a locked-in state. This paper presents a complete software framework for BCI, a novel hardware solution for
stimuli rendering in BCIs based on Steady State Visual Evoked Potentials (SSVEP), and a univariate algorithm for detection of SSVEP in
the EEG time series.

OpenBCI is a complete software framework for brain-computer interfaces. Owing to an open license and modular architecture, it
allows for flexible implementations of different communication channels in the serial or parallel hybrid mode, minimization of costs and
improvements of stability and efficiency. Complete software is freely available from http://openbci.pl.

BCI Appliance is a hardware solution that allows for dynamic control of menus with stable generation of stimuli for the SSVEP paradigm.
The novelty consists of a design, whereby the LCD screen is illuminated from behind using an array of LEDs.

Design pioneers also proposed a new line of thought about the user-centered design of BCI systems: a simple box with one on/off
button, minimum embedded software, wireless connections to domotic and EEG acquisition devices, and user-controlled mode switching in
a hybrid BCI.
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1. Introduction

Jean-Dominique Bauby was an editor of the French fashion
magazine ELLE. In 1995 he suffered a massive stroke, which
left him in the Locked-In State: his mental facilities remained
intact but most of the body was paralyzed—he could only
blink his left eyelid. Despite his condition, he wrote the book
The Diving Bell and the Butterfly [1] – describing his expe-
riences from the hospital and memories – by blinking when
the correct letter was reached by a person slowly reciting the
alphabet over and over again.

Nowadays, Bauby could be assisted by the state of the
art brain-computer interfaces (BCI, see next section), extend-
ing his ability of limited communication with the external
world also outside the working hours of the dedicated per-
son reading his eye blinks. But in spite of the progress, this
new and advanced technology is still available only to the
very few lucky or privileged patients. To cope with this prob-
lem, this paper introduces user-centered hardware design in
the form of a BCI Appliance as opposed to “proof of con-
cept” approach to experimental BCI systems, and a complete
GPL-based software framework for BCI. Together, these el-
ements pave the way towards making the BCI technology
widely available.

2. Brain-Computer Interfaces

A Brain-Computer Interface (BCI) is a communication sys-
tem that allows users to send messages to the external world
without passing through the normal pathways of nerves and
muscles [2]. In other words, they realize An old dream: lib-
erate the brain from the constraints imposed by the body
and make it capable of using virtual, electronic and me-
chanical tools to control the physical world. Just by think-
ing [3].

However, communication via BCI does not involve di-
rect mind-reading, as such devices remain in the domain
of science-fiction. There are only few mental tasks, known
to generate cerebral activity that we know how to detect
from measurable signals. These signals include functional
MRI (fMRI), near-infrared spectroscopy (NIRS), magnetoen-
cephalography (MEG) and electrocorticogram (ECoG, record-
ed intracranially), but if we consider non-invasiveness, time
resolution, cost and portability, the best signal for contempo-
rary BCIs is electroecephalogram (EEG), that is a trace of the
electrical activity of the brain recorded from the surface of
the head.

Currently, there are three major paradigms (tasks) used in
implementations of EEG-based BCIs:
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P300 Evoked potentials such as P300 are deflections present
in an average of EEG responses time-locked to a stimu-
lus. The selectivity of attention is revealed in the fact, that
these potentials occur only in response to the stimuli that
the subject pays attention to (e.g. by counting the occur-
rences). The conscious concentration on one of the stimuli
appearing randomly can be read by the computer as selec-
tion.

SSVEP exposure to a flickering light of given frequency (e.g.
17 Hz) causes appearance of oscillations with the same fre-
quency in the visual cortex. The selective attention comes
into play when there is more than one frequency in the
receptive field, e.g. symbol “0” flickering at 17 Hz and “1”
at 23 Hz. Concentration on “1” could be read from the
occipital EEG derivations located over the visual cortex
as the 23 Hz oscillation appearing in EEG, called SSVEP
(for a recent review of SSVEP c.f. [4]). Detection of this
response is far from trivial, especially in higher frequen-
cies. On the other hand, higher frequencies (above 40 Hz)
are much less tiring to the subject and do not pose danger
of inducing photoepileptic attack. Complete mathematics
designed and tested for detection of the SSVEP response
in EEG, employed in the OpenBCI system, is described in
Appendix A.

Motor imagery (ERD/ERS) relies on the event-related de-
synchronization and synchronization occurring in EEG in
the course of movement planning and execution, also imag-
inary. Reading these phenomena from EEG is much more
difficult than in the other two paradigms, proper imagery
also requires prior subject training, but currently it is the
only paradigm that does not engage the vision.

3. SSVEP stimulus rendering

Visual stimuli in current SSVEP-based BCIs are rendered ei-
ther on a computer screen (by subsequent changes of a se-
lected area of the screen driven by software) or using LEDs
driven by hardware frequency generators. Using a computer
screen offers high flexibility in terms of shape and color of
the visual stimuli but they are limited by their refresh rate
and non-realtime nature of the contemporary operating sys-
tems. On the contrary, LEDs driven by hardware generators
are not limited in frequency, but have limitations in terms of
shape, color, and patterns that can be rendered – basically,
a fixed menu with fixed symbols must be hardwired into the
design of the stimulator. Variation of this scheme, based upon
alternate half-field stimulation, was proposed in [5].

The most common solution to this problem is based upon
the interface setup of ATM (automated teller machine, cash
dispenser), where the central LCD screen is used to display
the dynamically changing sets of labels, tagging the buttons
on the side of the screen with functions corresponding to the
current menu depth. In similarly constructed SSVEP-based
BCI systems, the central screen is controlled by a general
purpose computer, allowing for creation of menus, assigning
dynamically different meanings to the LEDs – functionally
corresponding to the ATM buttons – placed around the screen

(Fig. 1). However, in such a setup the subject must redirect
attention from the symbol to the relevant LED, which is much
less natural than just concentrating on a flickering symbol.

a) b)

Fig. 1. a) scheme of an ATM-like approach to SSVEP-based BCI;
b) implementation with LEDs in separate boxes on the sides of LCD

and a separate controller in the black box.

4. BCI Appliance

To overcome these limitations, we proposed the setup present-
ed in Fig. 2. Array of LEDs is placed behind the LCD screen
in a frame, in such a way, that each box of the frame limits the
area highlighted by contained LED to a well defined rectan-
gle. These LEDs are operated by a microcontroller (we used
ATmega16 chip). Commands determinating the frequencies
of flickering of LEDs are sent to the microcontroller from
the OpenBCI software via USB port. Knowing the coordi-
nates of these rectangles, we can display icons or texts in the
corresponding area of the LCD, at the same time controlling
their flicker with high accuracy. In such a way, we obtain a
highly flexible and accurate framework for dynamic creation
of SSVEP-based interfaces, which operates as follows:

1. OpenBCI (Sec. 5) sends to the controller commands that
flash subsequent LEDs with different frequencies, possibly
outside the alpha band and its harmonics – for example 12,
13, 15, 16, 17, 18, 19 and 23 Hz.

2. At the same time, relevant symbols—for example letters
“A”, “B”, “C”. . . “H” – are drawn in the corresponding ar-
eas of the LCD.

3. EEG recorded from parietal derivation (above the visual
cortex) is analyzed in real time; if the function described
in Appendix A determines that, for example, 12 Hz is sta-
tistically dominant in the EEG, then the system concludes
that the user concentrated his or her attention on the symbol
“A”.

Fig. 2. Proposed solution for a stable delivery of SSVEP stimuli
via LED array highlighting designated areas of an LCD – the BCI

Appliance
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This design required construction of certain dedicated
hardware. Using this opportunity, we implemented also sever-
al ideas about how the practical BCI systems should look like
and operate, as opposed to the “proofs of concept“ from lab-
oratory research environments. The main assumptions were
ease of use, compact design, possibly low cost and wireless
connections to the domotic appliances and the EEG ampli-
fier. These assumptions were also included into the design
of the software. Owing to the distributed architecture of the
OpenBCI framework (Sec. 5), we may run any of the diagnos-
tic modules – like e.g. the online display of the EEG signal,
c.f. Fig. 3 – in parallel on another computer during normal
operation of the Appliance. Therefore, the Appliance can be
equipped with only a minimal set of system modules and
custom kernel, according to the JeOS (just enough operating
system) idea. This cuts down the hardware requirements, and
increases stability and battery life.

Fig. 3. BCI Appliance running speller; EEG is transferred via blue-
tooth from the small blue amplifier (5-channel Mobi by TMSI,
http://tmsi.com) to the Appliance (box on the right) running Open-
BCI (Sec. 5). Laptop on the left is connected to the Appliance via
WiFi, which allows for online display of EEG in the Svarog.pl view-

er, connected as an OpenBCI module (Fig. 4)

5. OpenBCI software framework

OpenBCI is a complete software framework for brain-
computer interfaces. Since online communication with signal
acquisition hardware is an indispensable part of such a system,
when combined with a graphical system for signal review – in
our case Svarog, http://svarog.pl – it provides also a complete
software EEG recording. Svarog stands for “Signal Viewer,
Analyzer and Recorder On GPL”.

Architecture design of the OpenBCI framework is similar
to the one described in [6] in the general concept of modular-
ity. However, there is a major difference in terms of the data
flow model: we replaced the linear data flow by a centralized
approach to modularity (Fig. 4). Centralized data flow greatly
facilitates exchangeability of the modules (also “on the fly”)
and sharing data between them.

The central module handling the data flow is Multiplexer
[7]; it is capable of communication with modules written in
Python, Java, and C++. For example, currently we implement

data analysis in Python and C++, while the graphical module
displaying the signal (Svarog) is written in Java.

Setup of a particular OpenBCI instance, controlling given
external devices in given scenarios, is facilitated by modules
controlling GUI and logics. Therefore, creating a BCI with
new functionality in most cases is just an issue of configur-
ing a matrix representing a graph of states and screens of
the application, and adding commands for operating external
devices – is transparent to the rest of the system.

Fig. 4. General scheme of communication between OpenBCI mo-
dules

6. Hybrid BCI

Decoding the commands directly from the brain activity is
usually slower and less robust than interface built on any
muscular activity. The issue of hybrid BCIs has been raised
recently (c.f. [8, 9, 10]) – partly because of the slow progress
in the information transfer rate of contemporary BCIs. In our
case the interest was driven by the actual needs of the patients
– most of them have some remaining control of certain mus-
cles, and the interface build upon it will be in most cases not
only faster, but also significantly cheaper.

A hybrid BCI is usually defined either as a BCI system us-
ing either more than one of the “pure” BCI paradigms relying
on direct decoding brain signals, or one of these paradigms
in combination with input from different, non-BCI type of
assistive devices. These hybrids can operate in parallel or se-
quentially.

In concordance with the principle of simplicity, advocated
by the target group of disabled users, in the OpenBCI system
we implemented the serial mode, that is possibility of switch-
ing between different modes of input – at the moment SSVEP,
P300, eyetracking and muscular switches – within the same
menu structure, based upon the 2x4 design of the BCI Appli-
ance (see Fig. 5). Such possibility of switching between the
modes reduces the tiredness and negative effects of prolonged
use of any of the modalities alone. However, the architecture
of OpenBCI makes also implementation of parallel hybrids
straightforward, and such studies are planned in the close fu-
ture.
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Fig. 5. User-controlled menu of a serial hybrid BCI. Available modes
of communication are SSVEP and P300-based BCIs (ERD/S is in the
works), eyetracker (ETR) and switch-based interaction. Interface is
operating in the fallback SWITCH mode, subsequently highlighting

options selectable by a muscular switch

7. Discussion

Interest in assistive technologies other than BCI, like eye-
trackers, was driven by the needs of people who contacted
our group. BCI research described in previous sections raised
hopes of many people living in Poland with dramatically re-
duced communication capabilities. In most of these cases the
BCI was not the assistive technology of choice, since with
any remaining muscular activity a much simpler, more robust
and cheaper to implement communication channel is enough.

Apart from purely scientific issues, we should also keep
in mind the huge gap between the possibilities offered by
the cutting edge technologies and those available to the most
needing target users. We are spending hundreds of millions
on advanced medical research, while at the same time avail-
ability of simple 50-dollar wheelchairs would change lives of
thousands disabled people in Africa. Classical mode of coop-
eration between Academia and Industry is of course targeted
at maximizing profit from cooperation and patents, but some
important issues are often left aside in this race.

BCI Appliance was developped as the flagship implemen-
tation of the available technology, with user-centered and cost-
effective design principles. Subsequent versions of the Appli-
ance were used in several public presentations since 2008, op-
erating on 4, 8 or 9 adjacent fields (first prototype was based
on 3×3 array of LEDs) with dynamic menus. Detection func-
tion described in Appendix A provided robust operation also
for most of the volunteers from the audience, although we
did not implement the necessary pre-operation screening of
subject’s SSVEP responses characteristics.

Strength of the SSVEP response is known to depend sig-
nificantly on the frequency [11, 12]. Less documented fact re-
lates to its variability between the subjects – because of that,
the frequencies used in the SSVEP BCI should be adjusted
individually. A systematic study of the inter-subject variabil-
ity of SSVEP responses in relation to the frequencies, colors
and sizes of the stimuli is under way, exploring some of the
unique research possibilities opened by the BCI Appliance,
combining stable flickering with full flexibility of the stim-

uli shapes and colors. As for the efficiency of the presented
simple scheme of SSVEP detection, it can be increased e.g.
by using more than one derivation with Common Spatial Pat-
terns [13], as well as other advanced statistical and signal
processing techniques (c.f. [4, 14]).

8. Information sharing statement

OpenBCI, a complete software environment for creation of
brain-computer interfaces, is freely available on terms of the
GNU General Public License from http://openbci.pl.

Appendix

A. Detection of the SSVEP

in one EEG derivation

In line with the idea of using possibly small and lightweight
wireless EEG amplifiers with minimum number of channels,
we designed a simple function for detection of the SSVEP
responses from a single EEG derivation (channel). So far it
worked very well even in the difficult conditions of public pre-
sentations. However, in terms of the information transfer rate,
it should be outperformed by most of the recently proposed
advanced multichannel techniques. Nevertheless, we provide
a mathematical description to share our initial experiences
with those wishing to implement a simple and monochannel
approach. Source code of this function in Python is a part of
the OpenBCI system.

A.1. General idea. We have NS stimuli flickering with fre-
quencies fs,s=1...NS. For each analyzed epoch we compute
spectral power estimates P (fi) in NF frequencies fi,i=1...NF.
In the design stage, we adjust the stimulation frequencies fs,
the length of the analyzed epoch, and the sampling frequen-
cy in such a way, that the stimulation frequencies fs – and
hence also the expected frequencies of the SSVEP responses
– correspond exactly to some of the frequencies fi, in which
the spectral power P (fi) is estimated.

In such a setup, detection of the SSVEP response can be
done by simply selecting from the stimulation frequencies fs

the one with the largest value of spectral power P (f). In the
following, we optimize this scheme by adding simple correc-
tions for:

1. Non-uniform frequency distribution of the EEG back-
ground.

2. Harmonics and subharmonics of the response.
3. Statistics.
4. Persistence of the response.

A.2. Background removal. Assuming that signal compo-
nents unrelated to the stimulation change slowly with frequen-
cy, we replace the powers P (fi) estimated for each frequency
fi by their the second derivatives, approximated by three-
point formula as the difference between the power in the cor-
responding frequency bin P (fi) minus the average of powers
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in the two neighboring bins P (fi − ∆f) and P (fi + ∆f):

∂2

∂f2
P (fi) ≡ P ′′(fi)

≈ −P (fi − ∆f) + 2P (fi) − P (fi + ∆f).

(1)

This operation results also in quite good normalization of the
distributions.

A.3. Harmonics. For each stimulation frequency fi we con-
sider NH possible harmonics and subharmonics at f

j,j=1...NH
i .

As the power Q(fi), representing the response to the stimula-
tion at frequency fi, we take the average of Persistence(fi)
for all the considered harmonics and subharmonics:

Q(fi) =
1

NH

NH
∑

j=1

P ′′(f j
i ). (2)

A.4. Statistics. To quantify the power of the response at
a “candidate” frequency fγ , we compute the difference of
Q(fγ) and the average of Q(fi) for all the other frequencies,
with except of frequency fγ

R(fγ) = Q(fγ) −
1

NS - 1

NS
∑

i=1,i6=γ

Q(fi). (3)

As a candidate for the detected SSVEP frequency, the maxi-
mum response is taken:

fδ = arg maxR(fγ). (4)

To set the threshold for choosing only the statistically sig-
nificant R(fδ), mean µR and variance σR of R(f) under the
null hypothesis of no significant response is estimated from
the same spectrum, using the number of NK = NS frequencies
fk at which there was no stimulation – that is, in between the
stimulation frequencies:

µR ≈

1

NK

NK
∑

k=1

R(fk), (5)

σR ≈

√

√

√

√

1

NK − 1

NK
∑

k=1

(R(fk) − µR)2. (6)

Response detection at frequency fδ occurs if estimated
response R(fδ) exceeds the above threshold, multiplied by
experimentally adjusted factor K:

(R(fδ) − µR)

σR

> K. (7)

A.5. Persistence. Even if the response detected in the pre-
vious step was indeed a statistically significant event, it may
have resulted e.g. from an unintentional gaze. To compensate
for this effect and increase the robustness of the whole systems
operation we may introduce an additional parameter, that will
be the number of repetitions of response’s detection before
the system takes the actual action. Alternatively, we may say
that the final detection of a response at fδ is scored only if
the above procedure returned the same “winning” frequency
fδ in NR consecutive epochs.
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