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Abstract

A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been
quantifying three-dimensional (3D) spine shapes with sufficient precision to distinguish morphologic types, and sufficient
throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in
true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in
spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic
spines from laser scanning microscopy (LSM) images that directly addresses these limitations. The system is more accurate,
and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines
that are undetectable with standard two-dimensional (2D) tools. Adaptive local thresholding, voxel clustering and Rayburst
Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical
smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with
synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function.
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Introduction

Because of their capacity for plasticity and their key role as the

location of excitatory synapses in the cerebral cortex, accurately

characterizing the structure of dendritic spines is of profound

biological significance. Spine morphology determines the strength,

stability and function of excitatory synaptic connections that

subserve the neuronal networks underlying cognitive function.

Precise quantification of spine morphology in three dimensions

(3D) is essential to understanding the structural determinants of

normal neuronal function, its development, plasticity, and its

dysfunction in neurodegenerative disorders. To date however, this

level of precision has been restricted to time-intensive electron

microscopy (EM) approaches with limited throughput, that are

impractical for comparative population studies. In this paper we

introduce a novel computational approach for detection and shape

analysis of neuronal dendritic spines from confocal and multipho-

ton laser scanning microscopy (CLSM and MPLSM) images, that

operates fully in 3D, and is faster and more accurate than existing

semi-automated technologies. The algorithm is a module of our

NeuronStudio software application [1], an integrated system for

semi-automated digitization, morphometry and analysis of com-

plex neuronal morphology at high resolution.

Spines come in multiple shapes and sizes, which subserve a

diversity of function [2–6]. Although spine shapes in fixed tissue

form a continuum rather than distinct categories, broad subclasses

(e.g., thin, stubby, mushroom) have traditionally been distin-

guished on the basis of morphology (see refs [3,7] for review).

Spine morphology also varies dynamically in response to synaptic

activity [8–13]. Smaller spines are less stable and more motile [14–

16], and as a result, more plastic than large spines [17]. Recent

data indicate that the size and morphology of the spine head are

correlated with numbers of docked presynaptic vesicles [18],

numbers of postsynaptic receptors [19], and hence with synaptic

strength. From a biophysical viewpoint, these effects give rise to

increased synaptic currents and reduced time constants for

calcium compartmentalization in larger spine heads (see refs

[5,20] for review), modulating postsynaptic mechanisms that

determine functions such as learning and memory [21–24]. Spine

neck length and diameter also affects diffusional coupling between

dendrite and spine [25–28], and spine density and shape regulate

the degree of anomalous diffusion of chemical signals within the

dendrite [29]. As more precise data from these studies emerges,

the need for accurate spine morphometry in true 3D, and on large

enough scales for robust statistical analyses becomes increasingly

critical.

Digital representation of neuronal morphology using light

microscopy has traditionally relied on manual tracing from a

computer screen [30,31], and is prone to subjective errors. Despite

the recent introduction of semi-automated tracing methods (e.g.,
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AutoNeuron, MBF Bioscience, Williston, VT), the problem of

detecting and characterizing spine shapes automatically, in 3D,

remains unsolved. In existing image analysis-based tools, precision

at the finest scales is limited by the skeletonization methods used

and by quantization errors. Even when imaged at the limits of

CLSM resolution, single spines may span as few as 3–10 voxels,

and neck diameters may be subvoxel resolution. Accurate recovery

of spine geometry thus requires new analysis algorithms capable of

using subvoxel information, and the full three dimensions of

structural information from a LSM image stack. The spine

detection and analysis method presented here is compatible with

many methods for tracing the dendritic tree and thus can be

implemented as an add-on module to existing manual or

automated tracing packages. Spine voxels are clustered based on

connectivity, analyzed with subvoxel precision using Rayburst-

based shape analysis routines [1], and classified into three

morphologic types, mushroom, stubby and thin. Procedures for

declumping of merged spines and for combining detached spine

heads with their stems are implemented to ensure accurate spine

counts. The method is at least an order of magnitude faster than

previous algorithms, and as a 64-bit application, can handle multi-

gigabyte datasets. These algorithms have been tested and validated

in our freely distributed software application, NeuronStudio [1,32]

(http://www.mssm.edu/cnic), which provides visual verification of

spine classification and the ability for manual spine editing

through interactive 2D and 3D displays.

Results

Image Segmentation and Voxel Processing
The spine analysis module described here utilizes a previously

computed model of the dendritic tree, comprising a series of nodes

of specified diameter forming conical frusta (Fig. 1A,B), which

could be obtained by any of several existing methods [33–37], and

which is compatible with many existing neuronal morphometry

applications [32,38]. Because fluorescence intensity can vary with

adequacy of filling, imaging depth and XY spatial extent in CLSM

and MPLSM image stacks, segmentation based on a globally

selected intensity threshold is in general not feasible, and requires a

dynamically adjusted, local threshold.

Although the spine analysis method presented here is technically

independent of the segmentation technique used, its performance

will be enhanced as the efficacy of segmentation increases. In the

case of threshold-based segmentation, faint or very thin spines may

appear too small or be missed completely if the chosen threshold is

too high. Likewise, too low a threshold will cause background

noise to be segmented as part of the object, while spine shapes may

appear larger, and distorted. For the current implementation we

use an adaptation of the ISODATA method [39] to compute a

local threshold at each node along the dendritic model. This

method is appropriate for datasets exhibiting a bimodal distribu-

tion of intensity values, such as the grayscale images characteristic

of deconvolved LSM image stacks, placing the threshold midway

between the centroids of the two peaks of the distribution. To

ensure an adequate sample of spine and background voxels for the

ISODATA distributions regardless of the orientation of the

dendrite, at each node along the dendritic model we define a

cubic section of data centered at the node and having X, Y, and Z

dimensions equal to 2.5 times the node’s diameter. Voxels inside

that domain are tested for intersection with the dendritic model,

and only the intensities of voxels that do not intersect the model

are used to compute the ISODATA threshold. It should be noted

that excluding voxels based on intersection with the model is a

non-trivial computation, requiring optimization in order to avoid

significant overhead.

Once each node has been assigned a threshold value, any voxel

in the dataset may be segmented by linearly interpolating a local

threshold value between nodes along the closest dendritic segment.

We use the term spine candidates for voxels with intensity values at or

above their local threshold value, whose distance to the closest

point on the surface of the model (distance to surface: DTS) is less than

or equal to a user-defined parameter, the maximum spine height

(MSH) expected for the dataset. Figure 1B shows DTS values (red

arrows) measured for two sample spine candidate voxels in the

data (V1 and V2).

Octree Partitioning to Optimize Voxel Processing
Neurons are sparsely distributed within an image volume and

spine candidate voxels occupy only a small fraction of the dataset.

To identify and process spine candidate voxels efficiently we utilize

a data structure known as an octree [40], which recursively

organizes objects distributed inside a 3D volume, allowing fast

searching by spatial location (Fig. 1C). We first define an axis-

aligned bounding box (AABB) around the entire dendritic model,

which becomes the root of the octree structure (outer cube drawn

in red, Fig. 1C), and contains references to all dendritic segments.

An AABB is a bounding volume used to optimize the computation

of intersection tests in 3D. It comprises a rectangular box having

faces aligned with the major axes rather than with the geometry of

the object (Wikipedia article at: http://en.wikipedia.org/wiki/

Bounding_volume). The root AABB is subsequently partitioned

into eight octants that are each further subdivided, recursively

(inset, Fig. 1C). Each octant becomes a child of its parent in the

resulting octree structure. At successive subdivisions, the dendritic

segments in the parent are tested for intersection with each of its

children. Each child then receives a reference only to those

dendritic segments that intersect it, and therefore receives a subset

of the segments in the parent. Children with less than a pre-

specified number of references are not divided further. These are

termed the leaves of the octree.

The octree improves execution in three ways: (i) by allowing

bulk rejection of voxels whose DTS exceeds the MSH (e.g., the red

shaded cube in inset, Fig. 1C); (ii) by allowing rapid identification

of model segments within the neighborhood of each spine

candidate voxel; (iii) by rapid rejection of voxels failing to meet

a minimum threshold established by the dendritic segments

intersecting that leaf.

Before partitioning, the radii of the model’s dendritic segments

are augmented by the MSH, creating an envelope around the

dendrites that includes all candidate spine voxels (dark grey

envelope surrounding the model, Fig. 1A–C). Sections of the

imaged volume that do not intersect these augmented segments

are not divided further and voxels inside these sections can be

excluded from our list of candidates (inset, Fig. 1C). Without the

octree optimizations, the computational expense of the algorithm

would be O(M6N), where M is the number of voxels in the data,

and N is the number of edges in the model. As an example, a

dataset where the spine analysis took 22 seconds with the octree in

place, required over five minutes to process with the octree

disabled.

Spine Detection Using Voxel Clustering
Individual spines are detected by clustering candidate spine

voxels, starting from the tips and moving towards the dendrite.

Voxels lacking 26-connected candidate neighbors with a greater

DTS value are termed exterior maxima, and represent local high

points that can occur at the tips of spines as well as surface

Analysis of Dendritic Spines
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irregularities and imaging noise along the surface of the dendrite

(red voxels in Fig. 1D). Exterior maxima are processed in

decreasing DTS order to ensure that each cluster uses the highest

maximum. The cluster-building algorithm can be described as an

iterative 3D flood-fill of the structure starting from an exterior

maximum. Each iteration builds a layer by establishing a floor

value that limits cluster growth towards the dendritic segment but

does not constrain sideways growth for that iteration (Fig. 2).

Successive layers are created by adding all 26-connected neighbors

of the previous layer, and establishing the minimum DTS of these

voxels as the floor value for the layer. All unvisited voxels

connected to the current layer with a DTS greater than or equal to

the floor value, are then added in a number of subiterations. For

the first layer, the exterior maximum and its immediate neighbors

establish its floor. Pseudo-code implementing an optimized version

of the cluster building algorithm is provided in Box S1 (Supporting

Information, online).

As voxels are added to individual layers, we maintain an

AABB for the layer by updating the minimum and maximum

voxel coordinates in all three dimensions (white bounding box,

Fig. 2A–C). We estimate the size of the layer continuously as

voxels are added by computing the diagonal of the bounding

box, which we term the spread of the layer. If at any point during

layer-building the spread exceeds a user-provided maximum spine

width, the cluster building stops (see green layer flooding into

dendrite, Fig. 2C).

Figure 1. Processing of Candidate Voxels for Spine Detection. A) Dendritic model rendered as green balls superimposed on volume-rendered
data (light grey voxels), augmented by the maximum spine height (MSH, dark grey envelope surrounding dendrites that contains all spine candidate
voxels). Four corners of the axis-aligned bounding box (AABB) are shown, with the length of each axis segment representing 10 mm to depict the scale in
3D. B) Close-up view of a spiny dendritic section, volume rendered in grayscale, with superimposed 3D model formed by sequential green frustra. A
single capsule formed by a cylindrical dendritic segment capped by two hemispheres at consecutive nodes is outlined in blue. Spine candidate voxels V1

and V2 are shown with their corresponding distance to surface (DTS) values (red arrows). The dark grey envelope around the dendrite represents the
MSH, measured from the surface of the 3D model, as indicated by the white dashed line. C) Octree calculated for the top fork of the dendritic section
shown in (A). The root node is outlined in red. Recursive subdivision of the 3D space results in increasingly smaller cubes surrounding the model. The
inset on the right illustrates bulk rejection of voxels in a single leaf (red shaded cube) that does not intersect the MSH zone (grey envelope surrounding
model) created by a small dendritic section. D) Volume-rendered spiny dendrite with voxels representing exterior maxima drawn as red cubes (voxel size
exaggerated to enhance visibility). The number of exterior maxima is usually much greater than the number of spines, since multiple maxima may occur
on a single spine (white arrow), or along the surface of the dendrites (red arrow).
doi:10.1371/journal.pone.0001997.g001
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Calculating Spine Profiles
For each layer built in a particular cluster, we maintain a profile

of measures for later use by the shape classification routine. We

first compute the center of mass of each layer and run the 2D

variant of our Rayburst Sampling algorithm [1] from that center

of mass to estimate the diameter at that layer. The Rayburst diameter

is the diameter obtained by measuring the minimum surface-to-

surface span inside a tubular structure (see Rodriguez et al. [1] for

full mathematical details). For structures assumed to have an

approximately radially symmetric cross section, 2D Rayburst run

in the XY plane is insensitive to residual Z axis smear from

incomplete deconvolution, yielding a reliable estimate of the

structure’s diameter irrespective of its orientation within the image

stack. The spine profile contains three values: the spread of the layer;

the Rayburst diameter, as defined above, and the depth of the layer,

computed as the distance from the exterior maximum to the floor

of that layer (Fig. 2D). The base of the spine is the last layer in the

cluster that should be considered part of the spine. For detached

clusters the algorithm produces a final layer containing no voxels.

This layer is always considered the base and its depth is set to the

DTS of the maximum, since no floor was defined. To determine

the base of an attached cluster we search its layers sequentially,

from first to last, for the first layer that displays a sudden increase

in spread (e.g., Fig. 2C, yellow arrow, yellow layer). The base is the

layer immediately preceding this (e.g., Fig. 2C, orange arrow,

orange layer). We quantify this spread increase, for each layer i in

a cluster, in terms of the spread ratio (SR), given by the expression:

SR~
Si

1
i

Pj~i

j~1

Sj

 ! , ð1Þ

where Si is the length of the diagonal of the AABB encompassing

all voxels in the ith (current) layer; Sj is the length of the diagonal of

the AABB encompassing all voxels in the jth layer, for all j#i. The

layer preceding the first layer encountered with an SR value

greater than a critical value SR(crit) is selected as the base. An

empirically determined value of SR(crit) = 1.5 was optimal for the

data analyzed in the present study. All layers in the cluster after the

base are then discarded, and their voxels may later enter into

another cluster. For attached clusters, the last layer has a spread

larger that the maximum spine width allowed (final green layer,

Fig. 2C), therefore the spread and Rayburst diameter are set to

infinity to ensure that this layer is never selected as the base. Once

the base layer is identified, we compute the aspect ratio (AR) of the

cluster, defined as the ratio of the depth to the spread of the base

layer (Fig. 2D). Clusters with low aspect ratio values (less than 0.25

in our empirical datasets) represent dendritic surface irregularities

that are too flat to be considered spines, and can be safely

discarded. Clusters may also be discarded based on user-supplied

parameters for minimum voxel count and minimum spine height

(depth of base layer). All remaining clusters are classified as spines.

Cluster Declumping
Cluster shape is calculated in 3D and used both to remove non-

spine clusters and to classify spines into types. Inadequate image

resolution, inaccurate thresholding, or sheer physical proximity

can cause adjacent spines to appear merged (e.g., Fig. 3A). We

introduce a declumping method that effectively separates merged

spines using intensity gradient information. In spiny dendrites

imaged with CLSM or MPLSM, apparently merged spines are

relatively common, making cluster declumping an essential

precursor to spine shape analysis (Fig. 3B). When two spines are

in contact, layers built from the exterior maximum of the first

spine may extend into the adjoining spine. Voxel intensities are

naturally brighter at the center of spines and dimmer at the edges,

forming an intensity landscape that can be used to delimit

individual hills (spines) and valleys (edges) (Fig. 3C). Declumping

uses intensity gradients, computed as 3D vectors at each spine

voxel, to detect the brighter centers during the layer building (red

and blue vectors, Fig. 3C). As each layer is built, the center of mass

of the voxels used to establish the layer’s floor is calculated. For the

first layer, we compute the center of mass of the exterior maximum

and its immediate neighbors. We then define a layer attachment line

from this center of mass to the closest point along the medial axis

of the dendritic tree. To prevent the layer from crossing an

intensity valley into an adjacent spine, only those voxels whose

intensity gradient points towards the layer attachment line are

considered for inclusion in the spine layer.

Spine Shape Classification
After clustering, spine shapes are classified into three types,

mushroom, stubby and thin, using the profile of 2D Rayburst

diameters computed in consecutive layers along the length of the

spine. Use of 2D Rayburst within each layer avoids the effects of

residual optical smearing in the Z direction that arise from

incomplete deconvolution [1], providing a reliable, high resolution

profile of spine shape. Figure 4A,B shows a 2D Rayburst run from

the center of mass of the third layer in a typical mushroom spine.

Figure 2. Cluster-Building by Iterative Addition of Layers.
Individual voxels are rendered as wireframe cubes in successive layers
of different colors, superimposed on a volume-rendered dendritic spine.
A) Voxels of first layer shown in red. White frame shows each corner of
the layer’s AABB. B) Fourth iteration of the cluster-building algorithm
produces the green layer, and correspondingly larger bounding box. C)
In the last iteration, the diagonal of the bounding box exceeds the user-
provided maximum spine width (MSW), as the green layer floods into
the dendrite (green arrow). The yellow layer is the first to exhibit a
spread ratio exceeding SR(crit) (yellow arrow). Hence, the layer
immediately preceding this becomes the spine base (orange layer,
orange arrow). Scale bar shown as red horizontal edge of lower left
corner of AABB represents 0.45 mm. D) Schematic of cluster layer-
building, showing exterior maximum (red cube at maximum point);
floor of layer 6 (proximal end of purple layer) and depth of layer 6
(distance from exterior maximum to floor).
doi:10.1371/journal.pone.0001997.g002
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The blue horizontal lines superimposed on the red Rayburst

vectors in the XY view (Fig. 4A) and ZY view (Fig. 4B) indicate the

resulting diameter in layer 3. Consecutive Rayburst diameters are

plotted in Figure 4C versus layer number as bar graphs. These

profiles of Rayburst diameters are used to classify spine shapes.

Spine shape classification is controlled by critical values of the

following three parameters: AR (defined in Calculating Spine Profiles),

head to neck ratio (HNR) and head diameter (HD). These three

parameters, together with the spread ratio defined in Equation (1),

control the decision tree of Figure 5 that classifies spine shapes.

First the spread ratio is used to determine the base of the spine. Then

the AR is computed, and clusters are separated into valid spines

(those that are sufficiently tall and narrow; AR.AR_spine(crit)) or

invalid spines (those that are too wide and flat). For valid spines,

existence of a neck is the first decision point in the scheme. The

measurements HNR, neck_position and head_position are returned by

the following algorithm, which iterates sequentially through the

layers of the spine profile:

SET HNR to 0

SET neck_position to 0

SET head_position to 0

FOR every layer i in the profile

FOR every layer j , i

SET r to rayburst_diameter[j] /

rayburst_diameter[i]

IF r . HNR THEN

SET HNR to r

SET neck_position to i

SET head_position to j

END IF

END FOR

END FOR

Spines with HNR greater than a critical value, HNR(crit), are

considered to have a neck. For detached spines, the above algorithm

is not needed since we simply select the last layer as the neck, and the

largest layer before the neck as the head. Spines with a neck can be

either thin or mushroom types. If any layer above the neck has a

Rayburst diameter exceeding a critical value (HD(crit)), the spine is

classified as a mushroom, otherwise it is a thin (see flowchart, Fig. 5).

For spines lacking significant necks, an aspect ratio less than

AR_thin(crit) indicates a stubby, otherwise the spine is labeled as thin.

By optimizing against manually classified data, we empirically

determined AR_thin(crit) to be 2.5; HNR(crit) to be 1.1 and HD(crit) to be

0.35 mm for the data analyzed in this study.

Spine Stem Reattachment
Extremely thin necks that occur on some spines cannot be

resolved under LSM, leading to apparently detached spine heads

(e.g., Fig. 3D). The end of the neck closest to the dendrite, termed the

spine stem, may protrude far enough for it to be detected as a cluster

and classified as a separate spine (red voxels, Fig. 3E), artificially

increasing spine counts. Before spine counting and classification, we

search for potential spine stems by determining if any attached spines

without necks are located directly below a detached spine. Given the

location of the lowest-DTS voxel in a detached spine, p0, we compute

the closest point on the surface of the dendritic model, p1, (Fig. 3F).

These two points define a line, L. For any attached spine in a

prespecified neighborhood of p0, we project its maximum voxel, m,

onto L. The attached spine is identified as the stem if the projection

point, pm, lies within the line segment [p0, p1], and its perpendicular

distance to the line is less than the value Dmax given by the expression

for a bell-shaped domain (Fig. 3F):

Dmax~
pm{p0j j
p1{p0j j

� �0:2

|rbell : ð2Þ

Figure 3. Cluster Declumping and Spine Stem Reattachment. A)
Volumetric data showing cluster of three spines that appear merged
due to limited image resolution. B) Result of clustering algorithm using
the cluster declumping routine described in the text. The merged
spines have been properly detected as separate clusters indicated by
differently colored voxels. C) Local 3D gradient vectors used to declump
two merged spines. Vector heads are colored red or blue; black tails
point in direction of increasing intensity. At the valley marked by the
white arrow, the gradients reverse direction: red gradients point
leftward, toward the center of mass of the red spine; blue gradients
point rightward, toward the center of mass of the blue spine. D)
Volumetric data showing an apparently detached spine head, and its
spine stem attached to the dendrite. Because of poor resolution of the
spine neck, this thin spine is detected as two separate spines. E) Bell-
shaped region (transparent red) used to detect the stem of a spine
whose neck cannot be adequately resolved. The voxels of the attached
(red) and detached (yellow) spines are represented as cubes within a
volume rendering of the dataset. Because the tip of the attached spine
falls within the bell-shaped region, the algorithm merges these two
clusters into a single spine. White line between yellow detached and
red attached spines represents an approximate scale of 0.8 mm. F)
Schematic showing parameters of the spine stem reattachment routine.
p0: lowest-DTS voxel on a detached spine; p1: closest point to surface of
the dendritic model: m: maximum point on an attached spine within
the bell-shaped domain shown in transparent red; pm: projection of m
onto line segment [p0, p1]; Dmax:: limit of the bell-shaped domain that
encloses the spine stem.
doi:10.1371/journal.pone.0001997.g003
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Here rbell represents the maximum radius at the base of a bell-shaped

domain around the line segment [p0, p1] in micrometers, obtained

empirically for our data. If more than one attached spine meets these

criteria, the spine with the smallest perpendicular distance is chosen

as the stem, and the two clusters are combined into a single spine.

Validation of Automated Spine Detection and Shape
Classification

We validated the detection and classification algorithms by

comparison with trained human operators on the same data.

Seven CLSM image stacks, each containing at least one spiny

dendritic segment such as that shown in Figure 6, were collected

according to the procedure described in Methods. NeuronStudio

was used to detect and classify spines automatically in these data,

and the results were compared to those obtained independently by

four skilled operators using manual methods. Because the problem

of classifying spine shapes is independent of the detection method

used, we evaluate these two processes separately. Figure 6 shows

XY and ZY maximal projections of approximately half the field of

view of a typical image stack. Before deconvolution (Fig. 6A), the

spines are visible in XY, but substantially obscured by the brighter

dendrite in the ZY view. Following deconvolution (Fig. 6B),

relative intensities of spines and dendrite are closer, and individual

spines are clearly discernible in the ZY projection (Fig. 6B).

Comparison of Automated and Manual Spine Detection
A skilled operator examined each of the confocal image stacks

interactively, first using a 2D slice viewer and then a 3D volume

rendering. In the manual procedure, the operator labeled each

identified spine with a marker labeled ‘manual’. NeuronStudio

then identified spines in the same dataset automatically, placing a

Figure 4. Shape Classification Using Rayburst Diameters of Consecutive Layers. A) XY view showing the rays (red lines) of a 2D Rayburst
run at the center of mass (green square) of a single layer. The thick blue line indicates the resulting width of the structure as calculated by Rayburst,
and provides an approximate scale of 0.7 mm. B) Side profile of the Rayburst core, demonstrating how the rays extend in the XY plane only, avoiding
the effects of optical smearing in the Z direction. C) Bar graphs showing the blue Rayburst diameters calculated at each layer as a function of the layer
number, for three representative spines of type, mushroom, thin and stubby. These profiles of Rayburst diameters are used to classify spine types. HD:
head diameter; ND: neck diameter. For attached spines, the last layer’s Rayburst diameter (black bar) is set to infinity.
doi:10.1371/journal.pone.0001997.g004

Figure 5. Flowchart of Algorithm Used for Spine Classification.
The spread profile of the cluster is used to determine the base of the
spine. From this computation an aspect ratio (AR) is calculated for the
cluster to determine whether a spine has been found. For valid spines,
the presence of a neck indicates a mushroom or thin spine, whereas
absence of a neck indicates a stubby or thin spine. The aspect ratio and
the width of the head (head diameter; HD) are used to resolve the final
spine types.
doi:10.1371/journal.pone.0001997.g005
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Figure 6. Manual and Automated Results for Typical Image Data. A,B) XY and ZY maximal projections of half the field of view of a typical
image stack before (A) and after (B) deconvolution. Compared to the raw data (A), the deconvolved data exhibit good relative intensity equalization
of spines and dendrites, and significantly reduced Z-axis ‘‘stretching’’ from optical smear, in the ZY projection (B). Note the difference in scale in XY vs
ZY projections, reflecting the fact that voxel dimensions are twice as big in Z as in X and Y; (voxels are [0.05 mm, 0.05 mm, 0.1 mm]). C, D) Comparison
of spines detected by one of the manual operators (red circles, C) and automatically by NeuronStudio (green circles, D). E,F) Close-up XY view of a
spiny branch comparing spines detected manually (red circles, E) and automatically (green circles, D). Examples of typical mismatches between the
manual and automatic detection methods are highlighted with double circles (double red circles: Manual-only detection; double green circles: NS-
only detection), and by white arrows (misses). The short, stubby spine projecting downward from the dendrite is missed by the manual operator
(white arrow, E), but detected by NeuronStudio (double green circles, F) A very faint, thin spine that is missed by NeuronStudio (white arrow, F) is
detected by the manual operator only (double red circles, E). G,H) Close-up ZY view of a spiny branch comparing manual with automated spine
detection. Example of a stubby spine projecting in the Z direction, that is typically missed by the manual operator (white arrow, G) but detected by
NS-only (double green circles, H).
doi:10.1371/journal.pone.0001997.g006
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marker labeled ‘auto’ at the center of mass of each spine.

Automatically and manually detected spines were compared on a

spine-by-spine basis and the counts for both methods, for the

manual method only, or for NeuronStudio only, were tabulated

for each stack (Table 1). Across the seven image stacks, the manual

operator detected 447 spines, and NeuronStudio detected 492. Of

these 492, 401 were detected by both the manual and automated

methods.

Spines detected by both manual and automated methods were

considered correct hits. Spines detected by the manual method

only (Manual-only, Table 1), or by NeuronStudio only (NS-only,

Table 1), were potential errors. Those detected by NS-only could be

either false positives, or correct detections that were missed by the

human operator. Examples of spines detected manually (red

circles), by NeuronStudio (green circles), Manual-only (double red

circles) and NS-only (double green circles) are shown in XY and ZY

projections of typical image stacks, in Figure 6. NS-only and

Manual-only spines were subsequently analyzed by another three

independent human operators. This showed that most NS-only

spines were small, flat stubby types, or short thin types, projecting

primarily above and below the dendrite, along the Z direction

where they are more difficult for a human operator to distinguish

(e.g., white arrow, Fig. 6G and double green circles, Fig. 6H). A

small percentage of NS-only spines were judged actual false

positives – dendritic surface bumps too small to be considered

actual spines or non-reattached spine stems. Manual-only spines

represent potential misses by NeuronStudio. Subsequent exami-

nation of Manual-only spines showed that about half were from

clusters of two or three adjacent spines that did not declump

completely. Of the remainder, about half were very dim voxel

clusters, below the local threshold established by NeuronStudio,

but just detectable by the human operator (e.g., double red circle,

Fig. 6E and white arrow, Fig. 6F), while the rest were judged

actual false positives.

Comparison of Automated and Manual Spine Shape
Classification

Following detection, spine shapes were classified by Neuron-

Studio. Three skilled human operators (A, B, and C) then

examined the same set of spines in 3D with default markers

superimposed on the volume rendered data, using NeuronStudio

interactively to rotate, zoom, and inspect the data from any angle.

The three operators classified each spine independently by setting

the default marker type to ‘stubby’, ‘thin’, or ‘mushroom’,

according to the observed spine shape and a set of previously

agreed classification criteria. A human consensus (HC) classification

was also established as the type designated by two or more of the

three human operators for each spine. To assess intra-operator

variability, one operator (Operator C) performed the classification

twice, evaluating the same datasets on different days. After

adjusting NeuronStudio’s shape classification parameters to fit the

HC, spine types were classified automatically. Table 2 shows the

type counts for each operator, and the HC and NeuronStudio

classifications. For each spine type, variability between operators

was evaluated by measuring the percent match between each pair

of operators on a spine-by-spine basis. All pairwise percent

matches on the same 442 detected spines are shown in Table 3

(higher percent match indicates lower variability between

operators).

Because many spine types are ambiguous, shape classification

by human operators is subjective and prone to high variability

both within an operator on the same spines (intra-operator

variability), and between trained operators using the same

classification criteria (inter-operator variability). Pairwise percent

match between operators ranged from 78.3% to 85.8% (Table 3).

Percent match within human operator C on two different days was

82.9% (C1–C2, Table 3). NeuronStudio’s classification matched

the HC classification 85.8% of the time after adjusting the shape

parameters (Table 3). Within each spine class, NeuronStudio

matched 79.1% of mushroom spines; 82.8% of stubby and 92.1%

of thin spines classified by the human consensus. In general

NeuronStudio matched the HC standard equally, or better than,

the best inter-human match rates (Operator A to Operator B,

85.8% overall), and better than the intra-operator match

(Operator C1–C2, 82.9% overall, Table 3). Automated classifica-

tion by NeuronStudio has the advantage of removing human

subjectivity and intra-operator variability, and the parameters can

be optimized to match a particular classification criterion.

Table 2. Table of Spine Classification Counts by Morphologic Type.

Operator A Operator B Operator C1 HC NS (trained to HC) Operator C2

Stubby 113 112 154 122 114 130

Thin 257 250 210 241 259 235

Mushroom 60 69 66 67 65 66

Comparison of numbers of spines in each of the three types, classified by the automated method (NeuronStudio: NS) and manual methods (human operators A, B, C).
To assess intra-operator variability, Operator C performed the same task on two different days: C1 and C2. HC: human consensus, the spine type designated by at least
two of the three human operators. NS (trained to HC): Spine counts for each type classified automatically by NeuronStudio after the shape parameters of the decision
tree, Figure 5, were optimized to best match the HC.
doi:10.1371/journal.pone.0001997.t002

Table 1. Validation of Automated Spine Detection.

Stack Manual NeuronStudio Both NS-only Manual-only

2 70 71 65 6 5

4 68 77 56 21 12

6 58 67 57 10 1

8 79 89 70 19 10

9 59 64 54 10 5

G 58 67 51 16 7

K 55 57 48 9 8

Total 447 492 401 91 48

From left to right, columns indicate: Stack: stack identifier; Manual: numbers of
spines in each stack detected by the manual method; NeuronStudio: numbers of
spines in each stack detected by NeuronStudio; Both: spines detected by both
methods; NS-only: spines detected by NeuronStudio only; Manual-only: spines
detected by the manual method only.
doi:10.1371/journal.pone.0001997.t001
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Symmetry of Detection and Classification
To evaluate the algorithm’s performance on spines of different

orientations with respect to the image plane and around the

dendritic structure, for each spine we record the angle formed by

the spine’s primary axis with the image plane. Spines were divided

into two groups based on this angle: mostly horizontal, those with

absolute values of angle#45 degrees from the image plane, and

mostly vertical, those with absolute values of angles.45 degrees from

the plane. For dendrites running approximately parallel with the

image plane, the mostly horizontal spines are visible on the sides of

the dendrite, in the XY view (e.g., Fig. 6E,F and Fig. 7A,B,C). The

mostly vertical spines tend to project orthogonal to the image plane,

being more visible in the ZX and ZY views (e.g., Fig. 6G,H and

spines marked 1,2, and 3 in Fig. 7D).

Symmetry of Spine Detection
To evaluate the symmetry of detection for all orientations, we

compared the number of spines detected by the automated and

manual methods in the mostly horizontal and mostly vertical groups.

The results are shown in Table 4. Both the manual and automated

methods reported more spines in the mostly horizontal orientation

than the mostly vertical orientation (Table 4). This result confirms

that when using light microscopy, spines with long axes pointing

along the optic axis, and particularly those positioned directly

above and below the dendrite are significantly less visible than

those parallel with the image plane. This asymmetry was greater in

the manual method (65.0% mostly horizontal:35.0% mostly vertical,

Table 4) than the automated method (58.5% mostly horizon-

tal:41.5% mostly vertical, Table 4), because the automated method

was better at detecting sharp bumps projecting mostly vertically,

above and below the dendrite, while the manual method was

better at detecting very faint spines on the sides of the dendrite (see

‘‘Comparison of Automated and Manual Spine Detection’’).

Table 3. Intra- and Inter-Operator Percent Match in Shape
Classification by Morphologic Type.

Intra-Operator
Percent Match Inter-Operator Percent Match

Comparison C1–C2 A–B C1-A C1-B NS-HC

Stubby 78.6% 82.3% 90.3% 90.2% 82.8%

Thin 91.0% 88.7% 77.0% 78.0% 92.1%

Mushroom 74.2% 90.0% 70.0% 68.1% 79.1%

Overall 82.9% 85.8% 79.0% 78.3% 85.8%

Comparison of intra-operator (C1–C2) and inter-operator variability between
human operators (A–B; C1-A; C1-B) and between the automated (NeuronStudio)
spine classification and the human consensus (NS-HC). Variability is measured
by pairwise percent match: higher percent match indicates lower variability
between operators. Overall, NeuronStudio’s classification matched the HC
standard equally, or better than, the best human inter-operator match.
doi:10.1371/journal.pone.0001997.t003

Figure 7. 3D Information is Required for Accurate Spine Detection. Two- and 3D renderings of a spiny dendrite imaged with CLSM and
reconstructed with NeuronStudio with results of spine detection algorithm. A) Image stack is shown as a 2D maximal projection with arrows
indicating positions of three representative spines (numbered 1,2,3) oriented perpendicular to the image plane, that cannot be detected from a 2D
projection. B) The same dataset shown as a 3D volume rendering. The three spines are somewhat more visible in the 3D XY view. C) XY view of
spines detected in 3D by NeuronStudio with spine voxels represented in different colors, superimposed on volume rendered data. Arrows point to
spines 1, 2, and 3, not visible in 2D, that can be detected by NeuronStudio in 3D. D) ZY view of the same dataset as shown in (C), rotated through 90u
to show the prominence of these spines in 3D.
doi:10.1371/journal.pone.0001997.g007
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Symmetry of Spine Classification
To evaluate the symmetry of spine shape classification, we

compared the type composition (measured as percentages of

mushroom, stubby and thin types relative to total spine numbers)

of the automated and manual methods in the mostly horizontal and

mostly vertical groups. The results are summarized in Table 5. Spine

type compositions were very similar in the mostly horizontal and

mostly vertical orientations, for both manual and automated

classification methods. In each method, substantially fewer spines

were classified as mushroom and thin types, and substantially

more spines were classified as stubby, in the mostly vertical relative to

the mostly horizontal group (Table 5). The alteration in type

composition moving from mostly horizontal to mostly vertical

orientations was very similar in the automated and manual

classification methods. We infer from this that the altered type

composition in the vertical orientation arose primarily from shape

artifacts due to effects such as poorer resolution, and residual

optical smear, in the Z direction. Future research will focus on

developing methods to adjust shape classification parameters

depending on spine orientation, and degree of residual optical

smear in the images.

Imaging Requirements and Algorithm Performance
For this study the data were imaged at a resolution of 0.05 mm

in XY (lateral resolution) with 0.1 mm steps along the optical axis

(axial resolution). We have found that the algorithm can

successfully detect spines at resolutions as low as 0.2 mm in any

direction. For reliable shape classification, we recommend that

voxel resolution be maintained at 0.1 mm or higher in all

directions. Whatever the chosen resolution, our method requires

that the LSM data be properly deconvolved in order to reduce the

optical smearing introduced by the point spread function (PSF) of

the microscope as well as to filter out any shot noise created by the

CCD camera during digitization.

We tested the algorithm’s performance on a Windows

workstation with an Intel Xeon 1.0 GHz processor and 1GB of

RAM. The execution time for a representative image stack of size

51265126100 at a resolution of 0.0560.0560.10 mm containing

a single branch with about 70 spines was 12.8 s. When the

algorithm was run on a composite of 7 stacks of the same

resolution and similar spine distribution as above, the running

time increased to 90 s, representing a linear increase in execution

time with input size. Because some overhead is incurred in spine

management, the observed linearity can be affected by the spine

density in each dataset. In general the execution time should

remain proportional to the number of voxels examined, which

ultimately depends on the size of the dataset. Output of the spine

analysis can be saved as a text file (see Table 6).

Discussion

The emerging appreciation within Neuroscience generally, that

spine morphology is a sensitive index of functional and structural

plasticity, has generated a rapidly increasing demand for tools that

can reconstruct, classify and quantify spine shapes. The ability to

analyze large volumetric data sets accurately, efficiently, and in

true 3D has been a major bottleneck in deriving robust

relationships between altered neuronal function and changes in

spine morphology. Traditional computer-assisted manual methods

for digitizing spines remain time-consuming, inaccurate and

subjective (e.g., NeuroZoom [30], Neurolucida [31] [MBF

Bioscience, Williston, VT]). Even with the advent of semi-

automated tracing methods, characterization of fine dendritic

and spine structures in true 3D remains a difficult challenge.

Table 5. Symmetry of Spine Classification with Respect to Orientation.

Mostly Horizontal Mostly Vertical

Automated Classification Manual Classification Automated Classification Manual Classification

Mushroom 25.4% 21.4% 5.9% 8.0%

Stubby 9.4% 8.9% 58.8% 51.1%

Thin 65.2% 69.6% 35.3% 40.8%

Type composition of mostly horizontal and mostly vertical orientations for the automated and manual classification methods. Each column shows the percentage of
spines classified as mushroom, stubby and thin for a given orientation, and method. The type compositions vary substantially with orientation: percentages of
mushroom and thin spines are reduced, while percentages of stubby spines are increased, in the mostly vertical, relative to the mostly horizontal orientations. The type
compositions do not vary substantially with classification method: manual and automated methods have similar type compositions within the mostly horizontal and
mostly vertical orientations.
doi:10.1371/journal.pone.0001997.t005

Table 4. Symmetry of Spine Detection with respect to Orientation.

Mostly Horizontal Mostly Vertical

Total Detected Spine Count Percent of Total Spine Count Percent of Total

Automated Detection 491 287 58.5% 204 41.5%

Manual Detection 449 292 65.0% 157 35.0%

Spines detected according to orientation with respect to the XY plane, for automated versus manual methods. The first data column shows the total number of spines
detected for each method. The second and third columns show the number of spines detected in the mostly horizontal orientation, and those numbers expressed as
percentages of the total detected, respectively. The fourth and fifth columns show the number of spines of each type detected in the mostly vertical orientation, and
those numbers expressed as percentages of the total. Both automated and manual methods tend to detect more spines in the mostly horizontal orientation, with
slightly higher horizontal-to-vertical asymmetry in the manual method than the automated method.
doi:10.1371/journal.pone.0001997.t004
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To the best of our knowledge, three methods for automated

dendritic spine analysis from light microscopy images have been

reported in the literature, only one of which operates on 3D data.

This 3D method, by Koh et al. [41], uses the ‘‘grassfire’’

propagation technique for assigning each dendritic voxel a

distance to the medial axis of the dendritic structure [42]. Tips

and protrusions on the surface of the dendrite are identified as

local maxima in this metric. While the method produces good

results on a number of spine configurations, the iterative nature of

the grassfire algorithm results in slow execution times on modestly

sized datasets, on the order of half an hour for a 51265126512

stack, the typical size to reconstruct a single spiny branch. The use

of a global user-defined segmentation threshold further limits the

applicability to small image stacks in which relatively uniform

fluorescence levels can be attained.

More recently, Zhang et al. [43] have used a curvilinear

structure detector to detect spines in 2D projections of LSM image

stacks, and linear discriminant analysis to differentiate true spines

from pseudospines. The method improves upon earlier techniques

by using a local adaptive threshold for spine and dendrite

detection, but is implemented only in 2D, from a maximal

projection. In such 2D methods, spines above and below the

dendrite projecting along the optic axis cannot be detected

reliably, and spine shapes, lengths and other measurements are

necessarily distorted by the absence of information in the Z

direction. Nor is sufficient information available to discretize

adjacent spines that appear merged in the 2D segmented images,

artificially altering computed spine counts and densities. Recently,

the same group has addressed some of the problems with the Koh

method [41] by introducing various forms of adaptive thresholding

and using a more efficient method of detecting spine tips [44]. This

implementation, however, remains 2D-based and its application to

spine counts and shape analysis is accordingly limited.

The automated spine detection and shape analysis algorithms

presented in this paper directly address these limitations, providing

significant advances over existing techniques. By operating on

minimal subsets of voxels defined by the octree, our algorithm

avoids many of the computational constraints encountered by

previous spine analysis techniques [41,43]. Although the current

implementation uses a threshold-based segmentation method, the

method presented here is technically independent of the

segmentation method used. Future work will focus on identifying

and adapting other methods to allow greater flexibility in data

segmentation. Use of the Rayburst Sampling algorithm optimizes

accuracy in quantifying 3D spine morphology, by avoiding

residual optical image smear that can distort spine shapes, and

by minimizing quantization error that limits the accuracy of

digitized images. Most importantly, the ability to operate in 3D is a

fundamental requirement of a spine analysis tool. As demonstrated

in Figure 7, existing 2D detection methods can substantially

underestimate spine counts [45], misrepresenting spine densities in

morphometric studies. Nor can spine morphologies, volumes or

surface areas, essential parameters in biophysical models that

relate neuronal firing patterns to their structure [46–48], be

quantified accurately with 2D methods.

Extending the method to different imaging modalities is a

direction for further research. Live neuron imaging requires the

ability to work in significantly lower axial resolutions, with highly

asymmetrical voxel dimensions. Our future research will focus on

evaluating the performance of the method under such conditions

and developing new techniques to allow proper detection and

classification of spines in live imaging. The automated spine analysis

algorithms presented in this study provide a much-needed tool for

the objective evaluation of morphometric changes that occur with

synaptic plasticity, normal development and aging, and with

neurodegenerative disorders that impair normal cognitive function.

Materials and Methods

Animals and Data Acquisition and Preprocessing
Four 9 month old male mice (C57Bl/SJL) were used. Animals

were anesthetized with choral hydrate (15% aqueous solution, i.p.)

and were perfused transcardially with 4% paraformaldehyde and

0.125% glutaraldehyde in phosphate buffer saline (PBS; pH 7.4).

The brains were then carefully removed from the skull and

postfixed for 6 hours. All procedures were conducted in

accordance with the National Institute of Health Guide for the

Care and Use of Laboratory Animals and were approved by the

Mount Sinai School of Medicine Institutional Animal Care and

Uses Committee.

For intracellular injections, brains were coronally sectioned at

200 mm on a Vibratome (Leica, Nussloch, Germany). The sections

were then incubated in 4,6-diamidino-2-phenylindole (DAPI;

Sigma, St. Louis, MO, USA), a fluorescent nucleic acid stain,

for 5 minutes, mounted on nitrocellulose filter paper and

immersed in PBS. Using DAPI as a staining guide, individual

layer II/III pyramidal neurons of the frontal cortex were loaded

with 5% Lucifer Yellow (Molecular Probes, Eugene, OR, USA) in

distilled water under a DC current of 3–8 nA for 10 minutes, or

until the dye had filled distal processes and no further loading was

observed [45,49]. Tissue slices were then mounted and cover-

Table 6. Spine Analysis Output Format.

ID
SECTION
NUMBER

SECTION
LENGTH X Y Z

HEAD
DIAMETER

NECK
DIAMETER MAX-DTS TYPE

ANGLE WITH
XY PLANE

1 0 36.33 24.54 3.47 2.23 0.56 0.36 1.84 mushroom 53.76

2 0 36.33 11.73 13.70 5.03 0.17 0.005 1.52 thin 238.41

3 0 36.33 17.58 7.77 3.70 0.26 N/A 1.49 thin 215.86

4 0 36.33 5.06 17.91 6.79 0.33 N/A 1.18 stubby 281.66

5 0 36.33 12.61 11.88 5.04 0.65 0.56 1.12 mushroom 3.60

6 0 36.33 7.59 15.43 5.01 0.27 N/A 1.11 stubby 263.30

Representative section of the spine analysis output file. For each spine detected, the output file contains the following information: a numerical identifier, the identifier
for the dendritic section (segment between successive branchpoints) where the spine is located, the length of the dendritic section, the physical coordinates of the
spine’s center of mass in the image stack, head and neck diameters (if applicable), the distance to surface for the tip of the spine, the type of the spine, and the angle of
the primary spine axis with respect to the XY image plane.
doi:10.1371/journal.pone.0001997.t006
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slipped in Permafluor. Dendritic segment and spine imaging was

performed using a Zeiss 410 confocal laser scanning microscope

(Zeiss, Thornwood, NY, USA) using a 488 nm excitation

wavelength, using a 1.4 N.A. Plan-Apochromat 1006 objective

with a working distance of 170 mm and a 56 digital zoom. After

gain and offset settings were optimized, segments were digitally

imaged at 0.1 mm increments, along the optical axis. The confocal

stacks were then deconvolved with AutoDeblur (MediaCyber-

netics, Bethesda, MD, USA).

Supporting Information is available online (Box S1)

Supporting Information

Box S1 Pseudo-Code for Spine Cluster Building Algorithm

Found at: doi:10.1371/journal.pone.0001997.s001 (0.02 MB

DOC)
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