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Abstract

This paper deals with the problem of classifying signals. The new method for building so
called local classifiers and local features is presented. The method is a combination of the
lifting scheme and the support vector machines. Its main aim is to produce effective and
yet comprehensible classifiers that would help in understanding processes hidden behind
classified signals. To illustrate the method we present the results obtained on an artificial
and a real dataset.
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1. Introduction

Many classification algorithms such as artificial neural networks induce classifiers which have
good accuracy but do not give an insight into the real process which is hidden behind the
problem. Although predictions are made with high precision such classifiers do not answer
the question “Why?”. Even algorithms such as decision trees or rule inducers very often
produce enormous classifiers. Their analysis is almost intractable by the human mind. It is
even worse when these algorithms are used for problems of signal classification. In practice
good accuracy without an explanation of the classification process is useless.

In this article we describe an approach which can help in building classifiers which
are not only very accurate but also comprehensible. The method is based on the idea of
the lifting scheme (Sweldens, 1998). The lifting scheme is used for calculating expansion
coefficients of analysed signals using biorthogonal wavelet bases. The biggest advantage
of this method is that it uses only spatial domain in contrast to the classical approach
(Daubechies, 1992) in which the frequency domain is used. As originally lifting scheme did
not give us enough freedom in incorporating adaptation we used its modified version called
update-first (Claypoole et al., 1998).

Assume we act in space R
N spanned by a biorthogonal base {φi}

n
i=1 and {φ̃i}

n
i=1. Vectors

{φi}
n
i=1 and {φ̃i}

n
i=1 are biorthogonal in the sense that

〈

φi, φ̃j

〉

= δij

where δij = 1 if i = j and 0 otherwise.
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Each vector x ∈ R
N can be expressed in the following way

x =
n
∑

i=1

αiφi (1)

where αi =
〈

φ̃i, x
〉

are expansion coefficients. Very important feature of vectors {φ̃i}
n
i=1

is that they can be nonzero only for several indices. It implies that for calculating
〈

φ̃i, x
〉

only a part of the vector x is needed. This feature is called locality.
The aim of the method presented in this article is to find such an expansion (1) by

implicitly constructing biorthogonal base {(φi, φ̃i)}
n
i=1, that coefficients αi =

〈

φ̃i, x
〉

are as

discriminative as possible for classified signals.
More specifically we assume that a training set X = {(xi, yi) : xi ∈ R

n, yi ∈ {−1,+1}}li=1

is given. For each base vector φ̃j we get a vector of expansion coefficients αj ∈ R
l

αj(i) =
〈

φ̃j , xi

〉

For each such vector we can find a number bj ∈ R called bias for which

sgn(αj(i) + bj) = yi

for as many indices i ∈ {1, 2, . . . , l} as possible.
For calculating expansion coefficients we used the idea of support vector machines (SVM)

introduced by Vapnik (1998)1. SVM proved to be one of the best classifier inducers. Com-
bining the power of SVM and the locality feature of the designed base we were able to build
classifiers with a very good classification accuracy and which are also easily interpreted.
We present experiments obtained for an artificial datasets and a real dataset. The artificial
datasets allowed us to verify our method and to better understand its features. Experiments
conducted on the real dataset proofed usefulness of the method for real applications.

2. Outline of the paper

The paper is divided into two main parts and the appendix. The first part is devoted
to a description of the method and consists of three subparts. First we present a general
outline of the method next we introduce some notation that will be used in next part that
gives detailed description of the method. The first part of the paper we end with a short
summary of the presented method. In the second part of the paper we present a results of
the experiments conducted both on the artificial and the real dataset. In the appendix we
show how to efficiently solve optimisation problems that arise in the method.

3. Method description

In this section we will describe the new method for designing discriminative biorthogonal
bases for signal classification. In fact we will be computing only expansion coefficients of

1. More precisely, we used PSVM a variant of SVM called proximal support vector machines (Fung and
Mangasarian, 2001).
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some implicitly defined discriminative biorthogonal base. The method is a combination
of update-first version of the lifting scheme (Claypoole et al., 1998) and proximal support
vector machines (Fung and Mangasarian, 2001).

3.1 Outline of the method

The method is based on the Lifting Scheme that is very general and easily modified method
for computing expansion coefficients of analysed signal with respect to biorthogonal base.
The method is iterative and each iteration is divided into three steps

• SPLIT - Signal is splitted into two subsignals containing even and odd indices.

• UPDATE - Coarse approximation of analysed signal is computed from subsignals.

• PREDICT -Wavelet coefficients are calculated using coarse approximation and sub-
signal containing even indicies. Those coefficients are simply inner products between
a weight vector and small part of coarse approximation and even subsignal. We used
proximal support vector Machines (Fung and Mangasarian, 2001) to calculate the
weight vector. As PSVM is the procedure for generating classifiers we decided to call
obtained expansion coefficients discriminative wavelet coefficients.

Coarse approximation is used as an input for next iteration. As the coarse approximation is
twice shorter than original signal the number of iterations is bounded from above by ln(N)
where N is the length of the analysed signal.

3.2 Notation

Assume we are given a training set X

X =
{

(xi, yi) ∈ R
N×{−1,+1} : i = 1, . . . , l

}

where N = 2n for some n ∈ N. Vectors xi are sampled versions of signals we want to
analyse and yi ∈ {−1,+1} are labels.

Having set X we create two matrices

A =







xT
1
...
xT
l






∈ R

l×N

and

Y =







y1

. . .

yl







Let I = {i1, . . . , ik} be a set of integer numbers (indices). We will use the following short-
hand notation for accessing indices I of a vector x ∈ R

N .

x(I) = (x(i1), . . . ,x(ik))
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We will also use a special notation for accessing odd and even indices of a vector x ∈ R
N

xo = (x(1),x(3), . . . ,x(N − 1)) for odd indices

xe = (x(2),x(4), . . . ,x(N)) for even indices

Finally we will use the following symbols for special vectors

e =







1
...
1







and

e1 =











1
0
...
0











The dimensionality of the vectors e and e1 will be clear from the context.

3.3 Three main steps

As we have mentioned before the method we propose is iterative and each iteration step2

consists of three substeps.

3.3.1 First substep - Split

Matrix A is splitted into matrices Ao (odd columns) and Ae (even columns)

Ao =







xo
T
1

...
xo

T
l






∈ R

l×N/2

and

Ae =







xe
T
1

...
xe

T
l






∈ R

l×N/2

3.3.2 Second substep - Update

Having matrices Ao ∈ R
l×N/2 and Ae ∈ R

l×N/2 we create matrix C ∈ R
l×N/2

C =
1

2
(Ao +Ae) =







cT1
...
cTl







This matrix will be called coarse approximation of matrix A.

2. We also use a name decomposition level for iteration step.
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3.3.3 Third substep - Predict

In the last step we calculate discriminative wavelet coefficients. For each column k of matrix
Ae (k = 1, 2, . . . , N/2) we create matrix Ak ∈ R

l×Lk+1 where Lk ∈ N is an even number
and a parameter of the method.3

Ak =







xe1(k) −ck1
...

...
xel(k) −ckl







where cki = ci(Ik) and Ik is a set of indices selected in the following way

• If 1 ≤ k < Lk

2 then Ik = {1, 2, . . . , Lk}

• If Lk

2 ≤ k < N
2 −

Lk

2 then Ik = {k − Lk

2 + 1, . . . , k + Lk

2 }

• If N
2 −

Lk

2 ≤ k ≤ N
2 then Ik = {N2 − Lk + 1, . . . , N2 }

At this point our method can be splitted into two variants: regularised and non-
regularised.

• regularised variant: This variant uses PSVM approach to find the optimal weight
vector wk ∈ R

Lk+1. According to Fung and Mangasarian (2001) optimal wk is the
solution of the following optimisation problem

min
wk,γk,ξk

1

2
‖wk‖22 +

1

2
γ2
k +

νk
2
‖ξk‖

2
2 (2)

subject to constraints
Y(Akwk − γke) + ξk = e (3)

where ξk is the error vector and νk ≥ 0.

• non-regularised variant: Similarly as in regularised variant the optimal weight
vector wk ∈ R

Lk is given by solving the following optimisation problem

min
wk,γk,ξk

1

2
‖wk‖22 +

1

2
γ2
k +

νk
2
‖ξk‖

2
2 (4)

subject to constraints

Y

(

Ak

(

1

wk

)

− γke

)

+ ξk = e (5)

where ξk is the error vector and νk ≥ 0. The only difference to the previous variant
is that dimensionality of wk is Lk instead of Lk + 1 and xei(k) is multiplied by one.

In this variant we can also add some extra constraints such that in case of polynomial
signals (up to some degree pk) we will get wavelet coefficients equal to zero. These
constraints can be written in the following way

Bkwk = e1 (6)

3. In presented experiments we assumed that Lk = L for some constant L ∈ N.
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where e1 ∈ R
pk and Bk consists of the first pk rows of the Vandermonde matrix for

some knots t1, t2, . . . , tLk
. For more details on how to select knots we refer reader to

(Claypoole et al., 1998) and (Fernández et al., 1996).

The additional constraints could be useful if analysed signals are superposition of poly-
nomial and some other possibly interesting component. They imply that polynomial
part of the analysed signal is eliminated and thus interesting component will play a
bigger role in constructing discriminative wavelets coefficients. Also constructed base
will have similar properties to the standard wavelet base. In the appendix the reader
can find information on how to efficiently solve this extended optimisation problem.
We have not used this variant in our experiments but present it for completeness
reasons.

Having optimal weight vector wk we can calculate vector dk ∈ R
l of discriminative

wavelet coefficients using the following equations

• regularised variant

dk(i) =

〈

wk,

(

xei(k)

−cki

)〉

i = 1, 2, . . . , l

• non-regularised variant

dk(i) = xei(k)−
〈

wk, cki

〉

i = 1, 2, . . . , l

where 〈·, ·〉 is a standard inner product.

In a result we obtain a matrix D ∈ R
l×N/2

D =
(

d1 · · · dN/2
)

3.4 Iteration step

The whole algorithm can be written in the following form

• Let M be the number of iterations (decomposition levels).

• Let A0=A

• For m = 1, . . . ,M do

– Calculate Cm ∈ R
l× N

2m and Dm ∈ R
l× N

2m by applying three steps described in
the previous section to the matrix Am−1.

– Set Am = Cm.

The output of the algorithm will be a set of matrices CM ,D1, . . . ,DM . On the basis of
these matrices we create the new training set

Xnew =
{

(xnew
i , yi) ∈ R

N×{−1,+1} : i = 1, . . . , l
}

(7)

where new examples are created by merging rows of matrices CM ,D1, . . . ,DM .
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3.5 Method summary

We introduced the method that maps the set of signals X into a new set of signals Xnew.
In the presented setting this map is a linear and invertible function f : R

N → R
N

f(x) = (cTM ,dT
1 , . . . ,d

T
M )

where

cM ∈ R
N

2M

dM ∈ R
N

2M

...

d2 ∈ R
N

4

d1 ∈ R
N

2

are calculated by the method. With increasing m more and more samples from the original
signal is used to calculate expansion coefficients. For example if we set Lk ≡ L for all k
then to calculate vector dk L2m samples of the original signal will be used.

Here we present two most important features of the method

• Motivation for the method is that only a small part of the signals is important in
classification process. The method tries to identify this important part adaptively.

• Exploiting natural parallelism (calculating dk is completely independent for each k)
and Sherman-Morrison-Woodbury formula (Gene H. Golub, 1996) the method can
be implemented very efficiently. In the appendix A we show how to properly solve
optimisation problems that appears in our method.

4. Applications

This section contains description of possible applications of the proposed method. It is
divided into two parts. In the first part we present an illustrative example of analysing
artificial signals with the proposed method. In the second part we present the results for
the real dataset.

4.1 Artificial datasets

Here we present results obtained on artificial datasets: Waveform and Shape.

4.1.1 Dataset description

Waveform is a three class artificial dataset (Breiman, 1998). For our experiments we used
a slightly modified version (Saito, 1994). Three classes of signals were generated using the
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following formulas

x1(i) = uh1(i) + (1− u)h2(i) + ε(i) class 1 (8)

x2(i) = uh1(i) + (1− u)h3(i) + ε(i) class 2 (9)

x3(i) = uh2(i) + (1− u)h3(i) + ε(i) class 3 (10)

(11)

where i = 1, 2, . . . , 32, u is a uniform random variable on the interval (0, 1), ε(i) is a standard
normal variable and

h1(i) = max(6− |i− 7|, 0)

h2(i) = h1(i− 8)

h3(i) = h1(i− 4)

4.1.2 Analysis
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Figure 1: Examples from classes 1 and 2

For simplicity reasons we decided to concentrate only on classes 1 and 2 presented in the
Figure 1. For the purpose of this presentation we set parameters of our method as follows

Lk = 4

νk = 1

M = 3

Figure 2 presents coarse approximations (the first two rows) and the test error ratio
(the third row) 4 of calculated discriminative wavelet coefficients (evaluated on a separate
test set). Each column present distinct decomposition level of our method. It is easily seen

4. Test error ratio obtained using all samples was equal 0.10.
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that coarse approximations are an averaged and a shortened versions of original signals.
We believe that in some cases such averaging could be very useful especially when the
analysed signals contains much noise. From the last row of the Figure 2 we can deduce
that the classification ratio of some discriminative wavelet coefficients is comparable to
the classification ratio obtained by applying PSVM method to the original dataset. We
can point out explicitly the period of time in which two classes of signals differ most.
This feature we called locality. Let us take a closer look at the 6th discriminative wavelet
coefficient from the first decomposition level. To calculate this coefficient we need 8 out of
32 samples of analysed signals (see first row of the Figure 3).
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Figure 2: Coarse approximations (two upper rows) and test error of discriminative wavelet
coefficients (third row) for examples from classes 1 and 2.

In the Figure 3 one can see that base analysis vectors with the lowest error ratio have
the supports shorter than their length. This means that to discern classes 1 and 2 we do not
need all 32 samples but only a small fraction of them. Moreover when comparing Figures
1 and 3 it is clear that best analysis base vectors are nonzero where supports of functions
h1 and h3 intersect and this is the place where analysed signals indeed differ.

The last Figure 4 shows supports of analysis and synthesis base vectors. It is easily seen
that support of a base vector widens with decomposition level.

4.1.3 Extracting new features

The method we presented can also be used as a supervised feature extractor. Instead of
feeding classifier with original training set X we use Xnew defined in (7). Table 1 contains
results of replacing original data with new features for classifying Waveform dataset and

9



Wit Jakuczun

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

 0  5  10  15  20  25  30  35
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15

 0  5  10  15  20  25  30  35

-10000
-8000
-6000
-4000
-2000

 0
 2000
 4000
 6000
 8000

 10000

 0  5  10  15  20  25  30  35
-0.1

-0.08
-0.06
-0.04
-0.02

 0
 0.02
 0.04

 0  5  10  15  20  25  30  35

-40000
-30000
-20000
-10000

 0
 10000
 20000
 30000
 40000

 0  5  10  15  20  25  30  35
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05

 0  5  10  15  20  25  30  35

Figure 3: Best synthesis (left) and analysis (right) base vectors for each decomposition level
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Shape dataset (Saito, 1994) with C4.5 classifier (Ian H. Witten, 1999). From this table we
can derive that classification ratio increased considerably. We have also noticed a substantial
decrease of decision tree complexity. As our method is designed for two-class problems and
the used datasets are three-class problems we used one-against-one scheme (jen Lin and
wei Hsu, 2001).

Dataset Misclassification ratio

Original New

Waveform 0.290 0.186

Shape 0.081 0.023

Table 1: Effect of feature extraction for C4.5. Numbers are misclassification ratios.

4.1.4 Ensemble of local classifiers

The coefficients calculated by our method can also be used directly for classification. Table 2
contains the test error ratios for Waveform and Shape datasets obtained by voting few best
coefficients. As in the previous experiment we used one-against-one scheme for decomposing
multi-class problems into three two-class problems.

Dataset Misclassification ratio

3 coefficients 15 coefficients PSVM

Waveform 0.155 0.147 0.193

Shape 0.034 0.032 0.094

Table 2: Misclassification ratios for voting scheme. We were combining 3 and 15 coefficients.
The last column shows the misclassification ratio obtained using PSVM and all
samples.

4.1.5 Conclusions

The presented method give both accurate and comprehensible solution to classification
problems. It can be very useful not only as a classifier inducer but also as source of infor-
mation about classified signals. In the next section we support our claims with presenting
the results obtained on the real dataset.

4.2 Classifying evoked potentials

In this section we present the results obtained on the dataset collected in Nencki Institute
of Experimental Biology of Polish Academy of Science. The dataset consists of sampled
evoked potentials of rat’s brain recorded in two different conditions. As a result the dataset
consists of two groups of recordings (CONTROL and COND) that represent two different
states of the rat’s brain. The aim of the experiment was to explain the differences between
the two groups. We refer the reader to Kublik et al. (2001) and Wypych et al. (2003) for
more details and previous approaches to the data.
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It should be mentioned that the problem is not a typical classification task. This is due
to the following reasons

• Each example (evoked potential) is labelled with an unknown noise. It means that
there are examples that are possibly incorrectly labelled.

• The problem is ill-conditioned due to a small number of examples (45-100) and a huge
dimension (1500 samples).

• The biologists that collected the data were interested not only in a good classification
ratio but also in explanation of differences in the two groups.
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Figure 5: Averaged evoked potentials for five rats. Red colour denotes COND and blue de-
notes CONTROL. Only first most informative 45ms (450 samples) are presented.

Figure 5 presents averaged potentials from two classes for group of five rats. We show
only the first 45ms because differences in this period of time can be easily interpreted by
biologists.

After applying our method to evoked potentials for each rat we have chosen those local
classifiers whose classification accuracy was greater or equal 0.75 and it was statistically
significant at the level 0.1 with respect to permutation tests (Wypych et al., 2003). The
result of this selection is depicted in the Figure 6. It is clear that the most interesting parts
of the signals are 2.9-4ms and 11.7-12.8ms. Figure 7 shows how each potential is classified
by selected local classifiers. It should be read in the following manner

• Vertical line divides potentials into two groups CONTROL (on the left) and COND
(on the right).
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• Axis Y shows how selected classifiers agreed on classifying potential.

• The potentials were grouped (red and blue) depending on how they were classified.
Those marked with green colour could not be classified.

• We claim that those groups shows two different states of the rat’s brain.

The presented method gave very similar results to the previous approaches (Kublik
et al., 2001), (Wypych et al., 2003) and (Smolinski et al., 2002). Thanks to locality feature
of our method we were able not only to classify potentials but also to point out the most
informative part of the signals. For detailed physiological interpretation of the results we
refer the reader to Jakuczun et al. (2005).
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Figure 6: Histograms showing which parts of analysed signals are commonly indicated for
all rats. The picture shows first four levels of decomposition of our method.

5. Conclusions

In this article we presented a new method for classifying signals. The method is iterative
and adapts to local structures of analysed signals. If carefully implemented it can be very
efficient and when used by an experienced researcher can be a very powerful tool for signals
discriminative analysis. There are many possible extensions to our method but the most
interesting seem to be the following

• Modification of the method to handle two dimensional signals such us images.

• Applying kernel trick in constructing local classifiers. That would lead to nonlinear
classifiers and possibly better accuracy.
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Figure 7: Charts presenting how particular potential was classified by selected local classi-
fiers. Vertical line divides potentials into two groups (CONTROL is on the left,
COND is on the right).

• Constructing classifiers using Multi Kernel Learning approaches (Bach et al., 2004).

Appendix A. Efficiently solving optimisation problem for non-regularised

and regularised version

Here we explain how to efficiently solve optimisation problem defined by (4), (5), (6). Let
us write Lagrangian for the optimisation problem

L(wk, γk, ξ
k,uk,vk) =

1

2
(‖wk‖22 + γ2

k) +
νk
2
‖ξk‖22 +

− (uk)T
(

Y

(

Ak

(

1

wk

)

− γke

)

+ ξk − e

)

− (vk)T
(

Bkwk − e1

)

where uk ∈ R
l is the Lagrange multiplier associate with the equality constraint (5) and

vk ∈ R
pk is the Lagrange multiplier associated with the equality constraint (6).
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Settings the gradients of L to zero we get the following optimality conditions

wk = ( ˜̃A
k
)TYuk − (Bk)Tvk (12)

γk = −eTYuk (13)

ξk =
1

νk
uk (14)

Y

(

Ãk + ˜̃
A

k
wk − γke

)

+ ξk = e (15)

Bkwk = e1 (16)

where Ak =

(

Ãk ˜̃A
k
)

Substituting (12) into (16) we get

vk =

[

Bk
(

Bk
)T
]−1

(

Bk

(

˜̃
A

k
)T

Yuk − e

)

(17)

Substituting (12), (13), (14) and (17) into (15) we get

Y

{

˜̃
A

k
(

˜̃
A

k
)T

Yuk − ˜̃
A

k (

Bk
)T
[

Bk
(

Bk
)T
]−1

(

Bk

(

˜̃
A

k
)T

Yuk − e

)}

+
1

νk
uk = e−YÃk

(18)
Simplifying (18) we get

Y

{

˜̃
A

k
(

˜̃
A

k
)T

− ˜̃
A

k
(

Bk
)T
[

Bk
(

Bk
)T
]−1

Bk

(

˜̃
A

k
)T
}

Yuk + 1
νku

k =

= e−YÃk − ˜̃
A

k
(

Bk
)T
[

Bk
(

Bk
)T
]−1

e

(19)

Let matrix Hk
1 be defined as

Hk
1 = Y

[

˜̃
A

k
| − ˜̃

A
k (

Bk
)T (

Ck
)T
]

(20)

and matrix Hk
2 be defined as

Hk
2 = Y

[

˜̃
A

k
| ˜̃A

k (

Bk
)T (

Ck
)T
]

(21)

where
[

Bk
(

Bk
)T
]−1

=
(

Ck
)T

Ck

Rewriting equation (19) we obtain that

(

1

νk
I+H1 (H2)T

)

uk = e−YÃk − ˜̃
A

k (

Bk
)T
[

Bk
(

Bk
)T
]−1

e (22)
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Setting vector bk = e −YÃk − ˜̃
A

k
(

Bk
)T
[

Bk
(

Bk
)T
]−1

e we get that vector uk is given

by the following set of equations
(

1

νk
I+H1 (H2)T

)

uk = bk (23)

Solving above set of equations is very expensive as the number of equations is equal to
number of training examples l which can be large. Using the Sherman-Morrison-Woodbury
formula (Gene H. Golub, 1996) we can calculate uk as follows

uk = νk

(

I−H1

(

1

νk
I+ (H1)T H2

)−1

(H2)T
)

bk (24)

It should be stressed that using equation (24) for computing uk is much less expensive than
using equation (23) because the dimensions of matrix

1

νk
I+ (H1)T H2

are equal to Lk + pk ×Lk + pk which is independent of the number of training of examples.
Similarly to nonregularised variant presented above we can use the same techniques to

solve optimisation problem (2) and (3). For more details see (Fung and Mangasarian, 2001).

References

Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning,
conic duality, and the smo algorithm. In ICML ’04: Proceedings of the twenty-first
international conference on Machine learning, New York, NY, USA, 2004. ACM Press.
ISBN 1-58113-828-5. doi: http://doi.acm.org/10.1145/1015330.1015424.

L. Breiman. Arcing classifiers. 1998. URL http://citeseer.ist.psu.edu/

breiman98arcing.html.

R. Claypoole, R. Baraniuk, and R. Nowak. Adaptive wavelet transforms via lifting. 1998.
URL http://citeseer.ist.psu.edu/claypoole98adaptive.html.

Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

G. Fernández, S. Periaswamy, and Wim Sweldens. LIFTPACK: A software package for
wavelet transforms using lifting. In M. Unser, A. Aldroubi, and A. F. Laine, editors,
Wavelet Applications in Signal and Image Processing IV, pages 396–408. Proc. SPIE 2825,
1996.

Glenn Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In Knowl-
edge Discovery and Data Mining, pages 77–86, 2001. URL citeseer.ist.psu.edu/

515368.html.

Charles F. Van Loan Gene H. Golub. Matrix Computations. The Johns Hopkins University
Press, 1996.

16



Classifying signals With Local Classifiers

Eibe Frank Ian H. Witten. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, 1999.
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