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Playing the Devil’s advocate: is the

Hodgkin–Huxley model useful?

Claude Meunier and Idan Segev

It has taken three centuries to clarify the nature of
the nervous impulse, from the questioning of
Descartes [1] and Newton on ‘animal spirits’and the
discovery of ‘animal electricity’by Galvani [2] to the
final answer provided by the Hodgkin–Huxley (H–H)
model [3]. Hodgkin and Huxley cleverly combined the
voltage-clamp technique [4], manipulations of ionic
concentrations and quantitative modeling [5] (Box 1)
to demonstrate that spike generation is a nonlinear
phenomenon arising from voltage-dependent
membrane conductances. In this new conceptual

framework, action potentials naturally appear as
nonlinear solitary waves that travel at constant
shape and velocity in a uniform axon.

Proving that the neuronal membrane behaved
nonlinearly constituted a major breakthrough in
science that is best appreciated in the historical
perspectives presented by Hodgkin and Huxley
themselves [5,6]. In 1952, the importance of
nonlinearities was well recognized in chemical
kinetics, reaction-diffusion equations and populations
dynamics (e.g. the Lotka–Volterra equations).
Nonlinear waves had also been known for a long time
in hydrodynamics [7], but their nature was only
understood in the 1960s. It was at that time too that
nonlinear optics developed, with the discovery of
harmonics generation in laser-illuminated materials,
and that physics ceased to focus on the linear
properties of materials.

Physics accounts for a wealth of experimental
phenomena by establishing fundamental equations
that govern the evolution in time of the relevant
observable factors. An example is the Navier–Stokes
equation that governs the flow of fluids and is
successfully used in a range of contexts, from
laboratory studies of convection to turbulence around
the wings of airplanes. Are the H–H equations (Box 1)
more than a good model of the action potential? And
do they provide us with a ‘natural law’of neuronal
excitability that is useful extensively?

Hodgkin and Huxley (H–H) model for action potential generation has held firm

for half a century because this relatively simple and experimentally testable

model embodies the major features of membrane nonlinearity: namely,

voltage-dependent ionic currents that activate and inactivate in time. However,

experimental and theoretical developments of the past 20 years force one to

re-evaluate its usefulness. First, the H–H model is, in its original form, limited to

the two voltage-dependent currents found in the squid giant axon and it must

be extended significantly if it is to deal with the excitable soma and dendrites of

neurons. Second, the macroscopic and deterministic H–H model does not

capture correctly the kinetics of the Na++ channel and it cannot account for the

stochastic response to current injection that arises from the discrete nature of

ion channels. Third, much simpler integrate-and-fire-type models seem to be

more useful for exploring collective phenomena in neuronal networks. Is the

H–H model threatened, or will it continue to set the fundamental framework for

exploring neuronal excitability?
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The H–H model suffers from several weaknesses.
First, researchers seldom use the original 
H–H equations, which only incorporate two
voltage-dependent ionic currents, but rather, they
use H–H-like models, adding new currents as
required by the specific membrane that is modeled.
This makes the universality of the H–H equations
questionable. A more serious objection is that the
macroscopic H–H equations are not derived from a
microscopic description of the neuronal membrane
grounded on the opening and closing of ionic
channels. Most notably, this led to an incorrect
prediction of the inactivation kinetics of the
Na+ channel [8,9]. Moreover these deterministic
equations cannot account for ionic ‘channel noise’
[10–12]. Finally, theoretical investigations of
collective phenomena in neuronal networks, such 
as collective synchronization of neuronal activity,
often rely on much simpler and more tractable
models of the single neuron than that used by
Hodgkin and Huxley. Here, we address these issues
in turn, with little reference to experiments and a
strong bias toward theoretical studies, reflecting 
our backgrounds.

A general framework for neuronal excitability?

The studies of Hodgkin and Huxley provided the
appropriate conceptual framework for understanding

spike propagation in axons: uniform and saltatory
conduction, as well as the impact of geometrical
heterogeneities (e.g. branching and varicosities) and
presynaptic inhibition on spike propagation [13],
could be understood from that framework. Further
electrophysiological experiments extended the 
H–H approach to somata, showing that a variety of
voltage- or Ca2+-dependent currents regulate the
firing pattern of motoneurons [14] and pyramidal
cells, and underlie sub-threshold membrane voltage
oscillations [15] and resonance properties [16,17]. 
In recent years, it has become clear that dendrites are
equipped with a wealth of voltage- or Ca2+-dependent
channels [18]. These can give rise to local spikes in
dendrites and dendritic spines (Fig. 1) and support
backpropagation of action potentials from the
axo–somatic region into the dendrites [19,20].
Membrane nonlinearities and action potentials now
pervade our view of neurons and this forces us to
reconsider their operating principles. The original
H–H model, with its two voltage-dependent currents,
cannot account for all of the phenomena observed,
although appropriate models can be constructed
within the same general framework by adding other
ionic currents.

In addition to demonstrating voltage-dependent
membrane currents, the H–H model for the
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Action potential conduction on the squid axon is governed by the partial differential
equation

where C is the capacitance per unit area of the axon (of diameter d and axoplasmic
resistivity Ri); Gleak, GNa and GK are the maximal conductances per unit area of the
leak, transient-Na+ and delayed-rectifier-K+ currents, respectively, and Vleak, VNa and
VK are the corresponding reversal potentials. In the space-clamped condition,
where an electrode is inserted longitudinally along the axon, the first term
(corresponding to the axial current) disappears and the partial differential equation
above becomes an ordinary differential equation. An extra term must also be
added to the right-hand side to account for the current flowing through the
electrode.

The presence of the voltage-dependent variables m (Na+-current activation),
h (Na+-current inactivation) and n (K+-current activation) make the partial
differential equation above nonlinear. These gating variables satisfy first order
kinetic equations of the form

where the sigmoid function x∞ gives the level of (in)activation achieved in voltage
clamp, and τx is the relaxation time constant of variable x (x = m, h or n).
These kinetic equations can be rewritten as

.

The rate functions αx and βx are now interpreted as mean transition rates of ionic
channels from closed to open state and vice versa. Values of all parameters
involved – obtained by fitting voltage-clamp data – can be found in Ref. [a].

Reference

a Hodgkin, A.L. and Huxley, A.F. (1952) A quantitative description of membrane current
and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544
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Fig. 1. Dendritic and axo–somatic action potentials.
(a) Reconstruction of a biocytin-filled L5 pyramidal neuron showing
the sites of current injection (Dstim, 750 µm from soma) and recording 
(620 µm from soma and at the soma). (b) Brief current injections
(dashed trace) elicited an all-or-none event in the dendrite (black
trace) that did not propagate to the soma (blue trace), but appeared
there as a ‘boosted EPSP’ (excitatory postsynaptic potential).
(c) Longer current injection elicited a complex dendritic action
potential (black trace) with three corresponding Na+ action potentials
at the region of the soma and/or axon (blue trace). Traces shown in (b)
and (c) correspond to threshold current injection. Adapted, with
permission, from Ref. [49].



space-clamped squid axon (Box 1) paved the way for
the mathematical analysis of neuronal excitability.
Applying the concepts and methods from the theory of
differential equations provides us with a strong
qualitative handle on the origin of the large firing
repertoire of neurons [21]. Thus, one can investigate
the ‘geometry of excitability’by ‘reducing’ the
H–H model to simple relaxation oscillators [22,23]
that preserve the nonlinear character of the original
model, but that involve only two variables: the
membrane potential and a slower ‘recovery’variable.
One can then perform a phase-plane analysis that
reveals the geometric nature of the solutions 
(Fig. 2; fixed points correspond to a steady state of the
membrane and limit cycles correspond to the regular
firing of spikes). Phase-plane analysis shed light on
the behavior of excitable membranes near to their
threshold for spiking [24], demonstrating how firing
at very low frequencies could occur. Its extension to
higher-dimensional systems involving slow ionic
currents (multi-parameter singular perturbation
theory) allowed applied mathematicians to

understand the basic scenarios that lead to bursts of
firing activity [25].

An alternative approach with which to explore
mathematically neuronal excitability in the vicinity of
the current threshold is bifurcation theory [26]. This
theory unravels why and how a fixed point of a
differential system (the resting state of the neuronal
membrane) becomes unstable when a control
parameter (e.g. the injected current) changes. This
clarifies the relationship between the fixed point and
the stable-limit cycle (regular spike firing) that
emerges at the bifurcation point (current threshold).
It relies on a linear and nonlinear analysis of the
behavior of the system near to the fixed point,
completed when needed by a qualitative investigation
of the global dynamics of the system. The application
of bifurcation theory to neurons clarified the interplay
between the panoply of membrane currents, the
current–voltage curve, the minimal firing frequency
and the shape of the current frequency curve near the
threshold for spike firing.

Levels of description: microscopic versus macroscopic

The H–H equations share one important feature with
the laws of classical physics: they provide a simple
macroscopic and deterministic description of a
phenomenon that ultimately arises from the
microscopic and random behavior of the system.
Thus, the H–H model squeezes into just four
macroscopic variables (the membrane voltage, V,
together with three gating variables, m, h and n) the
random openings and closings of a myriad of ion
channels – in much the same way as Fick’s law
provides a macroscopic description of the diffusion of
a chemical in terms of its concentration without
explicitly considering the underlying Brownian
motion of innumerable molecules.

In physics, macroscopic laws generally predate
microscopic descriptions. The Navier–Stokes
equation, for instance, was never derived from a
kinetic model of molecular dynamics. Similarly the
H–H equations were written on an empirical basis
and were not built on a microscopic description of 
the excitable neuronal membrane. Nonetheless,
Hodgkin and Huxley laid the basis for gating theory
by suggesting that charged ‘particles’moving inside
the membrane controlled its permeability to Na+ or 
K+ [3], although they did not interpret their results in
terms of voltage-gated ionic channels [5,27]. This is
hard to believe in retrospect, because the kinetic 
H–H equations are now readily interpreted [28] as
describing a set of ion channels switching randomly
between two states (open and closed). Actually, the
very notion of ionic channels remained debated [27,29]
until 1980, when single-channel recordings became
possible [30]. This new technique largely
substantiated H–H views, and it could be said that
the H–H equations predicted the tetrameric nature
and gating properties of the K+ channel. This
demonstrates well the power of macroscopic
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Fig. 2. Onset of firing in a two dimensional model derived from that of
Hodgkin and Huxley. Na+ current activation is assumed to be
instantaneous and the variables h (Na+-current inactivation) and 
n (K+-current inactivation) are replaced by voltage-like variables Uh

and Un, which are combined into a single slow variable, U. Nullclines –
on which the derivative of one variable vanishes – and asymptotic
trajectories are displayed in the phase plane (V, U) for two values of the
injected current: I = 0 and a value above the current threshold for firing.
The first nullcline – on which dV/dt vanishes – is N-shaped and quite
sensitive in the hyperpolarized voltage range to the amount of current
injected. The second nullcline – on which dU/dt vanishes – is simply the
straight line V = U. For I = 0 (lower curve) the nullclines intersect at a
stable fixed point (circle) and the neuron is quiescent. For values of I
greater than the threshold (upper curve, I = 10 nA) the fixed point is
unstable and the neuron displays periodic oscillations (arrows) on a
stable limit cycle. The study is straightforward in the unrealistic but
useful limit where recovery becomes infinitely slow. The limit cycle
(arrows) then consists of epochs of slow evolution along the left or right
branch of the first nullcline separated by jumps (at constant U) from one
branch to the other. The analysis can be extended to more realistic
conditions by using singular perturbation theory, an appropriate
approach for studying systems involving several time scales.
Reproduced, with permission, from Ref. [23].



approaches and illustrates the general fact that
equations always contain much more than it first
seems. However, gating current measurements and
single-channel recordings also revealed important
discrepancies between the H–H model and the actual
behavior of neurons: most notably, the inactivation
kinetics of the Na+ channel turned out to be
voltage-independent [8,9]. This, in turn, illustrates
the difficulty in deriving a microscopic model from 
a macroscopic description, and shows that the
original H–H model should be modified to fit the
microscopic reality. Nonetheless, it introduced the
appropriate concepts (activation and inactivation)
with which to understand the role of voltage-
dependent currents, it accounted for the main
features of action potentials and it unraveled the
biophysical mechanisms underlying action-potential
generation and propagation.

Macroscopic descriptions are always, to some
extent, approximate. Plasmas, for instance, display
kinetic instabilities of microscopic origin that are not
predicted by the macroscopic magneto–hydrodynamic
equations. Are there similar limits for the use of the
original H–H equations and, more generally, of
H–H-like models? Over the past decade it has become
clear that the random opening and closing of
membrane ion channels can give rise to substantial
fluctuations in the number of open membrane ion

channels (‘channel noise’) and lead to a random spike
jitter (Fig. 3). This was both demonstrated using
stochastic variants of the H–H model [10–11] and
observed experimentally in cortical pyramidal cells
in vitro [12]. The stochastic nature of voltage-gated ion
channels probably has little impact on the response of
neurons to stimuli in physiological conditions where
synaptic noise dominates. Nonetheless, this shows
that the deterministic H–H model is valid only within
the limit of a large number of open ion channels. This
is certainly the case in axons but does not necessarily
hold in weakly excitable dendrites.

Simple and complex models: H–H-like models versus

integrate-and-fire models

The H–H model cannot be solved analytically and
Huxley had to integrate numerically the nonlinear
differential equations with just the help of a desk
calculator [5] to compare the voltage evolution
predicted by the model with the current-clamp data in
the squid axon [3,6,31]. Numerical simulations of
H–H-like models were required to study action
propagation in axons displaying morphological or
electrical heterogeneities, including myelinated
axons [32,33]. This required that the axon be
regarded as a set of discrete compartments, setting
the basis for the now very popular ‘compartmental
modeling’approach [34], whereby the modeled
neuron is subdivided into small isopotential
membrane compartments, each described by an
H–H-like model and coupled to its neighbors via the
cytoplasmic resistance.

Owing to the tremendous increase in computing
power, the design of improved numerical 
algorithms [35] and the availability of simulation
packages (e.g. NEURON, GENESIS, SurfHippo), 
it is now customary to simulate model neurons
composed of several hundreds or thousands of
compartments. Nevertheless, even state-of-the-art
numerical models cannot incorporate the detailed
microstructure of neurons. For example, dendritic
spines are often so numerous (e.g. 100 000 per
Purkinje cell) that they cannot be all modeled
individually. As a consequence, they are accounted
for by globally changing the electrical properties of
the modeled dendrites [36]. When necessary, a few
spines that receive direct synaptic input are modeled
in detail. In spite of this limitation, ‘realistic’models,
which take into account the morphological and
nonlinear electrical properties of neurons at the
spatial scale of 10 µm, are now feasible.

Much of our understanding of dendrites still
comes from the linear cable theory [37] but several
important insights were gained from nonlinear
compartmental models for dendrites. For example,
using a compartmental model of an unbranched
dendrite, Rall [38] showed that shunting inhibition
is most effective in vetoing the excitatory synaptic
input when the inhibition is placed more proximally
than the excitatory input. Conditions that give rise
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Fig. 3. Deterministic
versus stochastic models.
The behavior of a
Hodgkin–Huxley model of
an excitable membrane
patch of 600 µm2 with
10 800 K+ channels and
36 000 Na+ channels is
compared to the behavior
of a corresponding
microscopic model.
Responses to a
depolarizing current pulse
(a) are shown for the
deterministic model
(b) and for two
implementations of the
corresponding stochastic
model (c, in blue and red).
Note the jitter in spike
firing times in the
stochastic model, which
results from fluctuations
in the small number of ion
channels that are open
below threshold for spike
firing (d).



to a local action potential in dendrites and 
dendritic spines, and to an active (but attenuated)
back-propagation of the action potential from the
soma to dendrites in the weakly excitable apical
dendrite of cortical pyramidal neurons, were also
highlighted using detailed H–H-like compartmental
models [20].

In contrast to their certain usefulness at the
single-cell level, detailed compartmental models of
neurons have not, until now, been very fruitful for
providing new insights into the collective behavior of
large networks. For instance, the roles of excitation,
inhibition or intrinsic cellular properties like
after-hyperpolarization (AHP) on network
synchronization was largely clarified by analytical or
numerical studies of much simpler models: integrate-
and-fire (I–F) type models (linear, quadratic, or with
slow current) [39] or phase-oscillator models of
conductance-based neurons [40]. Some enlightening
studies on network dynamics use merely binary
neurons [41] or threshold-linear rate models.

The usefulness of I–F-type models might seem
surprising, because the model introduced by Louis
Lapicque [42] in 1907 on the basis of extracellular
recordings of nerves (now known as the ‘linear
integrate-and-fire’model) does not incorporate the
biophysical substrate of neuronal excitability. It
describes the neuronal membrane merely as a leaky
integrator, as long as the voltage does not reach a
preset level at which the firing of a ‘schematic’ spike
occurred. This linear model is not a limiting case of
the H–H equations [23,43] and it behaves very
differently from H–H-like models in many aspects.
For instance, the voltage remains close to the spike
threshold during a large part of the interspike
interval at low firing rate, which makes the Lapicque

model extremely sensitive to changes in the injected
current near to the current threshold.

The interest in I–F models stems from the
complexity of the model of Hodgkin and Huxley. The
original space-clamped H–H model already involves
16 parameters that specify membrane capacitance,
maximal ionic conductances, reversal potentials and
kinetics of the two voltage-dependent currents
involved. When extra currents are added or the
morphology of neurons is taken into account, the
number of parameters becomes huge. As a
consequence, most numerical studies of ‘realistic’
neuron models rely on a parameter-tuning strategy to
replicate experimental results. In general, this
provides much less insight into the nature of network
effects and on the key parameters that govern the
observed behaviors than do analytical studies of
simple models. In particular, analytically tractable
models allow theoreticians to establish phase
diagrams where the stability domains of the possible
solutions and the transition lines between these
solutions clearly stand out (Fig. 4).

Therefore, I–F models constitute a good choice for
determining the stable states of activity of large
networks when only the basic features of neurons seem
important, and complexities such as the detailed
morphology are deemed irrelevant. But, even then, the
modeling of neuronal dynamics still pivots around 
H–H models. It is customary to check a posteriori that
results derived for linear I–F models are still valid for
H–H models. The impact of neuronal discharge
properties on network synchronization can be
investigated by adding to the Lapicque model features
such as AHPborrowed from conductance-based models
[44]. Nonlinear I–F models can also be chosen on the
criterion that they behave quite similarly –
qualitatively and quantitatively – to conductance-based
models. This is the case in several recent studies on
synchronization [45,46] and persistent activity [47] in
large neuronal networks that make use of the quadratic
I–F models [48]. Generalized multidimensional
I–F models are also useful for investigating resonance
properties of neurons and their impact on network
synchronization (N. Brunel, unpublished).

Conclusion

The original H–H equations not only provide a good
model for spike generation and conduction in the squid
axon, but also incorporate the important features of
neuronal excitability, activation and inactivation of
voltage-dependent currents taking place at different
time scales. H–H-like equations are powerful in that
they capture compactly and mathematically a physical
system – the neuron – that exhibits highly nonlinear
properties. The proper biophysical level of abstraction
used by Hodgkin and Huxley enables direct
experimental assessment of model parameters, as 
well as the natural extension of the model to more
complicated excitable membranes than that of the
squid giant axon. It is, thus, unequivocal that the 
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H–H model set the fundamental framework for
exploring neuronal excitability.

Even so, theoreticians often prefer to use simpler
‘phenomenological’models that are more tractable
and that appear sufficient for investigating important
aspects of the collective dynamics of networks.
Interestingly, the H–H conductance-based approach
still ‘sneaks’ into these models because many features
of neuronal firing (e.g. adaptation, bursting and
resonance) crucially depend on the activation of
currents at the sub-threshold voltage regime.

So, avoiding modeling of the full action potential does
not mean rejecting the H–H model and its descent. It
is, rather, the happy marriage (with natural tension)
between phenomenological and H–H-like models that
provides the ‘model for all seasons’: from synaptic
integration on dendritic trees to collective dynamics
in large networks. The success of the H–H model in
holding stable over all these seasons, including the
recent years of exciting findings on membrane
excitability in axons and dendrites, tells us that the
H–H model is here to stay.
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