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Figure 2.3 Simulating spiking responses to stimuli. The integral of the stimulus s
times the optimal kernel D is first computed. The estimated firing rate is the back-
ground rate rg plus a nonlinear function of the output of the linear filter calculation.
Finally, the estimated firing rate is used to drive a Poisson process that generates

spikes.
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Metody korelacji odwrotnych:
komorki proste

« Sredni bodziec wyzwolony iglicg dla bodzcow
wzrokowych zalezy od potozenia | czasu

I

1
C(x,y, 1) = E<ZS(:~:, Y, t,-—'r:)>

=1

* Wigze sie z funkcjg korelacji krzyzowej

bodziec-czestosc generacji iglic
T

1
Qulx,y7) = = [ dtr(®s(x ot +7)
0

e wzorem
Qrs(x: Y, —I)
(1)

C(x,y,7) =



Liniowe oszacowanie czestosci

 Bedziemy szukac czestosci generacji iglic w
postaci ret(t) =ro+ F(L(t)), gdzie

L(t) = f drfdxdy D(x,y, t)s(x,y, t — 1)
0

* Dla bodzca bedacego biatym szumem

Qrs(xa Y, _T) . (T)C(xa Y, T)
T

D(x,, 7) =

O O

S

» Jadro D(x, vy, 7) definiuje czasoprzestrzenne
pole recepcyjne neuronu.



Pola recepcyjne

* Pole recepcyjne D(x,y, 7) niektdrych neurondéw
mozna rozseparowac

D(x: Y, T) — Dﬁ(x:r H)D[(T)

« Mowimy wtedy o separowalnym polu recepcyjnym.
Ds(x, y) nazywamy wtedy przestrzennym polem
recepcyjnym, D(t) czasowym polem recepcyjnym.

» Zwykle normalizujemy Ds(x, y) tak, zeby po
catkowaniu dawato 1.



Przestrzenne pola recepcyjne
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Figure 2.10 Spatial receptive field structure of simple cells. (A) and (C) Spatial
structure of the receptive fields of two neurons in cat primary visual cortex deter-
mined by averaging stimuli between 50 ms and 100 ms prior to an action potential.
The upper plots are three-dimensional representations, with the horizontal dimen-
sions acting as the x-y plane and the vertical dimension indicating the magnitude
and sign of Dg(x, ). The lower contour plots represent the x-y plane. Regions with
solid contour curves are ON areas where Ds(x, ) > 0, and regions with dashed
contours are OFF areas where Ds(x, y) <0. (B) and (D) Gabor functions (equa-
tion2.27) witho, =1°,0,=2°1/k=0.56°, and ¢ =1—-7m/2 (B)or ¢ =1 — 7 (D),
chosen to match the receptive fields in A and C. (A and C adapted from Jones and
Palmer, 1987a.)
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Figure 2.11 Grating stimuli superimposed on spatial receptive fields similar to
those shown in figure 2.10. The receptive field is shown as two oval regions, one
dark to represent an OFF area where D <0 and one white to denote an ON region
where Ds > 0. (A) A grating with the spatial wavelength, orientation, and spatial
phase shown produces a high firing rate because a dark band completely overlaps
the OFF area of the receptive field and a light band overlaps the ON area. (B) The
grating shown is nonoptimal due to a mismatch in both the spatial phase and fre-
quency, so that the ON and OFF regions each overlap both light and dark stripes.

(C) The grating shown 1s at a nonoptimal orientation because each region of the
receptive field overlaps both light and dark stripes.



Opis przestrzennych paol recepcyjnych

* Przestrzenne pola recepcyjne przybliza sie
czesto funkcjami Gabora lub ich pochodnymi

1 x? 2
Ds(x, y) = exp ( 5 23;2) cos(kx — @)

2noy0y, v

» Parametry tych funkcji okreslajg wtasnosci pola:
0x | 0y okresSlajg rozmiar pola w kierunkach x |
Y, k jest preferowang czestoscig przestrzenna,
a @ preferowang fazg przestrzenng bodzca.



Przestrzenne pola recepcyjne
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Figure 2.10 Spatial receptive field structure of simple cells. (A) and (C) Spatial
structure of the receptive fields of two neurons in cat primary visual cortex deter-
mined by averaging stimuli between 50 ms and 100 ms prior to an action potential.
The upper plots are three-dimensional representations, with the horizontal dimen-
sions acting as the x-y plane and the vertical dimension indicating the magnitude
and sign of Dg(x, ). The lower contour plots represent the x-y plane. Regions with
solid contour curves are ON areas where Ds(x, ) > 0, and regions with dashed
contours are OFF areas where Ds(x, y) <0. (B) and (D) Gabor functions (equa-
tion2.27) witho, =1°,0,=2°1/k=0.56°, and ¢ =1—-7m/2 (B)or ¢ =1 — 7 (D),
chosen to match the receptive fields in A and C. (A and C adapted from Jones and
Palmer, 1987a.)
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Figure 2.12 Gabor functions of the form given by equation 2.27. For convenience
we plot the dimensionless function 27o.0,Ds. (A) A Gabor function with o, = 1°,
1/k=0.5° and ¢ = 0 plotted as a function of x for ¥ = 0. This function is symmetric
aboutx = 0. (B) A Gabor functionwitho, =1° 1/k=0.5°, and ¢ = 71/2 plotted as a
function of x for y = 0. This function is antisymmetric about x = 0 and corresponds
to using a sine instead of a cosine function in equation 2.27. (C) A Gabor function
with o, = 1°, 1/k = 0.33°, and ¢ = 7r/4 plotted as a function of x for y = 0. This
function has no particular symmetry properties with respect to x = 0. (D) The
Gabor function of equation 2.27 with o, = 2° plotted as a function of y for x = 0.
This function is simply a Gaussian.



Zmiana w czasie przestrzennego
pola recepcyjnego
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Figure 2.13 Temporal evolution of a spatial receptive field. Each panel is a plot
of D(x, y, t) for a different value of 7. As in figure 2.10, regions with solid con-
tour curves are areas where D(x, y, 7) > 0 and regions with dashed contours have
D(x, y, ) <0. The curves below the contour diagrams are one-dimensional plots
of the receptive field as a function of x alone. The receptive field is maximally dif-
ferent from 0 for T = 75 ms with the spatial receptive field reversed from what it
was at T =210 ms. (Adapted from DeAngelis et al., 1995.)



Czasowe pola recepcyjne
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Figure 2.14 Temporal structure of a receptive field. The function D¢(7) of equa-
tion 2.29 with o = 1/(15 ms).



Zbadamy liniowy czton odpowiedzi
na bodziec typu grating
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s(x,y,t) = Acos (Kx cos ® + Kysin® — (D) cos(wt)

Figure 2.8 A counterphase grating. (A) A portion of a square-wave grating anal-
ogous to the sinusoidal grating of equation 2.18. The lighter stripes are regions
where s > 0, and s < 0 within the darker stripes. K determines the wavelength of
the grating and ®, its orientation. Changing its spatial phase, ®, shifts the entire
light-dark pattern in the direction perpendicular to the stripes. (B) The light-dark
intensity at any point of the spatial grating oscillates sinusoidally in time with pe-
riod 27/ w.



Odpowiedz komorki prostej na
bodziec typu grating

* Zbadamy liniowy czton odpowiedzi [.(t) = L L(t)

Ls = [{ixa’y D¢(x, y)A cos (Kx cos(®) + Kysin(®) — CD)

D(x, ) = — 2 Y cos(kx — )
X — ex - -
S 20,0,y P 205 20 FOSUEE

s(x,y,t) = Acos (Kx cos ® + Kysin® — <D) cos(wt)

2 /1.2 2
L. = gexp (—U (k 2+ K )) (cas(qﬁ: — @) exp (asz cas(@))

+ cos(¢ + @) exp (—G’ZkK cos(0))) .




Odpowiedz komorki prostej na
bodziec typu grating

« Jezeli przestrzenna faza bodzca | A
preferowana faza pola recepcyjnego
wynoszg 0, to

Yy

2(12 4 K2
L. = Aexp( o 2+ )) cosh (ﬂ‘szCGS(@))

o | K

B 27 Jw

» Jezeli orientacja bodzca wynosi 0, a
preferowana czestosc przestrzenna
pola k jest niezbyt mata, to

A 2(k — K)?
LEZEexp( al 5 ))COS(¢>—(D)
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Figure 2.15 Selectivity of a Gabor filter with 6 = ¢ =0, 0, =0, =0, and ko =2
acting on a cosine grating with A = 1. (A) Ls as a function of stimulus orientation ®
for a grating with the preferred spatial frequency and phase, K = k and ® = 0. (B)
L as a function of the ratio of the stimulus spatial frequency to its preferred value,
K/k, for a grating oriented in the preferred direction ® = 0 and with the preferred
phase ® = 0. (C) Ls as a function of stimulus spatial phase ® for a grating with the
preferred spatial frequency and orientation, K = k and ® = 0.



Szerokosc pasma

the Gaussian envelope. The number of subregions within the receptive
field 1s determined by the product koy and 1s typically expressed in terms
of a quantity known as the bandwidth b. The bandwidth is defined as
b =log,(K,/K_), where K| >k and K_ <k are the spatial frequencies of
gratings that produce one-half the response amplitude of a grating with
K = k. High bandwidths correspond to low values of ko,, meaning that
the receptive field has few subregions and poor spatial frequency selectiv-
ity. Neurons with more subfields are more selective to spatial frequency,
and they have smaller bandwidths and larger values of ko,.

The bandwidth is the width of the spatial frequency tuning curve mea-
sured in octaves. The spatial frequency tuning curve as a function of K for
a Gabor receptive field with preferred spatial frequency k and receptive
field width o, is proportional to exp(—o?(k — K)?/2) (see equation 2.34
below). The values of K, and K_ needed to compute the bandwidth are
thus determined by the condition exp(—o?2(k — K+)?/2) = 1/2. Solving
this equation gives K+ = k & (2In(2))"?/ 0y, from which we obtain

ko + ,\/211-1(2)) 2b +1
b=1 ( koy = v/21n(2 . 2.28
2\ o — 2/ "2 (2.28)

Bandwidth is defined only if ko, > (2In(2))"/?, but this is usually the case.
Bandwidths typically range from about 0.5 to 2.5, corresponding to ko,
between 1.7 and 6.9.
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Figure 2.16 Frequency response of a model simple cell based on the temporal ker-
nel of equation 2.29. The amplitude of the sinusoidal oscillations of Lt(#) produced
by a counterphase grating is plotted as a function of the temporal oscillation fre-
quency, /2.
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Figure 2.17 A separable space-time receptive field. (A) An x-7 plot of an approx-
imately separable space-time receptive field from cat primary visual cortex. OFF
regions are shown with dashed contour lines and ON regions with solid contour
lines. The receptive field has side-by-side OFF and ON regions that reverse as a
function of 7. (B) Mathematical description of the space-time receptive field in A
constructed by multiplying a Gabor function (evaluated at y = 0) with o, = 1°,
1/k = 0.56°, and ¢ = 7r/2 by the temporal kernel of equation 2.29 with 1/a = 15
ms. (A adapted from DeAngelis et al., 1995.)



Figure 2.18 Space and space-time diagrams of a moving grating. (A) A vertically
oriented grating moves to the left on a two-dimensional screen. (B) The space-time
diagram of the image in A. The x location of the dark and light bands moves to the
left as time progresses upward, representing the motion of the grating.
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Figure 2.19 Responses to dark bars estimated from a separable space-time recep-
tive field. Dark ovals in the receptive field diagrams are OFF regions and light cir-
cles are ON regions. The linear estimate of the response at any time is determined
by positioning the receptive field diagram so that its horizontal axis matches the
time of response estimation and noting how the OFF and ON regions overlap with
the image. (A-C) The image is a dark bar that is flashed on for a short interval of
time. There is no response (A) until the dark image overlaps the OFF region (B)
when L(t) > 0. The response is later suppressed when the dark bar overlaps the
ON region (C) and L(t) < 0. (D) A plot of L(t) versus time corresponding to the
responses generated in A-C. Time runs vertically in this plot, and L(#) is plotted
horizontally with the dashed line indicating the zero axis and positive values plot-
ted to the left. (E) The image is a static dark bar. The bar overlaps both an OFF and
an ON region, generating opposing positive and negative contributions to L(#). (F)
The weak response corresponding to E, plotted as in D.
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Figure 2.20 Responses to moving gratings estimated from a separable space-time
receptive field. The receptive field is the same as in figure 2.19. (A-C) The stimulus
is a grating moving to the left. At the time corresponding to A, OFF regions overlap
with dark bands and ON regions with light bands, generating a strong response.
At the time of the estimate in B, the alignment is reversed, and L(t) is negative. (C)
A plot of L(t) versus time corresponding to the responses generated in A-B. Time
runs vertically in this plot and L(t) is plotted horizontally, with the dashed line
indicating the zero axis and positive values plotted to the left. (D-F) The stimulus
is a grating moving to the right. The responses are identical to those in A-C.
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Figure 2.21 A nonseparable space-time receptive field. (A) An x-7 plot of the space-
time receptive field of a neuron from cat primary visual cortex. OFF regions are
shown with dashed contour lines and ON regions with solid contour lines. The
receptive field has a central ON region and two flanking OFF regions that shift to
the left over time. (B) Mathematical description of the space-time receptive field
in A constructed from equations 2.35 - 2.37. The Gabor function used (evaluated
at y =0) had o, = 1°, 1/k = 0.5°, and ¢ = 0. D¢ is given by the expression in
equation 2.29 with o =20 ms, except that the second term, with the seventh power
function, was omitted because the receptive field does not reverse sign in this ex-

ample. The x-7 rotation angle used was ¥ = 7/9, and the conversion factor was
¢ =0.02 °/ms. (A adapted from DeAngelis et al., 1995.)
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Figure 2.22 Responses to moving gratings estimated from a nonseparable space-
time receptive field. Dark areas in the receptive field diagrams represent OFF re-
gions and light areas, ON regions. (A-C) The stimulus is a grating moving to the
left. At the time corresponding to A, OFF regions overlap with dark bands and the
ON region overlaps a light band, generating a strong response. At the time of the
estimate in B, the alignment is reversed, and L(f) is negative. (C) A plot of L()
versus time corresponding to the responses generated in A and B. Time runs ver-
tically in this plot, and L(#) is plotted horizontally with the dashed line indicating
the zero axis. (D-F) The stimulus is a grating moving to the right. Because of the
tilt of the space-time receptive field, the alignment with the right-moving grating
is never optimal and the response is weak (F).



Komorki ztozone

 Komorki proste mozemy charakteryzowac
technikami liniowymi (korelacji odwrotnych)

 Komorki ztozone majg cechy, ktore nie
pozwalajg na taki prosty opis:

* Obszary takich komorek, COMPLEX
ktore odpowiadajg na jasne 2 o | L o]
i ciemne bodzce s L nl
: : : 100/ W -
przekrywajg sie. Utrudnia to j;.
interpretacje srednich I | .

bodzcow wyzwolonych iglicg Space. x (deg)



Komorki ztozone

 Tym niemniej, komorki ztozone réwniez sg
selektywne na czestosc przestrzenng i
orientacje prgzkow.

* |naczej niz komorki proste, komorki ztozone
odpowiadajg na jasne lub ciemne pateczki bez
wzgledu na ich potozenie w polu recepcyjnym.

* Podobnie odpowiedzi komorek ztozonych na
prazki stabo zalezg od fazy przestrzenne;

« Zatem komorki takie odpowiadajg na
szczegolny typ obrazu niezaleznie od jego
doktadnego potozenia w polu recepcyjnym.



Komorki ztozone — charakterystyka
czasowa odpowiedzi

* Odpowiedzi komorek ztozonych na ruchome
prazki sg w przyblizeniu state, nie oscyluja.

» Czestosc generacji iglic w odpowiedzi na prazki
oscylujgce z czestoscig w ma sktadowg stalg |
sktadowg oscylujgcg z czestoscig 2w
(podwojenie czestotliwosci).



Metody typu korelacji odwrotnych
dla komorek ztozonych
« Rozwazmy dwie odpowiedziL iL, 0
preferowanych fazach przestrzennych @ i @-11/2
Li= AB(w, K) cos(¢p — @) cos(wt — §)
L= AB(w, K)sin(¢p — @) cos(wt — §)
 Suma kwadratow nie zalezy od ¢
L%—I— L% — AEEE{m, K) casz{mf —d)

 Mozemy wiec opisac niezalezng od fazy
przestrzennej odpowiedz komorki ztozonej

r(t) = ro+ G(L?+ L3)
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Figure 2.23 Selectivity of a complex cell model in response to a sinusoidal grat-
ing. The width and preferred spatial frequency of the Gabor functions underlying
the estimated firing rate satisty ko = 2. (A) The complex cell response estimate,
L‘l?—l— Lg, as a function of stimulus orientation ® for a grating with the preferred
spatial frequency K = k. (B) L + L3 as a function of the ratio of the stimulus spatial
frequency to its preferred value, K/F, for a grating oriented in the preferred direc-
tion & = 0. (C) Lf + Lg as a function of stimulus spatial phase @ for a grating with
the preferred spatial frequency and orientation, K =k and ® = 0.



Metody typu korelacji odwrotnych
dla komorek ztozonych

 Tak modelowana odpowiedz
L%—I— L% — AEHE{m, K) cnsz{mf —4)

odtwarza efekt podwojenia czestotliwosci
czasowej, poniewaz

cnsg[:mf— ) = %cns{ﬁ[mt —4d))+ %
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phase grating. (A) The stimulus s(x, y, t) at a given point (1 y) plotted as a func-
tion of time. (B) The rectified linear response estimate of a model simple cell to
this grating with a temporal kernel given by equation 2.29 with @ = 1/(15 ms). (C)
The frequency-doubled response of a model complex cell with the same temporal
kernel but with the estimated rate given by a squaring operation rather than recti-
ication. The background firing rate is rp = 5 Hz. Note the temporal phase shift of
both B and C relative to A.



Komorki ztozone jako kombinacja
wejsC komorek prostych

 Powyzszy model nazywa sie “energetyczny”,
poniewaz przypomina wzor na energie
oscylatora harmonicznego.

» Uzyta para filtrow liniowych nazywa sie parg
kwadraturowg (quadrature pair).

« Ze wzgledu na prostowanie potowkowe nie
mozna interpretowac tych filtrow jako wejsc z
komorek prostych.



Komorki ztozone jako kombinacja
wejsC komorek prostych

 Mozemy skonstruowac ten sam model komorki
ztozonej biorgc kwadraty odpowiedzi 4 komorek
prostych

(t) = ro+ G([L1)2 + [La)2 + [L3]2 + [L1)2)

gdzie rézne [L]+ reprezentujg odpowiedzi
komorek prostych o preferowanych fazach
przestrzennych ¢, ¢ + n/2, ¢ + m, and ¢ + 3m/2

* Tej konstrukcji nie nalezy traktowac dostownie,
raczej jako model opisowy.



Pola recepcyjne w siatkowce | LGN

The spatial structure of retinal ganglion and LGN receptive fields is well
captured by a difference-of-Gaussians model in which the spatial receptive
field is expressed as

1 2 2 B 5 .2 2
DS(I‘,};]::I:( exp(—x _I_y)— exp(—T —I_y)).
zﬂ'rﬂ-gen zﬂ-gﬂ'ﬂ zj'rﬂ-gur ZJEUI'
(2.45)

Here the center of the receptive field has been placed at x = y = 0. The first
Gaussian function in equation 2.45 describes the center, and the second,
the surround. The size of the central region is determined by the param-
eter 0.en, while o4,,, which is greater than o..,, determines the size of the
surround. B controls the balance between center and surround contribu-
tions. The £ sign allows both ON-center (+) and OFF-center (—) cases to
be represented. Figure 2.25B shows a spatial receptive field formed from
the ditference of two Gaussians that approximates the receptive field struc-
ture in figure 2.25A.



Pola recepcyjne w siatkowce | LGN

Figure 2.25C shows that the spatial structure of the receptive tield reverses
over time with, in this case, a central ON region reversing to an OFF re-
gion as T increases. Similarly, the OFF surround region changes to an ON
region with increasing 7, although the reversal and the onset are slower
for the surround than for the central region. Because of the ditference
between the time course of the center and of the surround regions, the
space-time receptive field is not separable, although the center and sur-
round components are individually separable. The basic features of LGN
neuron space-time receptive fields are captured by

5 D (1) ( rg—l—yz) BD{*(t) ( xz+y2>)
E'I[fi:‘,yr,fj_:I:(lﬂrrzFE exp| —53 — s P | 5= .

cen cen Sur SUr

(2.46)

Separate functions of time multiply the center and surround, but they can
both be described by the same functions, using two sets ot parameters,

Cerl, Sur 2 k 2
D’r (1) = @ oen, sur E:{p{_ﬂrfl?ﬂrﬁ‘ufra] o cen,surrexpi_ﬁcen,surﬂ'~ (2.47)
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Figure 2.25 Receptive tields of LGN neurons. (A) The center-surround spatial
structure of the receptive field of a cat LGN X cell. This has a central ON region
(solid contours) and a surrounding OFF region (dashed contours). (B) A hit of the
receptive tield shown in A using a difference-of-Gaussians function (equation 2.45)
with ogen = 0.3% o5y = 1.5%, and B = 5. (C) The space-time receptive field of a cat
LGN X cell. Note that the center and surround regions both reverse sign as a func-
tion of r and that the temporal evolution is slower for the surround than for the
center. (D) A fit of the space-time receptive tield in C using equation 2.46 with the
same parameters for the Gaussian functions as in B, and temporal factors given by
equation 2.47 with 1/acen = 16 ms for the center, 1/a sy = 32 ms for the surround,

and 1/Peen = 1/Psur = 64 ms. (A and C adapted from DeAngelis et al., 1995.)
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Figure 2.26 Comparison of predicted and measured hring rates for a cat LGN neu-
ron responding to a video movie. The top panel is the rate predicted by integrating
the product of the video image intensity and a linear hlter obtained for this neu-
ron from a spike-triggered average of a white-noise stimulus. The resulting linear
prediction was rectitied. The middle and lower panels are measured firing rates
extracted from two ditferent sets of trials. (Adapted from Dan et al., 1996.)
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Figure 2.27 (A) The Hubel-Wiesel model of orientation selectivity. The spatial ar-
rangement of the receptive hields of nine LGN neurons are shown, with a row of
three ON-center fields flanked on either side by rows of three OFF-center fields.
White areas denote ON helds and gray areas, OFF fields. In the model, the con-
verging LGN inputs are summed by the simple cell. This arrangement produces
a receptive field oriented in the vertical direction. (B) The Hubel-Wiesel model of
a complex cell. Inputs from a number of simple cells with similar orientation and
spatial frequency preferences (8 and k), but different spatial phase preferences (¢,
¢2, ¢3, and ¢4), converge on a complex cell and are summed. This produces a com-
plex cell output that is selective for orientation and spatial frequency, but not for
spatial phase. The figure shows four simple cells converging on a complex cell, but
additional simple cells can be included to give a more complete coverage of spatial

phase.
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