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CHAPTER 9

Principles of Spike Train Analysis

FABRIZIO GABBIANI AND CHRISTOF KOCH

1 Introduction

Experiments in sensory neurophysiology often record action potential arrival
times of nerve cells resulting from spontaneous or stimulus-evoked activity.
When all action potentials are taken to be identical and only their local-
ized times of occurrence are considered, one obtains a discrete series of time
events, {t1, . . . tn, where ti = time of arrival of the ith spike}, characterizing
the spike train. It is this series of events that is transmitted down the axon to
all of the cell’s targets and that contains most, if not all, of the information
that the cell is conveying.

Most of this information is neglected when studying the average rate,
the number of action potentials over some suitable interval usually lasting
a fraction of a second or longer, as the relevant variable characterizing the
neuronal response. Recently, the temporal coding of information in the pat-
terns of spikes, both at the single cell as well as between multiple cells, has
received renewed attention. The broad idea that spike timing, in particular
across ensemble of cells, plays an important role in encoding various aspects
of the stimulus is supported by experiments in a variety of sensory systems
such as locust olfaction, electric fish electrosensation, cat vision and olfaction
as well as monkey vision and audition (Chung et al., 1970; Freeman, 1975;
Abeles, 1990; Strehler and Lestienne, 1986; Bialek et al., 1991; Eskandar et
al., 1992; Singer and Gray, 1995; Decharms and Merzenich, 1996; Laurent,
1996; Wehr and Laurent, 1996; Gabbiani et al., 1996; Lisman, 1997).

The characteristics of the neuronal code are closely linked to the seem-
ingly stochastic or random character of neuronal firing. Because little or no
information can be encoded into a stream of completely regularly spaced ac-
tion potentials, this raises the question of how variable neuronal firing really
is and of the relation between variability and the neural code. It is the math-
ematical theory of stochastic point processes and the field of statistical signal
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processing that offers us the adequate tools for attacking these questions.
This chapter surveys a selection of such tools, starting with the classical

interspike interval histograms commonly used in neurophysiological studies.
The methods presented here are intended to shed additional light on two
aspects of neuronal signal processing:

(i) which integrative mechanisms underlie the activity of nerve cells?

(ii) what is the nature and reliability of stimulus encoding in neuronal spike
trains?

To address these questions and illustrate the methods presented here,
we study the encoding of various signals in spike trains of certain simplified
single cell models, in particular integrate–and–fire neurons and Poisson spike
train generators. This allows us to investigate in a controlled manner the
effect of several biophysical parameters such as refractoriness or mean firing
rate on the encoding of various signals. These models are described in details
in the next section. They can all be modeled using the Matlab routines
provided by us (see below and appendix A.2).

Section 3 introduces the classical measure of variability associated with
interspike interval distributions: the coefficient of variation, CV . Its depen-
dence on various biophysical and stimulus parameters is then investigated.
In section 4, a different and complementary measure of variability of the neu-
ronal response, the ratio of the variance to the mean spike count in a fixed
time interval, F , is introduced. This measure plays an important role in de-
termining the accuracy with which information can be conveyed in the mean
spike count, as explained in section 5. The following sections are devoted
to the analysis of information encoded in the timing of neuronal spiking. In
section 6, the autocorrelation function and power spectrum of the time serie
of action potential events are defined. The power spectrum is a measure of
the frequency content of the spike train and can, under some assumptions,
reflect the processing performed by the neuron on its input stimuli. It is,
however, also influenced by intrinsic properties of the neuron, like its refrac-
tory period or its tendency to fire regularly. The autocorrelation function,
in turn, translates these properties in the time domain. Section 7 introduces
a method which allows to directly assess the accuracy of the information
transmitted by a neuron about a time-varying stimulus by estimating the
stimulus from the spike train.
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Increasingly fast computers and the availability of comprehensive soft-
ware packages with practical graphical interfaces has made the analysis of
neuronal data using the methods presented here more rapid and convenient.
One of these packages, Matlab, is well suited for such numerical work and
was used to analyze our data. The corresponding programs (Matlab M-
files) can be freely accessed and downloaded from our web-site (see appendix
A.2 for a more detailed description and web address). All of the functions
and spike generation models used in the following pages are defined within
a simple and intuitive programming environment, based on the dynamical
system simulation package of Matlab called “Simulink”. We also provide
several tutorials which will allow the interested reader to directly generate
and analyze the data from our models (as well as more elaborate variants,
which are only briefly mentioned here) and to further explore topics not
covered in the following.

Finally, we would like to attract the reader’s attention on chapters 51-58
of the volume edited by Schmitt (1970) for an early review and references
on the subject of this chapter. An extensive and complementary treatment
may also be found in the recent book by Rieke et al. (1996).

2 Models

We start by introducing several simplified models which will be used to il-
lustrate the analysis methods exposed in the following sections. We do not
intend to perform biophysically detailed modeling of single neurons here: this
subject is covered in chapters 3 to 6 of this book. The goal of this chapter
is to incorporate some basic biophysical properties of real nerve cells such
as refractoriness, spike train variability or bursting, into idealized single cell
models, along with plausible processing schemes for input signals and to an-
alyze the properties of the resulting spike trains. While none of the models
described below can faithfully reproduce all the properties of a given neu-
ronal spike train, each one of them has been shown on several instances to
successfully capture at least some of them.

2.1 Perfect Integrate-and-fire neuron

We turn to a very simple, but quite powerful model of a spiking cell with a
long and distinguished history, first investigated by Lapicque (1907, 1926).
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It is known as the integrate-and-fire model (Stein, 1967a,b; Knight, 1972a;
Tuckwell, 1988) and assumes that the neuron integrates its inputs and gen-
erates a spike when a fixed voltage threshold is reached,

Cm · dVm

dt
= I(t) , (1)

where I(t) is the input current which is integrated to yield the membrane
voltage Vm(t). In eq. 1, the resting membrane potential has been set to zero
for convenience and the constant Cm represents the capacity of the model
cell. With the help of an initial condition, such as Vm(0) = 0, eq. 1 specifies
the evolution of the membrane potential in the subthreshold domain (fig. 1).

A spike is generated each time that Vm(t) reaches the threshold Vth and
the membrane voltage is reset to zero immediately after a spike. Thus, the
successive times, ti, of spike occurrence are determined recursively from the
equation, ∫ ti+1

ti

I(t) dt = CmVth . (2)

The response of such a model to a positive constant current step has the
following characteristics: (i) the firing rate, f , is linearly related to the mag-
nitude of the input current: f(I) = I/CmVth. In other words, the current-
frequency or f–I curve is linear (see fig. 2); (ii) arbitrarily small input cur-
rents eventually lead to a spike, i.e., the model never “forgets” the occurrence
of an input, and finally, (iii) the corresponding output spike train is perfectly
regular.

Several simple modifications of this basic model lead to very different
behaviors.

2.2 Refractory period

In real neurons, the dynamic firing range is limited by the biophysical prop-
erties of the ionic membrane conductances responsible for action potential
generation. In particular, neurons do not fire at arbitrarily high rates be-
cause sodium channels need to recover from inactivation between two action
potentials. As a first approximation, this constraint can be implemented in
the preceding model by assuming that after a spike the neuron is entirely in-
active for a fixed period of time tref (the absolute refractory period or dead
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time) after which it resumes normal function. That is, for a fixed time after
spike generation, all input current is shunted off. Such a refractory period
limits the firing frequency to fmax = 1/tref and thus introduces a non-linear
saturation in the f–I curve for large inputs,

f(I) =
I

CmVth + tref · I (3)

(fig. 2).

2.3 Leaky integrate-and-fire neuron

The integrate-and-fire neuron considered above will sum linearly two sub-
threshold inputs irrespectively of their temporal separation because it does
not gradually forget the occurrence of events over time. A more realistic
behavior is obtained by introducing a leak term in the dynamics of the sub-
threshold membrane voltage,

Cm
dVm

dt
= I(t) − Vm

Rm

, (4)

driving it towards its resting value, Vm = 0. The leak term is characterized
by the resistance to current flowing out of the cell, Rm (fig. 1).

In response to a constant current pulse I, this leaky integrate-and-fire
model will relax exponentially towards a steady-state voltage Vm = IRm,

Vm(t) = IRm(1 − e−t/τm) , (5)

with time constant τm = RmCm. Thus, the minimal, threshold current re-
quired to drive the cell to threshold is Ith = Vth/Rm (also known as the
rheobase current). The corresponding f–I curve is given by

f(I) =




0 if I ≤ Ith,[
tref − τm log(1 − Vth

IRm
)
]−1

, I > Ith.
(6)

For large input currents, the leak term in eq. 4 does not contribute signifi-
cantly and the f–I curve of eq. 3 is recovered (by using log(1− x) ∼ −x, for
|x| << 1 in eq. 6), see fig. 2.

Due to the presence of the leak term, integrate-and-fire models have been
difficult to fully characterize analytically (Poggio and Torre, 1977) but have
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also been surprisingly successful in describing neuronal excitability. They
have been applied to model the firing behavior of numerous cell types: neu-
rons in the limulus eye (Knight, 1972b), α–motoneurons (Calvin and Stevens,
1968), neurons in the visual system of the housefly (Gestri, Masterbroek and
Zaagman, 1980), cortical cells (Softky and Koch, 1993; Troyer and Miller,
1997) and others.

In the following we will usually only consider the case of a perfect inte-
grator model, since it allows us to write down closed-form solutions for many
variables of interest. However, the behavior of the leaky integrator will ap-
proach that of the perfect integrate-and-fire model if the average interspike
interval is short compared to the time constant τm.

2.4 Poisson spike trains – integrate-and-fire neurons
with random threshold

While some neurons fire regularly in response to injected suprathreshold
currents, many neurons show a considerable degree of variability in their se-
quence of action potentials, in contrast to (leaky) integrate-and-fire neurons.
Irregular firing is particularly pronounced in the case of recordings carried
out in vivo, rather than in brain slices or in cultured cells (Holt et al., 1996).
We here consider a class of models able to produce irregular spike trains. The
following description is phenomenological: possible causes for this variability
will be considered more closely in section 3.

An irregular response to a constant current pulse can be obtained in a
model that generates a spike at an average rate of f = I/CmVth, but in
such a way that (i) every spike is generated randomly, (ii) independently of
other spikes and (iii) with a uniform probability of occurrence in time. The
resulting spike sequence is called Poisson and is highly variable because of
the complete independence between the time of occurrence of neighboring
spikes. Neuronal response variability is often compared to the variability of
a Poisson spike train because of its simplicity. However, real spike trains
usually have interspike intervals that are not independent from each other
but that may depend on the preceding interspike intervals.

As a consequence of assumptions (i)–(iii), the interspike interval distri-
bution of a Poisson spike train is exponentially distributed with probability
density

p(t) = (1/t̄)e−t/t̄ , (7)
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where t̄ is the mean interspike interval (fig. 3A). The density function p(t)
is obtained experimentally by binning consecutive interspike intervals from
spike trains, as in fig. 3. In this guise it is called the Inter Spike Interval
(ISI) histogram.

Since in an integrate-and-fire neuron the mean interspike interval is pro-
portional to the voltage threshold, Poisson spike trains can be obtained from
an integrate-and-fire neuron by reseting the threshold after each spike to a
new random value according to the distribution, p(V ) = (1/Vth)e

−V/Vth . The
voltage Vth now denotes the mean value of the distribution p(V ). Similarly,
by assuming that the random threshold is distributed according to a gamma
distribution of order n,

pn(V ) =
cnV n−1

V n−1
th

e−nV/Vth , (8)

with

cn =
nn

(n − 1)!

1

Vth

, (9)

one obtains increasingly regular spike trains in response to a constant current
injection as n increases. The case n = 1 corresponds to Poisson spike trains
and in the limit n → ∞, the usual integrate-and-fire neuron is recovered.
The resulting interspike intervals are gamma distributed around their mean
value (fig. 3).

It could be argued that a random voltage threshold is not a very realistic
physiological feature. After all, noise in the spiking mechanism is seldomly
observed in real neurons (Calvin and Stevens, 1968; Mainen and Sejnowski,
1995). However, in the case of a perfect or non-leaky integrate-and-fire model,
a random threshold can be shown to be equivalent to a random input current
(Gestri et al., 1980).

This point is most easily illustrated by considering an integrate-and-fire
neuron which receives as input Poisson distributed current pulses of size I0 at
an average frequency f0 (as in fig. 4). If nth is the number of inputs needed to
fire the cell (i.e., nth is the smallest integer larger than CmVth/I0, see eq. 1)
then the average firing rate of the model will be f0/nth. The distribution of
spikes can be shown (Tuckwell, 1988) to correspond to a gamma distribution
of order nth, identical to the interspike interval distribution considered in
eq. 8 (fig. 3; Tuckwell, 1988).
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Indeed, the statistical properties of the output spikes of both models are
identical. That is, Poisson distributed inputs into an integrator unit that
requires nth synaptic inputs to reach a fixed threshold Vth is equivalent to
injecting a constant current f0I0 into an integrator unit whose voltage thresh-
old is distributed according to eq. 8 and where this constant input triggers
the output spikes. Expressing the variability in terms of a random threshold
distribution has mathematical and numerical advantages (see appendix A.2);
for instance, the case of an inhomogeneous Poisson process, in which spikes
are generated independently of each other with a time-varying rate λ(t), is
again equivalent to the case of injecting a deterministic current proportional
to λ(t) into the unit, and having a random threshold of the form expressed
in eq. 8.

3 Interspike Interval Distribution – Coeffi-

cient of Variation

The variability of a neuronal spike train is an important indicator of the type
of processing that a neuron performs on its synaptic inputs. The simplest
measure of variability is the coefficient of variation of the interspike interval
distribution, a dimensionless number defined as the standard deviation σt of
the interspike interval distribution normalized by the mean interspike interval
t̄,

CV =
σt

t̄
, (10)

with

t̄ =

∫ ∞

0

t p(t) dt, and σ2
t =

∫ ∞

0

(t − t̄ )2p(t) dt, (11)

where p(t) is the probability density distribution of the interspike intervals.
The coefficient of variation is equal to 1 for Poisson spike trains, since σt = t̄,
while for a gamma distribution of order n, σ2

t = t̄ 2/n and CV = 1/
√

n, see
eq. 8.

In other words, integrating over a large number of small inputs gives rise
to very regular output spikes (figs. 3–5). In the limit of an integrate-and-fire
neuron under constant current input, CV → 0. Conversely, a neuron which is
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sensitive to a small number of random inputs is expected to generate very ir-
regular spike trains. In real nerve cells, further potential sources of variability
include the stochastic nature of synaptic transmission, non-linear amplifica-
tion of synaptic inputs by active dendritic conductances and network effects
due to the interconnectivity of nerve cells (Softky and Koch, 1993; Allan and
Stevens, 1994; Stuart and Sakmann, 1994; van Vreeswijk and Sompolinsky,
1996).

A refractory period lowers the CV at high firing rates when it tends to
force regularity in the interspike interval duration. In the ideal case of an
absolute refractory period, the interspike interval probability density will
simply be shifted to the right of the time axis, p(t) → pref (t) = p(t − tref )
and the new coefficient of variation is

CV ref = (1 − tref/t̄ )CV , (12)

so that CV ref → 0 as t̄ → tref (figs. 3 and 5).
The time constant of integration of a leaky integrate-and-fire neuron will

affect the coefficient of variation in a different way. If nth > 1 coincident
inputs are needed to fire the cell, a large τm will regularize the spike train
by averaging the arrival of synaptic inputs over time whereas a short τm will
increase the sensitivity to coincident inputs and thus boost up variability.

In all of these examples, CV ≤ 1, with the upper bound given by a pure
Poisson process. However, in many instances interspike interval distributions
of real neurons have CV ’s greater than 1. This can be achieved in a Poisson
neuron by assuming that the current (or the rate) driving the model is itself
random in time. The resulting spike trains are termed doubly stochastic
Poisson in the mathematical and engineering literature (Saleh, 1978; Peřina,
1985) because of the dual source of variability arising in the current and the
spike generation mechanism. This is for example illustrated in a model which
successfully describes several properties of retinal ganglion cell spike trains
at low light levels (Saleh and Teich, 1985). In this limit, the distribution of
photons absorbed at the retina is expected to be Poisson. If each photon
results in a slowly decaying input current to a ganglion cell which causes
on average two output spikes per incoming photon (see fig. 6A), then the
interspike interval distribution of the model will have a CV greater than 1
(fig. 6B). The cause of this additional variability lies in the random number
of spikes generated for each incoming Poisson pulse.

Other cell classes respond to inputs with a burst of spikes, that is, a small
number of spikes separated by short interspike intervals. Several further
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special models and techniques have been developed to analyze the variability
of such bursting cells (Bair et al., 1994; Franklin and Bair, 1995; Holt et al.,
1996).

4 Spike Count Distribution – Fano Factor

The CV yields a useful measure of short term variability. However, since
this measure is obtained from the interspike interval distribution, it yields
a complete characterization of variability only if the occurrence of a spike
depends exclusively on the time of the previous spike and not further on the
past history of the spike train. This is the case for the Poisson and gamma
distributed spike trains of fig. 3; such spike trains are said to be generated
by a renewal process. By definition, successive intervals between the spikes
of a renewal process are independent (Cox, 1962; Cox and Lewis, 1966).
Equivalently, the time of occurrence of a spike depends only on the previous
one.

Information on variability beyond the first interspike interval can be
gleamed from the distribution of spike counts measured over a time period of
length T . To illustrate how the variability observed in the interspike intervals
translates into variability of the spike count, we return to the examples of
last section. For a Poisson spike train with mean firing rate f = 1/t̄, the
probability p(n) of obtaining n spikes in the observation window T is

p(n) =
(fT )ne−fT

n!
, (13)

and is plotted in fig. 7A.
For the model of retinal ganglion cell firing considered above, spike gener-

ation can be approximatively described as a cascade of two Poisson processes:
the first one represents the absorption of photons at the retina and the second
one the random generation of two spikes (on average) for each such photon1.
The resulting spike count distribution (called a Neyman type-A distribution,
see fig. 7A; Teich, 1981) is broader than a Poisson distribution of identi-
cal mean, consistent with the higher variability observed in the interspike
interval distribution (CV > 1, fig. 6B).

1This description is only accurate if two successive photon events are well separated
from each other. It remains valid also for shorter separation times, but the effective number
of spikes per incoming photon is reduced, for details, see Saleh et al. (1981), Saleh and
Teich (1985), as well as tutorial 5 in our Matlab routines.
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The variability in the spike count distribution is most conveniently char-
acterized by the ratio of the variance, V (T ), to the mean, N(T ), of p(n):

F (T ) =
V (T )

N(T )
(in units of spk). (14)

This quantity is called the index of dispersion or Fano factor. For a Poisson
spike train we obtain from eq. 13: N(T ) = fT , V (T ) = fT and therefore
F (T ) = 1, independent of duration T . For the Neyman type-A distribution,
if we denote by fph the rate of incoming photons and by k the effective
number of spikes per photon, then N(T ) = kfphT , V (T ) = (k + 1)fphT
and therefore, F (T ) = 1 + k > 1. Conversely, spike trains which are more
regular than Poisson will have an index of dispersion smaller than 1: this is
illustrated in fig. 8 for a Poisson spike train with refractory period (Müller,
1974) and for a gamma distribution of order 2 (Cox and Lewis, 1966). In
this latter case,

N(T ) =
T

t̄
, V (T ) =

T

2t̄
+

1

8
(1 − e−4T/t̄) , (15)

so that

F (T ) =
1

2
+

t̄

8T
(1 − e−4T/t̄) . (16)

While for very small observation intervals F converges to unity, as in a stan-
dard Poisson process, for T → ∞, F converges to 1/2.

4.1 Relationship between CV and F

Two key results link the Fano factor to fundamental properties of the spike
train. If the spike train can be described by a renewal process, the distri-
bution of spike counts will be approximatively normally distributed for large
counting times T , with mean N(T ) ∼= T/t̄ and variance V (T ) ∼= σ2

t T/t̄ 3.
This is illustrated in fig. 7B for the gamma distribution of order 2. While a
normal distribution for p(n) is expected from the law of large numbers, the
formulas for N(T ) and V (T ) depend explicitly on the renewal nature of the
spike train. Thus, for large T we obtain (Cox, 1962)

F (T ) ∼= σ2
t T

t̄ 3

t̄

T
= C2

V . (17)
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The relation between F (T ) and CV can be explicitly verified in the case
of the gamma distribution of order 2 (from eq. 16 and using the previously
obtained value, CV = 1/

√
2). This result motivates the following algorithm

to verify whether the variability observed in a spike train is solely due to
variability in the interspike intervals: 1) compute F (T ) as a function of T
for a given experimental spike train; 2) randomly re-shuffle the interspike
intervals of the experimental spike train to obtain a renewal process and
compute Fshuffled(T ). If, for large T , the Fano factor F (T ) is different from
Fshuffled(T ), variability in the spike count cannot be accounted for by vari-
ability in the interspike intervals alone. Furthermore, Fshuffled(T )1/2 provides
an estimate of CV , by eq. 17. This algorithm has been applied to sensory
neurons and has consistently led to the conclusion that a substantial portion
of spike train variability is not explained by interspike interval variability (for
a review, see Teich et al., 1996).

4.2 Relationship between F and the Autocorrelation
Function

Another result allows for a more precise understanding of the origin of vari-
ability observed in the spike count. For a stationary spike train (Cox and
Lewis, 1966), the index of dispersion is related to the correlation in spike oc-
currence times by the following formula (Cox and Isham, 1980; Teich, 1989)

F (T ) = 1 +
2

f

∫ T

0

dτ(1 − τ

T
)R+

xx(τ) . (18)

In this equation, f is the mean firing rate and R+
xx(τ) the autocorrelation

function of the spike train for τ positive, a measure of the statistical de-
pendency between two spikes as a function of the time interval τ separating
them (R+

xx(τ) is identical to the usual autocorrelation function except for
a δ-function at the origin which is removed; it is defined and discussed in
section 6). For a Poisson process, R+

xx(τ) = 0 and we recover F (T ) = 1 from
eq. 18. In the case of a gamma distribution of order 2, we recover eq. 16
by plugging the results of eqs. 32 and 31 (section 6) into eq. 18. It follows
in particular from this formula that if the correlation between spikes is only
slowly decaying over time, R+

xx(τ) ∼ τ−α (0 < α < 1) for large τ , then

F (T ) ∼ T 1−α (for large T ), (19)
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or equivalently,

V (T ) ∼ N(T )2−α , (20)

(using N(T ) = fT ). In other words, long range correlations in spike occur-
rence times implies a power law increase of V (T ) as a function of N(T).

To detect such power-law behavior, it is convenient to plot (N(T ), V (T ))
pairs for different values of T in log-log coordinates (Usher, Stemmler, Koch
and Olami, 1994).2 For a Poisson process, this procedures yields a line with
unit slope. A more variable process will be revealed by a slope that is larger
than one. In the limit of a slope equal to two (α = 0 in the above equation)
the fluctuations are so high as to cancel any beneficial effect obtained by
averaging for longer times. In practice, neurons seldomly show such power
relationships over very large ranges of T . For instance, as emphasized previ-
ously, a refractory period has the effect of reducing variability for values of
T ≈ tref . Cells in visual cortex typically cluster on a line of slope between
1 and 1.4 over the relevant range of firing frequencies (Vogels, Spillers and
Orban, 1989; Snowden, Treue and Andersen, 1992; Softky and Koch, 1993).

5 Signal Detection – ROC Analysis

Spike count distributions can also provide useful insights on the encoding of
stimulus information by neurons, in addition to shedding light on the issue
of variability considered in the last section.

Changes in the mean firing rate as a function of stimulus parameters
are usually the most conspicuous feature of neuronal responses. One way
of assessing the information conveyed in the mean spike count consists in
attempting to optimally discriminate two stimuli on the basis of differences
between the firing rates measured in an interval of length T . This paradigm,
based on the concept of an ideal observer, has been applied to a wide range
of sensory neurons and experimental stimuli. In retinal ganglion cells, the
presence or absence of a dim light flash can be inferred with good accuracy

2A frequently used approximation involves carrying out an experiment using a fixed T
but varying the stimulus to obtain different (N,V ) pairs. If, as a function of two variables
(f, T ), the stochastic properties of the neuron only depend on the product fT , varying
the stimulus to increase f is equivalent to varying T . This condition is verified by the
integrate-and-fire models with random threshold, provided that the refractory period is
set to zero.
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from the mean firing rate observed in a 200 ms time window (Barlow et al.,
1971). Further examples include the discrimination of stimulus orientation
from the responses of orientation selective neurons in area V1 of the macaque
monkey (Vogels and Orban, 1990) or of the direction of motion from neurons
in cortical area MT (Newsome et al., 1989; Britten et al., 1992). Here,
the performance of individual neurons, as assessed using the ideal observer
paradigm that will be discussed now, was comparable to the performance of
the trained animal on the psychophysical task. This places constraints on
how information from single cells is integrated across pools of neurons to give
rise to the behavior of the animal.

Let us imagine a classical yes-no rating experiment (Green and Swets,
1966), in which either one of two stimuli is presented, called stimuli 0 and 1.
On each trial and on the basis of an observation such as the mean spike count
measured in an interval T , the subject has to decide which of stimuli 0 or 1
occurred. If the two stimuli result in different spike count distributions p0(n)
and p1(n) being observed in an interval of duration T , an obvious strategy to
determine the stimulus most likely to have caused a given spike count nt is
to compare the likelihood ratio l(n) = p1(n)/p0(n) to a threshold criterion k
and to choose stimulus 0 or 1 according to whether l(nt) is smaller or larger
than threshold. The choice k = 1 corresponds to the inference3

p1(nt) < p0(nt) → stimulus 0,

p0(nt) < p1(nt) → stimulus 1.

The significance of values of k different from 1 will become clear as we pro-
ceed.

As a simple example, consider a Poisson neuron which fires at rates f0

and f1 (f0 < f1) in response to stimuli 0 and 1, respectively (Thibos et al.,
1979). From eq. 13

l(n) =
(f1

f0

)n
e−(f1−f0)T . (21)

Two such Poisson spike count distributions as well as l(n) are illustrated in
fig. 9A. The likelihood ratio of eq. 21 is a monotonic increasing function of
n. In this case (the most common one), we can replace the criterion l(n) ≶ k

3In the following we ignore the possible occurrence of ties, i.e., p0(nt) = p1(nt). The
treatment of such cases can be found, e.g., in Poor (1994).
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with the simpler rule

n < k′ → stimulus 0,

n > k′ → stimulus 1.

That is, if the observed spike count n is less than some threshold k′, we infer
that stimulus 0 was present; in the other case, we assume that stimulus 1
was present.

How good is this decision rule? Its performance can be precisely charac-
terized by two quantities: (i) the probability of false-alarm, i.e., the probabil-
ity of concluding that stimulus 1 is present when in fact stimulus 0 occurred,

PFA =
∑
n≥k′

p0(n) , (22)

and (ii) the probability of correct detection, i.e., the probability of correctly
concluding that stimulus 1 was present

PD =
∑
n≥k′

p1(n) . (23)

It is clear from these equations that a fixed value of the threshold k′ (or k)
is equivalent to a fixed probability of false-alarm PFA (or of correct detection
PD). Therefore, a plot of PD as a function of PFA completely characterizes the
performance of the likelihood ratio test for all possible values of the threshold
(see fig. 9B). Such a plot is called the receiver operating characteristic of the
likelihood ratio test or the ROC curve4. The diagonal line in fig. 9B indicates
chance performance (PFA = PD). The higher the ROC curve lies above the
diagonal, the better the performance of the likelihood ratio test (the most
favorable case being PD = 1, independent of PFA).

Remarkably, the likelihood ratio test is optimal: for a fixed probability
of false-alarm PFA, any alternative test used to decide between stimulus 0
and 1 from p0(n) and p1(n) will result in a smaller probability of detection
PD. In other words, any other test will yield an ROC curve below (or at
best equal to) the ROC curve of the likelihood ratio test5. Note that since it
remains unclear what type of decision rule nervous systems use, the optimal

4This terminology arose from early applications of signal detection theory to the per-
formance of radar.

5This result is known as the Neyman-Pearson lemma (Scharf, 1991).



Gabbiani and Koch 15

performance is the one obtained by an ideal observer who has complete access
to the relevant probability distributions. Of course, the performance of the
ideal observer will depend on properties of the spike trains and the interval
chosen to measure the mean firing rate. In general, longer measuring intervals
will lead to better performance by averaging out fluctuations, as illustrated
for Poisson spike counts in fig. 10A. Presently, the exact time interval over
which neurons might average incoming information to perform a specific task
is only weakly constrained. Similarly, spike trains that are more regular than
Poisson (CV < 1) will yield better discrimination performance, while spike
trains with CV > 1 will lead to worse performance (fig. 10B).

As the measuring interval becomes large, the probability distribution of
the spike count usually converges to a normal distribution by virtue of the
law of large numbers (see section 4). In practice, the convergence can be quite
fast, the Gaussian approximation being already accurate for spike counts as
low as 10-20 (as in fig. 7B). When the distributions p0(n) and p1(n) can
be described by Gaussians of means and variances µi, σi (with i = 0, 1),
respectively, the ROC curve can be computed exactly and is given by

PD = 1 − Φ
(σ0

σ1

Φ−1(1 − PFA) − µ1 − µ0

σ1

)
, (24)

where Φ is the cumulative probability distribution of a normalized Gaussian
variable,

Φ(x) =
1√
2π

∫ x

−∞
e−x2/2dx . (25)

Values of Φ(x) are plotted in numerical tables or can be computed using well
known algorithms. Conversely, one can re-express this equation in a different
coordinate scale, (P̃FA, P̃D), such that

PFA = Φ(P̃FA), PD = Φ(P̃D). (26)

This can be done using a simple command in Matlab.
In this coordinate system, the ROC curve of eq. 24 corresponds to a

straight line of slope r = σ0/σ1 and intercept d′ = (µ1 − µ0)/σ1 (Cohn et
al., 1975). This change of coordinates is analogous to the use of logarithmic
paper to plot exponential or power-law functions, as illustrated in fig. 11. In
general, the larger d′ the easier the two distributions can be distinguished
and the higher the performance.
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When the standard deviations of the two spike count distributions are
equal, σ1 = σ0, the ROC curve has unit slope and is completely characterized
by the intercept d′ that is commonly used in psychophysics (Green and Swets,
1966). The value d′ = 1 then corresponds to the two Gaussian distributions
being separated by one standard deviation. However, usually for spike count
distributions the variance V (T ) is a function of the mean spike count N(T ),
so that σ1 �= σ0 and this special case is unlikely to occur.

6 Autocorrelation – Power Spectrum

The mean spike count N(T ) is well suited to convey information about static
components of a stimulus in a time interval of length T . However, stimulus
parameters which vary over time during such an interval cannot be encoded
by N(T ) alone. Modulation of the instantaneous firing rate around its mean
value is an appropriate variable to encode such time-varying stimulus param-
eters.

This section and the next one survey a number of signal processing tech-
niques used to study stimulus encoding by means of instantaneous firing rate
changes. In these techniques, the analysis of post-stimulus time histograms
(PSTHs) obtained from repeated presentations of a single stimulus is replaced
by the analysis of average spike train properties in response to random stim-
ulus ensembles. Therefore, they represent a complementary approach to the
more classical PSTH methods, shedding a different light on the encoding of
time-varying stimuli in sensory neurons. By design, these methods will work
best if the neuronal system under study, whose input is the relevant stimulus
parameter and whose output is the observed spike train, can be approxi-
mated by a linear, time-invariant (stationary) system. These assumptions
are most likely to hold at early stages of sensory pathways (Wandell, 1995;
Rieke et al., 1996). Further elaborations of these methods can take into ac-
count some non-linearities and changes in the stimulus or neuron response
over time, as will be explained. However, none of them is expected to capture
the encoding of stimulus parameters when the precise pattern of spikes is of
importance, as is likely to be the case in the olfactory system of insects for
instance (Laurent, 1996; Wehr and Laurent, 1996).

While the instantaneous firing rate might convey information on a time-
varying stimulus, it will also reflect intrinsic properties of the neurons them-
selves. In the example of fig. 3, fluctuations in instantaneous firing rate do not
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relate to the constant current input, but rather reflect different biophysical
parameters (e.g., refractory period or passive time constant). We commence
our investigation by characterizing how these properties affect the dynamics
of neuronal firing.

6.1 The Autocorrelation Function

Second order changes in the dynamics of neuronal firing are captured in the
autocorrelation function of the spike train which we now proceed to define.
Let x(t) be the spike train of a neuron, represented by a sequence of δ pulses
at the time of spike occurrences {tk},

x(t) =
∑

k

δ(t − tk) . (27)

It helps to visualize x(t) as the instantaneous firing frequency of the neuron
in a particular trial or observation period (with units of spk/s; see appendix
A.1). The mean firing frequency is defined as the average over such an
ensemble of observations, m = 〈x(t)〉 and is assumed to be independent
of t (i.e., we assume that the spike train is stationary). Furthermore, a
single—albeit very long—spike train of the ensemble is often assumed to
be representative of the response of the system, so that ensemble averages
can be replaced by time averages over the single sample. This is known as
the ergodicity assumption. To clarify this point, we show that under the
ergodicity assumption the mean firing rate f of a single neuron in a single
trial is equal to the mean firing rate m (in spk/s) averaged over the ensemble.
Fig. 12 illustrates the same point graphically. If N is the number of spikes
in a large interval T , then

m = 〈x(t)〉

=
1

T

∫ T

0

x(t) dt, for large T (by ergodicity)

=
N

T
, (28)

where N/T = f is the mean firing rate for the representative sample spike
train. Similarly, other statistical properties of the ensemble can be computed
by time averaging, as explained in appendix A.1. The autocorrelation func-
tion is defined as the average joint probability density of a spike at time t
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and t + τ , minus their mean values,

Rxx(τ) = 〈x(t)x(t + τ)〉 − m2 (in units of (spk/s)2)

= 〈(x(t) − m)(x(t + τ) − m
)〉 . (29)

Again, by time invariance (stationarity), Rxx(τ) is assumed to be independent
of the absolute time point t. It follows from this assumption that Rxx(τ) =
Rxx(−τ). Subtracting m2 enforces the normalization ρ(τ) → 0 for large τ ,
since we expect two spikes to be uncorrelated for large time separations,

〈x(t)x(t + τ)〉 = 〈x(t)〉 〈x(t + τ)〉 = m2 (for τ large) . (30)

For a Poisson process, Rxx(τ) = m δ(τ). The δ-function at the origin corre-
sponds to the sure event of a spike at point t given a spike at point t, while
for τ �= 0 the autocorrelation function Rxx(τ) vanishes identically, meaning
that two spikes separated by an arbitrary time interval τ are completely un-
correlated. This extreme case of eq. 30 is, of course, a consequence of the
complete independence between two events which defines the Poisson process
(see section 2.4). An alternative way of writing the autocorrelation function
is

Rxx(τ) = R+
xx(τ) + mδ(τ)

= m(mx(|τ |) − m) + mδ(τ) , (31)

where mx(τ), τ > 0 is to be interpreted as the probability density of observing
a spike at time t + τ when a spike occurred at time t (note that mx(τ) is
the probability density of observing any spike at time τ following a spike,
not only the first one; Cox and Lewis, 1966). Thus, values of mx < m (or
equivalently R+

xx(τ) < 0) correspond to a suppressed probability of spiking as
compared to the mean m, while values of mx > m (or R+

xx(τ) > 0) correspond
to an increased probability of spiking. We illustrate these two possibilities in
the following examples.

The interspike interval distribution of a gamma process of order 2 has a
reduced probability of firing for short intervals when compared to a Poisson
process (see figs. 3A and B). Thus, one expects a reduced probability of firing
mx(τ), or equivalently, a negative correlation for small values of τ . In fact,
mx(τ) can be shown (Cox and Lewis, 1966) to relax exponentially to its mean
value m = f = 1/t̄ with a time constant t̄/4,

mx(τ) = m(1 − e−4τ/t̄), τ > 0. (32)
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The two functions mx(τ) and R+
xx(τ) are plotted in fig. 13A. Quite generally,

the refractory period immediately following a spike will manifest itself by a
negative correlation at short times τ .

Positive correlations can easily be observed in regular spike trains. This
is illustrated in fig. 13B for a gamma distribution of order 10 (see fig. 3D).
Such a model neuron has a very regular interspike interval distribution con-
centrated around its mean value, thus leading to positive correlations at
multiples of the mean interspike interval.

6.2 The Power Spectrum

Because the autocorrelation function is real and symmetric (i.e., Rxx(τ) =
Rxx(−τ)), its Fourier transform

Sxx(ω) =

∫ +∞

−∞
Rxx(τ)eiωτ dτ (in units of (spk/s)2/Hz), (33)

is also real and symmetric. In fact, Sxx(ω) is a positive function of frequency
called the power spectrum, which represents a measure of the frequency con-
tent of the spike train. The auto-correlation function can, of course, also be
expressed in terms of the inverse Fourier transform, that is,

Rxx(τ) =
1

2π

∫ +∞

−∞
Sxx(ω)e−iωτdω . (34)

For a Poisson process, the Fourier transform of Rxx(τ) yields Sxx(ω) = m
and thus all frequencies are equally represented. As is clear from eq. 31, the
power spectrum will usually contain additional terms causing a departure
from a flat spectrum when the spike train differs from Poisson. In the case
of a gamma distributed process of order 2 (see fig. 3B), we obtain

Sxx(ω) = m
(
1 − 8m2

16m2 + ω2

)
. (35)

Thus, the reduced probability of firing at short times τ (see eq. 32) causes a
dip in the power spectrum at low frequencies, as illustrated in fig. 14A. This
is the usual manifestation of refractoriness in the frequency content of the
spike train (Bair et al., 1994; Franklin and Bair, 1995).

For regular spike trains, the peaks in the autocorrelation at multiple inter-
vals of the mean interspike interval translate into peaks at the corresponding
firing frequency and its harmonics, as is illustrated in fig. 14B for the gamma
process of order 10.
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6.3 Spike Train Analysis of Linear Encoding Systems

Let us now consider the response x(t) of some neuronal system to an ensemble
of stimuli {smean + s(t)}, where smean represents the mean stimulus (for
instance the mean luminance of a visual scene) and the ensemble {s(t)}
represents random variations around smean. We here assume that the entire
system between the receptor and the neuron from which spikes are recorded
can be described in the regime of interest using a linear transfer function
K(t) and that the neuron encodes changes about smean by changes in its
instantaneous firing rate. Using this knowledge, we would like to understand
how the processing performed by the neuron on the stimulus will be reflected
in the autocorrelation and power spectrum of the spike train.

We start by formulating our assumption precisely. Let smean + s0(t) be a
representative stimulus drawn from the ensemble {smean + s(t)} and denote
by fs0(t) the changes in instantaneous firing rate,

fs0(t) = 〈x(t) − m〉(x|s0) , (36)

averaged over many presentations of smean + s0(t). This average is denoted
by 〈 · 〉(x|s0) to emphasize that s0(t) is fixed from one presentation to the
next (s0(t) might be called ”frozen noise”, fig. 15). Our assumption is that
changes in instantaneous firing rate are linearly related to s0(t) through a
transfer function K,

fs0(t) = (K 	 s0)(t)

=

∫ +∞

−∞
dt1K(t − t1)s0(t1), (37)

where the symbol ”	” denotes convolution (K has units of (spk/s)/(unit
stimulus/s)). This equation will hold exactly only if (K	s)(t) ≥ −m (because
the averaged instantaneous firing rate m + fs0(t) cannot be negative) so
that the effects of half-wave rectification can be neglected. To illustrate
eqs. 36 and 37, consider again the random threshold models of fig. 3 and let
the constant current I be replaced by a time-varying current imean + i0(t).
For each one of these models, the changes in instantaneous firing frequency
averaged over many trials will be proportional to changes in the input current:
fi0(t) = αi0(t), with α = 1/CmVth so that our assumption is satisfied6 (fig.

6 This result is well-known for Poisson spike trains (fig. 3A) and a general proof for
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15). Eq. 37 also holds when an arbitrary linear filter K is placed prior to the
spike generation mechanism to mimic preprocessing of the stimulus before
its encoding in output spike trains. An example of such a model whose mean
instantaneous firing frequency reproduces the band-pass filtering properties
of LGN relay cells is shown in fig. 22.

It follows from eq. 37 that the correlations in instantaneous firing rate
are related to correlations in the stimulus ensemble by

〈fs(t)fs(t + τ)〉s =
(
(K 	 K̃) 	 Rss

)
(τ) , (38)

where the average 〈 · 〉s is over the stimulus ensemble, Rss(τ) is the autocor-
relation function of the stimulus and K̃(t) = K(−t). Furthermore, let us
assume that correlations in the occurrence of single spikes are dominated by
correlations in the stimulus

〈(x(t) − m
)(

x(t + τ) − m
)〉(x|s0) = 〈x(t) − m〉(x|s0)〈x(t + τ) − m〉(x|s0),

(39)

for τ �= 0, so that effects like those of refractoriness or regularity considered
above can be neglected7. In the case of a leaky integrator, we expect this
condition to require that the correlations in the stimulus should occur on
a much longer time scale than τm. By taking averages over the stimulus
ensemble on both sides of eq. 39, we obtain

R+
xx(τ) = 〈fs(t)fs(t + τ)〉s . (40)

Combining eqs. 31, 38, 40 and Fourier transforming results in

Sxx(ω) = |K(ω)|2Sss(ω) + m , (41)

where the additive factor m originates from the δ-function at the origin in
eq. 31. A different derivation of this equation under the assumption of

gamma distributed random threshold noise (figs. 3B-D) can be found in Gestri (1971).
For integrate-and-fire neurons (fig. 3E), eq. 37 was proven in Knight (1972a). In fact, the
encoding of analog time-varying signals in binary spikes of integrate-and-fire neurons is
equivalent to the engineering coding scheme of integral pulse frequency modulation (Bayly,
1968; Zeevi and Bruckstein, 1977).

7 This equation holds exactly for the Poisson model of fig. 3A (because once the mean
stimulus s0(t) is specified, spikes are generated independently of each other), but will
usually not be satisfied exactly by more general models.
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complete half-wave rectification can be found in Gabbiani and Koch (1996)
and Gabbiani (1996).

Equation 41 states that the power spectrum of the spike train will be
related to the power spectrum of the stimulus by multiplication with the
square modulus of the frequency response of K. One way of determining the
transfer function K consists in applying the Wiener kernel method which
will be described in the next section.

We consider one example illustrating possible applications of eq. 41. The
response of relay cells in the lateral geniculate nucleus to sinusoidal grat-
ings of varying temporal frequencies can be used to determine their linear
transfer characteristics. In the frequency domain, the energy of the corre-
sponding filter, |K(ω)|2, is band-pass as illustrated in fig. 16B (Saul and
Humphrey, 1990). Measurements of the temporal power spectrum of natural
images, Sss(ω), show that it decays according to a power law with temporal
frequency (see fig. 16A; Dong, 1995). Therefore, multiplying |K(ω)|2 with
Sss(ω) predicts that the power spectrum of LGN spike trains in response to
natural stimuli should be flat in frequency up to 10 Hz (see fig. 16C; Dong
and Atick, 1995). This encoding of temporal changes in natural images by
LGN spike trains is optimal because it amplifies the frequencies which are
less well represented in the stimulus, thus whitening the input. This predic-
tion obtained from Sss(ω), |K(ω)|2 and eq. 41 for the encoding of natural
stimuli in spike trains of LGN relay cells has been confirmed experimentally
(Dan et al., 1996).

7 Wiener kernels – Stimulus Estimation

Starting from the assumption of linear encoding formulated in sect. 6.3,
we now explain how the transfer function characterizing the processing per-
formed by a neuron can be computed. This is a forward problem which has
been extensively investigated both theoretically and experimentally. For a
particular choice of the random stimulus ensemble, it is equivalent to the
computation of the 1st order Wiener kernel, as explained below. Next, we
address the question of how accurately a time-varying stimulus can be en-
coded in single spike trains. This question is the analogous for time-varying
stimuli of the problem considered in sect. 5 for static stimuli: how accurately
can single neurons convey information in their mean spike count? To answer
it, the corresponding inverse problem must be solved, i.e., one would like
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to estimate the stimulus from a single spike train and assess the accuracy
of this estimate. This question has been recently addressed experimentally
in the fly visual system (Bialek et al., 1991), in the electrosensory system
of weakly electric fish (Wessel et al., 1996) and in the cercal system of the
cricket (Theunissen et al., 1996; Roddey and Jacobs, 1996). Finally we also
investigate to which extent the linear assumption of sect. 6.3 is altered by
non-linearities in the encoding.

7.1 1st Wiener kernel — Reverse-Correlation

The problem of estimating the transfer function K introduced in eq. 37,

fs0(t) = 〈x(t) − m〉(x|s0) = (K 	 s0)(t) (42)

can be solved by correlating s(t) with x(t). We define the cross-correlation
between the stimulus and spike train by

Rsx(τ) = 〈s(t)(x(t + τ) − m
)〉

= 〈s(t)x(t + τ)〉, (43)

where the second equality follows from the normalization 〈s(t)〉 = 0 intro-
duced in last section. The cross-correlation Rsx(τ) is related to the autocor-
relation of the stimulus through

Rsx(τ) = (K 	 Rss)(τ) (44)

(using eq. 42). If we denote by Ssx(ω) the Fourier transform of Rsx(τ), we
obtain Ssx(ω) = K(ω)Sss(ω) after Fourier transforming both sides of eq. 44.
Therefore, the frequency response of K is given by

K(ω) =
Ssx(ω)

Sss(ω)
. (45)

The computation of K is further simplified if the random stimuli s(t) are
chosen to have a power spectrum constant with frequency, Sss(ω) = σ2, cor-
responding to a white or uncorrelated stimulus, Rss(τ) = σ2δ(τ) (in practice,
the stimulus is chosen to be white until a cut-off frequency above the one of
the system under study). Plugging the value of Sss(ω) in eq. 45 and Fourier
transforming back to the time domain yields K(τ) = (1/σ2)Rsx(τ). By using
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eq. 43, the representation x(t) =
∑N

k=1 δ(t − tk) where N is the number of
recorded action potentials and f = N/T the mean firing rate, we obtain

K(τ) =
f

σ2

1

N

( N∑
k=1

s(tk − τ)

)
. (46)

This is the celebrated reverse-correlation formula for K, stating that the
linear transfer function of the neuron can be recovered by a simple spike-
triggered average of the stimulus preceding the spikes (de Boer, 1973). This
technique has been applied to many different neurons at various early stages
of sensory systems, for example in cat and monkey striate visual cortex
(McLean and Palmer, 1989; DeAngelis et al., 1993; Reid and Alonso, 1995).
An example illustrating the computation of K from eq. 45 is shown in fig. 17
for the LGN relay cell model depicted in fig. 22.

7.2 Non-Linear Encoding — Higher Kernels

If the relation between stimulus changes and instantaneous firing frequency
changes is non-linear, a transfer function W1(ω) can still be obtained ex-
perimentally using eqs. 45 or 46, but the question of its relation to stimulus
encoding by the neuron is now raised. We illustrate the significance of W1(ω)
in such cases by the following observations.

First, let us assume that the relation between stimulus and instantaneous
firing frequency changes is obtained by passing y(t) = (K 	 s)(t) through a
non-linear function g(y),

fs0(t) = g(y(t)), y(t) = (K 	 s)(t) (47)

implementing half-wave rectification, compression or saturation for instance
(such a sigmoid non-linearity is illustrated in fig. 21A). The function g is
called a static or memoryless non-linearity because the output fs0(t) depends
only on y at time t. However, fs0(t) will depend on past values of the stimulus
because of the convolution operation with K. Let us now assume that the
stimulus ensemble is Gaussian. By definition, this means that for arbitrary
times, t1, . . . , tn the stimulus vector (s(t1), . . . , s(tn)) is a jointly Gaussian
random vector. This property must hold for all values of n = 1, 2, 3, . . . 8.

8This is a very strong assumption. Methods to generate such ensembles are described
in Marmarelis and Marmarelis (1978).
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Under this assumption, the cross-correlation between the stimulus and spike
train can still be computed exactly,

Rsx(τ) = c (K 	 Rss)(τ), c =
〈yg(y)〉

σ2
y

, (48)

where σ2
y is the variance of y(t) = (K 	 s)(t). This result is known as Buss-

gang’s theorem (Bendat, 1990). For example, if y(t) is considered to be
the somatic current driving the cell, then Bussgang’s theorem states that it
is possible to recover the cross-correlation between the stimulus and the so-
matic current from the cross-correlation between the stimulus and the output
spike train (under the assumption of eq. 47). Up to a constant factor c, the
cross-correlation of eq. 48 is identical to the one obtained in the linear case
(eq. 44). Thus, the effects of a static non-linearity are not reflected in the
time-course of W1(τ), but its presence can nevertheless be detected by using
input stimuli with different variances (since c depends on the variance of the
stimulus).

In the non-linear case, the significance of W1(τ) can be understood by
considering the following question: in response to the stimulus s(t), which
linear function (h 	 s)(t) best approximates the instantaneous firing rate of
the neuron in the sense that the mean square error,

ε2(h) = 〈[(h 	 s)(t) − fs(t)
]2〉s (49)

is minimized when averaged over the stimulus ensemble? This equation can
be solved by using the fact that at the minimum, the first order derivative
dε2/dh has to vanish. Solving for h yields h(τ) = W1(τ). Thus, the transfer
function W1(τ) is the best linear estimator for the response of the cell (in
the mean square sense). The accuracy of this estimate will depend to a large
extent on the nature of the non-linearity and can fail completely in certain
cases9.

In principle, it can be improved by considering estimators consisting of
higher order functions of the stimulus,

gs(τ) = W1(s(t))(τ) + W2(s(t1), s(t2))(τ) + . . . (50)

9An extreme (and academic) example is g(y) = y2, so that c = 0 in eq. 48 and the
linear estimator is at chance level.
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where W1(s(t))(τ) = (W1 	 s)(τ), etc... When the stimulus ensemble used is
Gaussian white noise, the Wn’s are called nth order Wiener kernels and pro-
cedures are known to compute them10. However, these non-linear methods
lack the simplicity and generality of the linear case (Palm and Poggio, 1977).
It is for example unclear how the results obtained with one stimulus ensem-
ble will generalize to other stimuli. Even for simple static non-linearities like
half-wave rectification, an infinite number of terms is needed in the series
of eq. 50. In some cases, considerable progress has been made by combin-
ing such methods with specific assumptions on the type of non-linearities
involved (Victor, 1987 and 1988; Sakai et al., 1988).

7.3 Stimulus Estimation–Reliability of Encoding

While the first order Wiener kernel method fully characterizes the linear en-
coding of time-varying stimuli by instantaneous firing rate changes, it has
some shortcomings. It does not for example directly assess how much in-
formation is contained in a single spike train about a time-varying stimulus,
since it focuses on predicting the ensemble average response to the stimulus.
All the models illustrated in fig. 3 are able to encode stimulus changes by
instantaneous firing rate changes (see footnote 6), but clearly the informa-
tion contained in single spike trains will depend on the noise corrupting the
encoding. In these examples, it can range from extreme (in the Poisson case)
to noise-free (in the integrate-and-fire model, fig. 15).

The question of how reliably a single spike train encodes a time-varying
stimulus can be successfully addressed by estimating the stimulus from the
spike train and characterizing the accuracy of the estimate. Such an esti-
mate can be obtained by Wiener-Kolmogorov filtering, a signal processing
technique complementary to first order Wiener kernel analysis and closely
related to it (Poor, 1994). We consider again a neuron encoding a stimulus
by changes in its instantaneous firing rate,

fs(t) = 〈x(t) − m〉(x|s) = (K 	 s)(t). (51)

If we denote by x0(t) the spike train with its mean firing rate subtracted,
x0(t) = x(t)−m, then a linear estimate of the stimulus given the spike train
can be obtained by convolving x0(t) with a filter h(t), sest(t) = (h 	 x0)(t).

10Such procedures also exist for other stimulus ensembles (Palm and Poggio, 1978; Victor
and Shapley, 1980).
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Because of the discrete nature of the spike train, this amounts (up to a
constant factor) to placing a copy of h around each spike,

sest(t) =
N∑

k=1

h(t − tk) − m

∫ +∞

−∞
h(t) dt (52)

to estimate deviations s(t) of the stimulus from its mean value. The filter
h is chosen to minimize the mean square error between the stimulus and its
estimate,

ε2(h) = 〈[s(t) − h 	 x0(t)
]2〉 (53)

and is thus the optimal linear estimator given the spike train (in the mean
square sense). Eq. 53 is solved in the same way as eq. 49. Imposing the
condition dε2/dh = 0 for the optimal filter and solving for h yields

h(ω) =
Ssx(−ω)

Sxx(ω)
. (54)

This formula is almost identical to the formula for W1(ω), with Sxx(ω) playing
the role of Sss(ω). In particular, if the power spectrum of the spike train is
flat, Sxx(ω) = m (i.e., Poisson), then h(ω) = (1/m)Ssx(−ω) from which
it follows that h(τ) = (1/m)Rsx(−τ) is also determined by a simple spike-
triggered average. This condition is usually satisfied at low firing rates, when
spikes can be considered as nearly independent of each other (Gabbiani and
Koch 1996; Wessel et al., 1996). In general, the filter h computed from
eq. 54 will not be causal in the sense that h(t) �= 0 for t > 0, meaning that
the occurrence of a spike can be used to predict the future time-course of the
stimulus (this is of course only possible because of the presence of correlations
in the stimulus and of the response properties of the neuron). Therefore the
filter h represents a non-causal ideal linear observer of the spike train in
the sense of sect. 5. Causal (ideal) observers and non-linear (ideal) observers
have been described in the literature (Snyder, 1975; Bialek et al., 1991; Poor,
1994).

If no correlations exist between s(t) and x(t) (i.e., Ssx(ω) = 0 for all
frequencies ω) the best linear estimator of s(t) is equal to the mean value,
〈s(t)〉 = 0. The maximal mean square error computed from eq. 53 is then
equal to the variance of the stimulus, ε2

max = σ2
s . Therefore, it is convenient

to quantify the accuracy of stimulus encoding by normalizing the root mean
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square error computed from s(t), x0(t) and eqs. 53, 54 by its maximal value
σs,

εr =

√
ε2

σs

, (55)

so that εr takes values between 0 and 1 with εr = 0 corresponding to perfect
estimation and εr = 1 to an estimation performance not better than chance
level. Equivalently, the coding fraction, γ = 1− εr, represents the percentage
of temporal stimulus fluctuations encoded, in units of the stimulus standard
deviation.

The performance of stimulus encoding as a function of frequency is char-
acterized by computing the noise in the stimulus estimate,

n(t) = s(t) − sest(t) (56)

and comparing the relative power of the noise and stimulus,

SNR(ω) =
Snn(ω)

Sss(ω)
. (57)

This signal-to-noise ratio is equal to 1 when estimation is at chance level
for a given frequency (there is then as much noise as there is signal at that
frequency) and tends to infinity for perfect estimation11.

An example of stimulus estimation from the spike train of a Poisson model
encoding a time-varying random current imean + i0(t) is shown in fig. 18.
When the correlations in single spike occurrences are dominated by correla-
tions in the stimulus (this condition is exactly satisfied in the Poisson model,
see footnote 7), the power spectrum of the spike train is given by eq. 41 so
that the linear estimation filter can be computed exactly from knowledge of
the linear system’s transfer function K:

h(ω) =
K(−ω)Sss(ω)

m + |K(ω)|2Sss(ω)
, (58)

using eqs. 45 and 54. A number of observations can be made using this result
(Gabbiani and Koch 1996; Gabbiani 1996). In particular, for a fixed mean
firing rate m, the fraction of the stimulus encoded, γ, will increase with the

11The signal-to-noise ratio can also been normalized to take values from 0 to infinity by
subtracting 1, see Bialek et al. (1991) and Gabbiani (1996).
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standard deviation of the stimulus σs (or equivalently its contrast σs/smean).
This can be explained by the fact that larger values of σs correspond to larger
fluctuations in the instantaneous firing rate σf = 〈x0(t)

2〉 (see eq. 51) which
encode the stimulus more reliably. For a fixed firing rate contrast, σf/m, the
fraction of the signal encoded will increase with the mean firing rate, m. This
can be explained by an increased sampling of the stimulus in the spike train.
Finally, the accuracy of stimulus encoding will depend on the characteristics
of the stimulus. If, for instance, the frequency content of the stimulus used is
not matched to the processing characteristics of the recorded cell (i.e., if there
is a substantial range of frequencies for which the signal-to-noise ratio is equal
to 1) then the accuracy of stimulus encoding will decrease. In such cases, it is
meaningful to estimate only the range of frequencies encoded by the cell, by
filtering out from the stimulus frequencies for which SNR = 1. The presence
of such frequencies will depend on the stimulus used (through Sss(ω)) and
the processing performed by the cell (through K(ω)). Similarly, stimuli with
natural statistics are expected to yield higher values of the coding fraction
because they are more predictable than Gaussian stimuli.

Fig. 19 illustrates the effect of encoding noise on the accuracy of stimulus
estimation from single spike trains. A white stimulus s(t) with a cut-off
frequency of 10 Hz (figs. 18B and 15) was estimated from the spike trains
of the different models illustrated in fig. 3. Examples of a single stimulus
from this ensemble and the responses of two models are shown in fig. 15.
The fraction of the stimulus encoded is plotted for each one of these models
in fig. 19. A single spike train of a Poisson neuron (fig. 15A) is able to
encode γ = 14% of the stimulus implying that to obtain an estimate to
γ = 90% accuracy, averaging over N = 74 independent spike trains is needed
(by the usual

√
N argument; Shadlen and Newsome, 1994; Gabbiani, 1996).

In contrast, an integrate-and-fire neuron firing at the same rate will encode
γ = 88% of the stimulus, so that only N = 2 independent spike trains
yield an estimate with a better accuracy. Plotted on the same figure is the
CV of the spike trains used to estimate γ. The CV goes down as stimulus
estimation improves because in these models additional noise in the encoding
translates in a larger variability of the spiking output. However, even in the
case of a perfect integrator, the CV = 0.47 amounts to half of the one of a
Poisson spike train. This variability is not due to noise but is fully devoted
to encoding the stimulus in the interspike intervals of the model spike trains.
The theoretical numbers illustrated in fig. 19 are indicative of how many
neurons are needed to encode accurately a time-varying stimulus; single and
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multiple simultaneous recordings allowing to take into account correlations
between nerve cells are expected to settle these questions experimentally.

7.4 More General Estimation Techniques

It is worth emphasizing that the optimal linear filter h(τ) depends only on
the cross-correlation Rsx(τ) and the autocorrelation Rxx(τ), as this has im-
portant implications. For example, one might be surprised to obtain a good
estimate of s(t) with the filter of eq. 54 since the Wiener-Kolmogorov filtering
technique was originally designed to deal with a completely different situa-
tion: the recovery of s(t) from continuous observations buried in Gaussian
white noise. However, as is clear from eq. 54, any other random observation
r(t) which has the same cross-correlation Rsr(τ) = Rsx(τ) with the stimulus
and autocorrelation function Rrr(τ) = Rxx(τ) as the spike train x(t) will lead
to exactly the same estimation problem. This will be so even if r(t) is strik-
ingly different from x(t). Consider for instance the case of a Poisson model
as in the previous paragraph. It is easy to see that if instead of observing
the spike train we observed

r(t) = (K 	 s)(t) + m1/2w(t), (59)

where w(t) is Gaussian white noise with unit variance, Rww(τ) = δ(τ), then
we would be led to the same estimation filter of eq. 54 and the same perfor-
mance (Snyder, 1975). Thus, in this case estimation from the spike train is
equivalent to estimation from an observation of (K 	s)(t) buried in Gaussian
white noise. The difference between the two signals x(t) and r(t) is illustrated
in fig. 20. This remark is important because it implies that improved estima-
tion techniques which have been developed for the additive Gaussian case can
also be expected to work when applied to neuronal spike trains. These tech-
niques include adaptive filtering, where the shape of the filter h(τ) depends
on time to take into account firing rate adaptation or changes in the mean
stimulus value and/or contrast level over time. In addition, non-linear tech-
niques have been applied successfully to certain types of stimuli. Examples
illustrating these techniques and further references are described in chapter
6 of Snyder’s reference book on random point processes (Snyder, 1975).
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7.5 Non-Linear Encoding and Stimulus Estimation

If the relation between stimulus changes and instantaneous firing rate changes
is non-linear, the accuracy of stimulus estimation will again depend to a large
extend on the type of non-linearity involved. A neuron which encodes specific
features of a time-varying stimulus and disregards most of its time-course
(such as might be implemented by a static threshold non-linearity) will yield
poor estimation results (Gabbiani et al., 1996; Sheinberg and Logothetis,
1997). In contrast, other non-linearities like firing rate saturation and half-
wave rectification are not expected to alter significantly stimulus estimation
results (Wessel et al., 1996). Certain types of non-linearities will even improve
the encoding of time-varying stimuli in single spike trains under adequate
conditions. To illustrate this point, we consider again encoding through a
static non-linearity as in eq. 47 and spike trains for which eq. 39 holds, so
that the power spectrum can be computed exactly, see eq. 41.

Deviation from linear encoding can be assessed by computing the magni-
tude coherence between the stimulus and instantaneous firing rate,

|Csfs(ω)| =
|Ssfs(ω)|

Sss(ω)1/2Sfsfs(ω)1/2
, (60)

where Ssfs(ω) = Ssx(ω) is the Fourier transform of the cross-correlation be-
tween stimulus and instantaneous firing frequency, while Sfsfs(ω) is the power
spectrum of the instantaneous firing rate. The magnitude coherence is a fre-
quency dependent correlation coefficient measuring the extent of the linear
relation between s and fs (Carter, 1987; Ljung, 1987). For each frequency
ω0, |Csfs(ω0)| takes values between 0 and 1. If |Csfs(ω0)| = 0, the rela-
tion between s and fs is not linear (or non-existent, Ssfs(ω) = 0). When
|Csfs(ω0)| = 1, the stimulus s and the instantaneous firing rate fs are per-
fectly linearly correlated. In the case where fs is determined by s through
eq. 42, it follows from eqs. 38 and 45 that |Csfs(ω0)| = 1 at all stimulus
frequencies. From eq. 41, we know that Sxx(ω) = Sfsfs(ω) + m > Sfsfs(ω) so
that the magnitude coherence between the stimulus and spike train,

|Csx(ω)| =
|Ssx(ω)|

Sss(ω)1/2Sxx(ω)1/2

=

(
SNR(ω) − 1

SNR(ω)

)1/2

(61)
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yields a conservative estimate of linearity between stimulus and instanta-
neous firing rate, |Csfs(ω)| ≥ |Csx(ω)|. Experimental values of |Csx(ω)|2
have been reported for wind-sensitive sensory neurons in the cricket cercal
system (Theunissen et al., 1996; Roddey and Jacobs, 1996). While |Csx(ω)|
does not measure directly the linearity of stimulus encoding, it has the ad-
vantage of being directly related to the performance of stimulus estimation
through eq. 61. This equation can be derived from the definition of the
noise n(t) and of the signal-to-noise ratio, SNR(ω) (see eq. 57 and Gabbiani
1996, Theunissen et al., 1996). In contrast, |Csfs(ω)| is not in general related
to stimulus estimation performance from single spike trains12, as explained
below.

To illustrate the behavior of these two functions in a non-linear situation,
we return to the example of a Poisson neuron firing at a mean rate of 50
Hz and encoding a Gaussian random stimulus with a cut-off frequency of 10
Hz in its instantaneous firing rate, as in fig. 18. This input modulates the
instantaneous firing rate of the Poisson neuron between 0 and 100 spk/s (fig.
21A). We assume that s(t) and fs(t) are related through a static sigmoid
non-linearity, fs(t) = gα,l(s(t)) of the form

gα,l(y) = α

√
2

π

1

l

∫ y

0

e−t2/2l2 dt. (62)

Two examples of such sigmoids are illustrated in fig 21A together with the
Gaussian distribution of the input stimulus s(t) used in fig. 18 and in the
following. When the non-linearity is of the form shown in eq. 62, the cross-
correlation between s(t) and fs(t) can be computed exactly (using Bussgang’s
theorem; see Bendat, 1990). This is also true for the autocorrelation function
of the spike train which is given by13

Rxx(τ) = Rfsfs(τ) + mδ(τ)

=
2α2

π
sin−1

(
Rss(τ)

σ2
s + l2

)
+ mδ(τ) (63)

where σs is the standard deviation in firing rate caused by the random stim-
ulus (σs = 20 Hz in the example of fig. 21A). Thus, it is possible from these

12The magnitude coherence |Csfs
(ω)| is also difficult to measure experimentally as com-

pared to |Csx(ω)|.
13This famous result is originally due to R.F. Baum (1957). More recent derivations use

a result due to Price (1958).
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equations to compute |Csfs(ω)| and |Csx(ω)| numerically (by using a fast
Fourier transform algorithm, for instance). The results are shown in fig. 21B
for the two sigmoids of fig. 21A. Note that in the case of the sigmoid with
shallow slope (thin line), the magnitude coherence |Csfs(ω)| is almost equal to
1, indicative of a relation between s(t) and fs(t) which is very close to linear,
while the stimulus estimation performance is relatively poor (|Csx(ω)| ∼= 0.5
corresponds to γ = 0.14, see fig. 18). By increasing the gain of the sigmoid
(fig. 21A, thick line) the linear correlation between s(t) and fs(t) is slightly
diminished (the linear range is clearly reduced as compared to the compres-
sion range, see fig. 21A), while the performance in stimulus estimation is
considerably improved (|Csx(ω)| ∼= 0.72 corresponding to γ = 0.33). This is
due to the fact that a large portion of the dynamic firing range of the cell is
now devoted to encoding the most likely fluctuations of the stimulus (which
would otherwise only cause modulations between ±20 spk/s; fig. 21A).

The address of Drs. Gabbiani and Koch is Division of Biology, 139-74, Cal-
ifornia Institute of Technology, Pasadena, California 91125. Electronic mail
should be addressed to gabbiani@klab.caltech.edu.

A Appendix

A.1 Numerical estimation methods

In practice, the quantities defined in the main text, such as the CV of the ISI
distribution or the power spectrum of the spike train have to be estimated
from experimental or simulated data. This appendix provides a short sum-
mary of statistical and numerical methods used to obtain such estimates.
We will not attempt to cover the subject in depth since extensive treatments
may be found in the literature. A classical reference devoted to the statisti-
cal analysis of point processes is the book by Cox and Lewis (1966); further
standard textbooks and reference sources include Oppenheim and Schafer
(1989), Press et al. (1992), Anderson (1994) and Ljung (1987).
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Mean and variance of the ISI distribution.

The mean of the ISI distribution is estimated by the sample mean,

ˆ̄t =
1

k

k∑
i=1

ti (64)

where t1, . . . tk are successively observed interspike intervals. The variance
may be estimated from

σ̂2
t =

1

k

k∑
i=1

(ti − t̂)2

=

(
1

k

k∑
i=1

t2i

)
− t̂2. (65)

In general, the accuracy of these estimates will depend on the extend of
correlations between successive interspike intervals of the spike train (Cox and
Lewis, 1966; Anderson 1994). The most favorable case is the renewal process

since successive intervals are independent. In this case, the variance of ˆ̄t is
given by σ2

t /k and decreases linearly with the number of observations from
an initial value equal to the variance, σ2

t , of the ISI distribution. Typically,
a few thousand spikes will be sufficient to obtain reliable estimates of t̄ and
σt.

Mean and variance of the spike count.

The simplest estimate of the spike count mean and variance on an interval of
length T is obtained by subdividing an observation interval T0 (much longer
than T ) into k = T/T0 intervals T1, . . . Tk of length T . If Ni is the observed
count in Ti, we form the estimators,

N̂(T ) =
1

k

k∑
i=1

Ni, (66)

V̂ (T ) =
1

k

( k∑
i=1

Ni − N̂(T )

)2

=

(
1

k

k∑
i=1

N2
i

)
− N̂(T )2. (67)
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Clearly, this is not the only way of subdividing T0 into intervals of length
T . The intervals T1 + (1/2)T, . . . , Tk−1 + (1/2)T provide (k − 1) further
observations of N which can be used to form refined estimators for N(T )
and V (T ). However, the improvement will not be as substantial as from
independent observations, since these new spike counts are correlated to the
previous ones. A technique based on this remark consists in subdividing T0

in k · r intervals T sd
1 , . . . , T sd

kr of length T sd, such that T = r · T sd. One then
computes a ”moving average” estimate of the spike count in all successive
intervals of length T by summing r consecutive intervals of length T sd: Ni =∑r+i

j=i N
sd
j , where N sd

j is the spike count in T sd. As a rule of thumb, estimates
obtained from eqs. 66 and 67 require at least 10 times more data, i.e.,
T0 ≥ 10 T , than the largest interval T of interest. Moving average estimates
are accurate on intervals which have a length of at most 20−25% of T0 (Cox
and Lewis, 1966).

Power spectrum and autocorrelation of the spike train.

The starting point for power spectral density estimation is the Wiener-
Khinchin formula,

Sxx(ω) = lim
T→∞

1

T
|X0(ω)|2 (68)

X0(ω) =

∫ T

0

x0(t)e
iωt dt, x0(t) = x(t) − m,

which states that the power spectrum can be obtained directly as the squared
modulus of the Fourier transformed series X0(ω).

In practice, the occurrence of spikes is recorded with a finite temporal
resolution ∆t, so that the time series of action potential events is of the form
x = {x1, . . . , xN}, where xi = x(ti), ti = i ·∆t (i = 1, . . . , N) and T = N∆t is
the recording time. The value of xi is either 0 (if no action potential occurred
in the interval ti ± (1/2)∆t) or 1/∆t (if an action potential occurred in the
interval ti ± (1/2)∆t) which is the discrete approximation of the continuous
δ–function. The series {x0(ti)}N

i=1 is obtained from {x(ti)}N
i=1 by subtracting

the mean firing rate, m = (1/N)
∑N

n=1 xi.
Ideally, the sampling interval ∆t should be sufficiently fast to resolve the

action potential wave-form, thus preventing the aliasing of frequencies above
the Nyquist frequency (fc = 1/2∆t) below it. In practice, the power spectral
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density is of interest only for low frequencies (typically well below 200 Hz)
and a sampling interval of 0.5 ms (or even 1 ms) is amply sufficient.

The continuous Fourier transform is approximated by the discrete Fourier
transform

X̂0(fj) = ∆t X̃0j, X̃0j =
N∑

m=1

xie
2πifjtm , (69)

where fj = ωj/2π takes values at the discrete frequencies fj = j/N∆t,
j = −N/2, . . . , +N/2 (for N even). An estimator for the power spectral
density is given by the periodogram,

Ŝ(fj) =
(∆t)2

T
|X̃0j|2, j = −N

2
, . . . ,

N

2
. (70)

Without any form of averaging, this estimate will be very unreliable. A
computationally convenient averaging procedure consists in subdividing the
observation series in k contiguous segments l = 1, . . . , k, compute the peri-
odogram Ŝl(fj) separately over each segment and then average,

Ŝ(fj) =
1

k

k∑
l=1

Ŝl(fj). (71)

A typical example would consist of a spike train sampled at ∆t = 0.5 ms for
which N = 2048 points (1.024 s) are used to compute a single periodogram
with a resolution of approximatively 1000/1024 ∼= 1 Hz in the frequency
domain14. The number of segments needed to obtain a reliable estimate will
depend on the firing frequency of the neuron; typically, averaging over 100
segments or 10′000 spikes should yield reasonably accurate results.

The estimate of eq. 71 is further improved by multiplying each segment of
data with a window function prior to Fourier transforming. This minimizes
the boundary effects due to the finite size of the samples. Such a function is
the Bartlett window,

wk =

{
2(k−1)
N−1

1 ≤ k ≤ N+1
2

,

2 − 2(k−1)
N−1

N+1
2

≤ k ≤ N,
(72)

14The number of points N is usually chosen to be a power of 2 so that fast Fourier
transform algorithms can be applied.
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which peaks at the center of the segment and decreases linearly with dis-
tance from the center. Thus, prior to Fourier transforming, one replaces
(x1, . . . , xN) by (w1x1, . . . , wNxN).

Finally, the estimate of eq. 71 can also be improved by overlapping the
segments on which the periodograms are computed. In other words, if the
first segment consists of data points x1, . . . x2048, as in the previous example,
the second segment should be (x1024, . . . , x3072), etc...

An estimate of the autocorrelation function is obtained from the power
spectral density by a straightforward discrete inverse Fourier transformation.
Similarly, estimates of cross-correlation functions are obtained using exactly
the same procedure outline above, but starting from

Ssx(ω) = lim
T→∞

1

T
S(ω)X̄0(ω), (73)

where the symbol “ ·̄ ” denotes complex conjugation.

1st order Wiener kernel, Wiener-Kolmogorov filtering.

The first order transfer functions of eqs. 45 and 54 can in principle be
estimated directly from the cross-correlation and power spectral density esti-
mates discussed above. However, this involves a division operation which is
very sensitive to noise in the estimates of Ssx(ω) and Sss(ω) (or Sxx(ω)). In
the case of the 1st order Wiener kernel, this numerically unstable operation
may be circumvented by using a white stimulus so that division by Sss(ω)
at each frequency is replaced by an overall multiplicative constant, see eq.
46. One effective way of reducing such noise consists in carefully selecting
the sampling step ∆t to exclude frequencies higher than those conveyed by
the system since they only deteriorate the estimate of the transfer function.
An example illustrating this point is provided by tutorial 4 of our Matlab
subroutines. More advanced techniques are discussed in Ljung (1987). Typ-
ically, at least 10′000 spikes are needed to obtain reliable estimates of these
transfer functions.

An estimator for the mean square error of eq. 55 is obtained from,

ε̂ =
1

N

N∑
i=1

(si − sest i)
2 , (74)

where si is the stimulus value at time point i∆t and sest i is the estimate
obtained by discrete convolution of the Wiener-Kolmogorov filter with {x0 i}.
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In an optimal situation, the filter h is computed from one data set and the
error is estimated from a different data set to avoid a bias of the estimate ε̂2

towards lower values than the true value ε2 (this technique is called the cross-
validation method). In practice, the bias is usually negligible if a sufficiently
long data record is used (typically |ε̂− ε|/σs ≤ 0.01 for data stretches longer
than 100 s) and the same data set may be used to compute the filter and
the estimate ε̂2 (this technique is called the resubstitution method). However,
the bias can be significant in some cases, see tutorial 6 of our Matlab
subroutines for examples.

A.2 Matlab interface and routines

Location.

The software as well as the following description may be found on the web
at http://www.klab.caltech.edu/~ gabbiani/signproc.html. The soft-
ware consists of compressed and archived files directly usable under Unix.

System requirements.

Our routines are written entirely using the programming commands of the
Matlab environment and are therefore independent of the particular plat-
form used (Unix, Windows or MacOS based systems). In addition to the core
Matlab environment, some analysis routines require the Signal Processing
Toolbox. The simulation routines and the graphical interface require the
Simulink Toolbox. (The random number generator of the Statistics Toolbox
is also used, but could be replaced by a random number generator described
in the literature, Press et al., 1992.) A fast computer with plenty of memory
is recommended.

Software and data.

The software consists of 4 different parts.
1) Graphical interface and simulation routines. This part of the pack-

age was written using the S-function formalism (see the Simulink reference
manual) and is activated by the startneuro M-file (i.e., by entering the com-
mand startneuro at the Matlab prompt; see fig. 22). The subthreshold
membrane voltage dynamics of the models described in the main text is linear
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and was implemented by numerical integration using a fixed time step. This
greatly reduces the programming load but leads to relatively slow simula-
tions. More sophisticated algorithms are described in chapter 14. Numerical
simulation results were checked by comparison with analytical results (see
point 2) below), but no benchmark tests were performed to assess precisely
the numerical accuracy of these routines. We would also like to caution the
user that simulation results can be affected by the time step used, the prop-
erties of random number generators and the stability of the linear system
simulated.

2) Analysis routines. These M-files implement the analysis procedures
discussed in the main text. In addition, many theoretical results described
there are also implemented in the form of M-files, allowing a direct compari-
son between simulations and theory. References to the literature are provided
in the M-files themselves or through the Matlab help utility.

3) Tutorials data. The spike trains and stimuli data sets resulting from
simulations of the tutorials can also be downloaded, thus avoiding to actually
go through the simulations themselves before performing a data analysis.

4) Figure notes. These notes describe how each figure of the main text
was obtained, in the hope that this will clarify the results presented and
provide starting points for further simulations.
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Figure captions

Figure 1. Two variants of integrate-and-fire “units”. Common to both
are passive integration within a single compartment for the subthreshold
domain and a voltage threshold Vth. Whenever the membrane potential Vm

reaches Vth, a pulse is generated and the circuit is short-circuited. For a
duration tref following spike generation, any input I(t) is shunted to ground
(corresponding to an absolute refractory period). A: The perfect or non-leaky
integrate-and-fire model contains but a capacitance. B: The leaky or forgetful
integrate-and-fire unit accounts for the decay of the membrane potential by
an additional component, a leak resistance Rm.

Figure 2. f–I curves of an integrate-and-fire model without and with re-
fractory period (thin solid line and dashed line, respectively) and of a leaky
integrate-and-fire model with refractory period (thick solid line). The f–I
curve of the integrate-and-fire neuron saturates for high input currents at the
inverse of the absolute refractory period (here 5 ms). The leaky integrate-
and-fire model will not respond to currents less than Ith (arrow) because of
its tendency to “forget” inputs, while for high currents its f–I curve becomes
similar to the one of the perfect integrate-and-fire model. This and all follow-
ing figures were generated using the Matlab routines described in appendix
A.2 and made available at our web site.

Figure 3. Sample spike trains and interspike interval (ISI) distributions
from various models in response to a constant current input into a perfect
integrator model. All models have an absolute refractory period of 2 ms and
a mean firing rate of 83 Hz. A: A Poisson distributed (i.e., exponential)
random voltage threshold yields the most irregular spike train and an expo-
nential ISI distribution. In the absence of a refractory period, CV would be
1. B-D: Gamma distributed random thresholds of order 2, 5 and 10 yield
increasingly regular ISI distributions which are gamma distributed of order
2, 5 and 10, respectively. E: The integrate-and-fire model yields a perfectly
regular spike train, corresponding to the limit n → ∞. Spike trains with
the identical properties can be generated by a perfect integrator with fixed
voltage threshold, Poisson distributed synaptic input and A: nth = 1 (that
is each input triggers one output spike), B-D: nth = 2, 5 and 10 and E: a
constant input current. The rate of the input Poisson process is adjusted to
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obtain the same mean firing rate in all cases.

Figure 4. A perfect or non-leaky integrate-and-fire model averages out noise
by summing its inputs until Vth is reached. While the Poisson synaptic input
(lower trace) is highly irregular, the time to the next spike is averaged out
in the membrane voltage (Vm, middle trace), yielding a more regular output
spike train (top trace). In this example, nth = 5 inputs are needed to reach
threshold, thus yielding a spike train with gamma distributed ISI distribu-
tion of order 5 (see fig. 3C), whereas the synaptic input ISI distribution is
exponential (see fig. 3A).

Figure 5. Coefficient of variation of an integrate-and-fire neuron with a
2 ms refractory period as a function of the mean ISI. The different curves
denote the number of inputs nth summed by the model to reach the voltage
threshold. As the firing frequency increases towards the limit imposed by
the refractory period tref (arrow), the spike trains becomes more regular
(CV → 0 for mean ISI → 2 ms). In other words, the refractory period exerts
a regularizing effect on the spike train.

Figure 6. A: Sample input current and spike train for the retinal ganglion
cell model described in the main text, based on a doubly stochastic Poisson
process. B: Because of the added source of variability in the input current,
the ISI distribution is more irregular than the one associated with a Poisson
model (for which we would obtain CV = 1).

Figure 7. A: Comparison of a Poisson (thick solid line) and Neyman type-A
distribution (NTA, dotted line) of spike counts. The means of the two distri-
butions are identical (8.35 spikes), but the variance of the NTA distribution
is larger than the mean (the effective multiplication parameter k is equal to
1.45 in this example). B: Spike count distribution (dashed line) obtained
from a spike train with a gamma distributed ISI of order 2 (see fig. 3B). The
mean firing rate is f = 50 Hz and T = 200 ms. The corresponding Gaussian
approximation (solid line, see main text) is already very good, even though
only 10 spikes are expected in this period.

Figure 8. Variance as a function of mean spike count in several examples
(the slope of these lines is the Fano factor of eq. 14). The curve with
largest variance (dotted line) corresponds to the retinal ganglion cell model



Gabbiani and Koch 51

illustrated in fig. 6 and was obtained by simulation. For a given mean spike
count, its variance is higher than the variance of a Poisson spike train (thick
solid line), which has unit slope; that is, the variance increases as the mean
number of spikes. Adding a 2 ms refractory period to the Poisson model
(thin solid line) regularizes the spike count distribution, while the variance
of a model with gamma distributed ISI of order 2 (dashed line, see fig. 3B)
is only half of the mean spike count.

Figure 9. A: Spike count distribution of a Poisson model with mean firing
rates of 40 and 50 Hz, respectively, corresponding to the spike count densities
p0 (for stimulus 0) and p1 (for stimulus 1; they are plotted here for a T = 200
ms observation window). The likelihood ratio for these two distributions is
shown on top. Since l(n) is monotone, a given decision threshold k for the
likelihood ratio corresponds to a decision threshold k′ for the spike count. B:
The commonly used Neyman-Pearson decision rule maximizes the probability
of detection, PD, for any fixed value of the probability of false-alarm, PFA.
The associated ROC curve is obtained by varying the threshold k′ (see top
illustration) from a very high value (yielding in the limit of k′ → ∞, PD =
PFA = 0) to a very low value (in the limit k′ → −∞, PD = PFA = 1). For
each value of the threshold k′, the probability of false-alarm PFA (eq. 22;
that is, believing that stimulus 1 was present while, in fact, stimulus 0 was
present) is given by the integral of p0 to the right of the threshold and is
indicated by the grey surface (top illustration). The probability of detection
PD (eq. 23) of stimulus 1 corresponds to the integral of p1 to the right of
the threshold (hatched area). The ROC curve is a plot of this latter area
(PD) as a function of PFA. The dashed line below the ROC curve indicates
chance performance. On the opposite, the closer the ROC curve lies to the
bold dashed lines, the better the performance.

Figure 10. A: ROC curves for the same model as in fig. 9 and for in-
creasing sampling times, T = 200, T = 500, T = 1000 and T = 2000 ms,
respectively (only the two extreme curves are labeled). The performance of
the ideal observer increases in parallel with the sampling time. In A and B
the dashed straight line indicates chance level. B: The middle curve (thick
line) shows the discrimination performance of the ideal observer of two Pois-
son spike counts (same parameters as in figs. 9B and 10A). The lower curve
(dotted line) describes the performance of the ideal observer for spike counts
distributed according to Neyman type-A (with same mean firing rates as in
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fig. 9). The upper curve (dashed line) corresponds to the discrimination
performance when the two spike counts are distributed according to gamma
distributions of order 2 (see fig. 7B).

Figure 11. A: Three ROC curves corresponding to the discrimination be-
tween two Gaussian distributions as the ratio of the two associated variances,
r = σ0/σ1 and d′ changes. d′ is defined as the distance between the centers of
the two Gaussians, normalized by σ1. The parameters are: r = 0.8, d′ = 1.2
for a, r = 1, d′ = 1 for b and r = 1.2, d′ = 0.8 for c. B: On “normal”
probability paper, corresponding to the change of coordinate of eq. 26, these
curves are straight lines of slope r and intercept d′ respectively (dashed line:
chance level).

Figure 12. The traces labeled x0(t), . . . , x9(t) represent different spike trains
of a Poisson neuron belonging to the same statistical ensemble which satisfies
the assumptions of stationarity and ergodicity. They should be thought of as
representing recordings from different nerve cells (assumed to be identical in
their properties and response characteristics) or the response of a single cell
to different realizations of a random stimulus. At the bottom, the mean firing
rate m over 500 ms bins (m0–m9) is shown. It was obtained by averaging the
firing rate of each of the 10 samples, as illustrated by the two dashed lines
for the bin corresponding to m1. The assumption of stationarity implies that
m should be independent of the particular bin chosen: m = m0 = · · · = m9

(i.e., a flat PSTH). Furthermore, m should be independent of the bin size (in
the limit where the averaging is done over all spike trains of the ensemble).
The assumption of ergodicity implies that the firing rate f0, . . . , f9 for each
one of the single traces x0(t), . . . , x9(t) should be identical to m (again in the
limit where the recording time T is very long). Stationarity and ergodicity
have analogous implications for higher order statistical functions, such as the
autocorrelation (see the main text).

Figure 13. A: Autocorrelation function R+
xx (bottom panel) of a renewal

gamma process of order 2. The mean firing rate of the model is 80 Hz. The
negative correlation for short values of τ is due to the relative refractoriness
of the model following a spike. The corresponding firing probability density
function mx (see eq. 32) is plotted on top. Its value is zero immediately
after a spike, recovering exponentially towards steady-state (80 Hz) with a
time constant of 3.125 ms. B: Autocorrelation function of a renewal gamma
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process of order 10 (m = 80 Hz, bottom panel). The positive peaks in the
autocorrelation at ±12.5 ms reflect the regularity of the ISI distribution (top
panel) and coincides with the peak in the ISI distribution. In both A and B
the δ-function of Rxx at the origin has been subtracted, see eq. 31.

Figure 14. A: Power spectrum of a renewal gamma process of order 2 (i.e.,
Fourier transform of the autocorrelation function of fig. 13A). The negative
correlation at short values of τ translates in a dip in the power spectral
density at low frequencies. B: For a renewal gamma process of order 10, the
positive correlations at multiples of the mean ISI (see fig. 13B) translate into
a peak in power at the mean firing frequency (80 Hz).

Figure 15. 10 spike trains of two different random threshold models in
response to a single stimulus s0(t) (the ”frozen noise” s0(t) is shown on
top of both panels A and B). A: An exponentially distributed threshold
(corresponding to Poisson spike trains under constant inputs, fig. 3A) leads
to very irregular and varying spike trains from one presentation to the next.
B: A threshold of gamma order 10 (fig. 3D) leads to much more regular and
reproducible spike trains from one trial to the next. In spite of very different
characteristics, both models encode the stimulus s0(t) in their instantaneous
firing rate (see footnote 6), as may be seen by comparing the instantaneous
firing rate (averaged over 50 ms) on the bottom of each panel to s0(t). The
question of how reliably a single spike train from each one of these models
encodes s0(t) will be addressed in sect. 7.3 (see fig. 19).

Figure 16. Graphical illustration of eq. 41 for natural visual stimuli and
their processing by relay cells in the cat lateral geniculate nucleus (LGN) in
normalized units. A: The power spectral density of natural visual scenes has
a temporal power spectrum which decays quadratically in frequency. B: The
transfer function of LGN relay cells is band-pass in the temporal domain.
C: Multiplication of A and B yields an output spike train spectrum (the
constant value m has been subtracted) which is flat in temporal frequency,
thus effectively decorrelating the visual input signal. It has been argued
by Dong and Atick (1995) that one function of the LGN is to decorrelate
the visual input signal, giving rise to a more effective and less redundant
representation of visual stimuli in cortex proper.

Figure 17. Computation of a linear transfer function using the Wiener
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kernel method. The solid line represents the transfer function of the model
shown in the central panel of fig. 22. The dotted line represents the estimate
obtained from eq. 45, by cross-correlating the stimulus (shown in the right
lower panel of fig. 22 with the output spike train of the neuron (lower left
panel of fig. 22. The left axis has dimension of (spk/s)/(unit stimulus) and
has been normalized.

Figure 18. Stimulus estimation for a Poisson neuron firing at a mean rate
of 50 Hz. A: The instantaneous firing frequency of the neuron model is
proportional to the stimulus (i.e., in this example there is no filtering by the
neuron model, K(t) = δ(t)). In turn, the stimulus is estimated from the spike
train (shown at the bottom) by placing the optimal linear filter computed
from eq. 54 around each spike, as explained in eq. 52. To compute the mean
square error, the difference between stimulus (thick line) and estimate (thin
line) at each time point (illustrated by the double arrow) is computed and
squared; the average is then taken over all time points of the observation
(see eq. 55). In the case shown here, the fraction of the stimulus encoded
is only γ = 0.14. B: Signal-to-noise ratio for the estimation, indicating the
performance of the neuron as a function of frequency (eq. 57). The dashed
line (SNR = 1) indicates chance level. By comparing with the frequency
content of the stimulus (inset), one sees that all frequencies are equally well
encoded.

Figure 19. Fraction γ of the white stimulus (10 Hz cut-off frequency) shown
in fig. 18 and 20 which can be recovered from single spike trains of various
neuron models (mean firing rate: 50 Hz). The bottom axis shows the order
of the threshold gamma distribution implementing encoding noise. These
models are identical to those of fig. 3 (except that the refractory period has
been set to zero). While a Poisson neuron (n = 1) encodes relatively poorly
the stimulus (γ = 14%), a single perfect integrate-and-fire neuron is quite
accurate (γ = 88%).

Figure 20. The stimulus s(t) shown in the middle (thick line) can be es-
timated from the spike train of a Poisson neuron x(t) (bottom trace, as in
fig. 18) or from the noisy continuous observation shown on top, r(t). While
these two estimation problems appear very different, they are in fact com-
pletely identical because the autocorrelations and cross-correlations of both
observations with the stimulus are the same. It is clear from the top trace
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that this estimation problem is a difficult one. The fraction of the signal
recovered from the noisy observation or from the spike train by linear esti-
mation is 14% (see fig. 18).

Figure 21. Effects of a sigmoid non-linearity on stimulus encoding in Pois-
son spike trains. A: The probability distribution of the Gaussian input is
illustrated in units of firing rate changes around the mean rate of the model
neuron (50 Hz). In the limit of unit sigmoid gain (the dotted line) no mod-
ification occurs between input and output rate changes; this limit is a good
approximation for the weak sigmoid non-linearity (thin line). The thick
line illustrates a case where the effect of the non-linearity is stronger. B:
Magnitude coherence between the instantaneous firing rate and the stimulus
(|Csfs |) and between the spike train and the stimulus (|Csx|). For |Csfs | = 1
the relation between the stimulus and instantaneous firing rate is a linear
one. In both graphs, the thin and thick lines correspond to the thin and
thick sigmoids of A, respectively. Note that |Csfs|, which measures linearity
in stimulus encoding, is closer to 1 for the thin case as compared to the thick
case. In contrast the magnitude coherence |Csx| between stimulus and spike
train shows the reversed behavior, indicating a more accurate encoding of
the stimulus for the stronger non-linearity.

Figure 22. Illustration of various windows which constitute the software
package for analysis of spike trains using signal processing methods. The
top window can be called directly from the main Matlab workspace win-
dow and contains several icons which can be accessed by double-clicking on
them. The icons entitled “Input signals”, “Neuron models”, “Functions”,
“Connections” and “Output devices” contain building blocks which allow to
constitute models such as the one shown in the middle window. This win-
dow is one of the tutorials which can be accessed by double-clicking on the
“Tutorials” icon, while the “Functions and Scripts” icon contain on-line help
on the analysis procedures. Spike trains and stimulus vectors, such as the
ones shown in the bottom two windows, can be stored directly in Matlab
variables and analyzed using the functions described by the ”Functions and
Scripts” icon.
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Gabbiani and Koch, Fig. 20
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