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Synonyms

CSD, CSD method, reconstruction of current sources

Definition

Current Source Density analysis (CSD) is a class of methods of analysis of extracellular electric 
potentials recorded at multiple sites leading to estimates of current sources generating the measured 
potentials. It is usually applied to low-frequency part of the potential (called the Local Field 
Potential, LFP) and to simultaneous recordings or to recordings taken with fixed time reference to 
the onset of specific stimulus (Evoked Potentials, EP). 

Detailed Description

Among the different mechanisms contributing to extracellular electric potential in the tissue 
(Buzsaki et al., 2012, Einevoll et al., 2012) transmembrane currents in neurons are believed to 
dominate. These are ionic currents passing through all the different membrane channels (passive, 
voltage-dependent, calcium-dependent, synaptic, etc.) as well as the capacitive currents which, 
while charging the membrane, also contribute to the motion of ions in the extracellular space, 
influencing the extracellular potential and seen by the extracellular electrode. The places where net 
current is entering or leaving the cell are called current sources or sinks. While these sources are 
localized along the membrane of the neuron, in practice, with a finite resolution afforded by 
available electrode setups and limited by typical densities, we may only recover coarse-grained 
density. This is what we have in mind when discussing estimation of Current Source Density. Figure
1 shows the relation between the “microscopic” currents (a), coarse-grained field we usually have in
mind (b) and a reconstruction of the CSD from measured potentials. 

CSD analysis can be performed for signals in full spectrum or in any selected band, although it is 
usually applied to the Low Frequency Part (<500Hz) of the extracellular potential (LFP). We 
propose here such an expansion of LFP as the commonly used term Local Field Potential is actually
a misnomer, since due to the long range nature of the electric field LFP can be observed millimeters 
away from sources (e.g. Kajikawa and Schroeder, 2011; Linden et al., 2011; Hunt et al., 2011; Łęski
et al., 2013). Despite that filtering in frequencies it is known that fast processes, such as spikes, may
still contribute to the LFP (Buzsaki et al, 2012, Einevoll et al., 2012; Reimann et al. 2013). 

When net positive current enters the cell we speak of current sink and it corresponds to negative 
CSD. When net negative current enters the cell we speak of current source and it corresponds to 
positive CSD. Since negative CSD is observed for excitatory synaptic stimulation (positive current 
entering the cell / negative CSD), many researchers prefer to denote current sinks by red (“hot 
spot”) and current sources by blue. There is a comparable number of researchers who prefer to do 
the opposite, according to the sign of CSD (red for positive, blue for negative). This situation has 
lead to two opposite conventions being in wide use. A reader is advised to always check carefully 
what is the convention used in a given work.



Physics behind the relation between the CSD and LFP

To get intuitive understanding of the basic relation between current sources and extracellular 
potential consider infinite, homogeneous and isotropic conductive
medium of conductivity  (Tranquillo, 2008). If we place a
stimulating  electrode and inject current I, it will induce current flow
in the tissue with current density  radially at a distance
r away from the stimulation point (Fig. 2). 

In a purely conductive medium Ohm's law holds ,
which gives us the potential in space . A multitude
of currents  located at  induce potential

. It is natural to introduce current
source density (CSD), , a scalar density field

which is usually coarse grained to a smooth quantity (see Fig. 1).
With this definition we get the relation between the CSD and the

potential as   (Equation 1)

or inverting this relation we obtain the Poisson equation 
(Equation 2)

Equations (1) and (2) are valid only in our restricted setting. Equation
(2) can be generalized for arbitrary conductivity tensor fields : 

(Equation 3)

Solving (3) usually requires numerical methods. Careful derivations of (3) can be found in 
(Nicholson, 1973; Stevens, 1966; Nunez and Srinivasan, 2005).

Figure 1.  Comparison of the current sources obtained in a simulation (a), with coarse-grained 
CSD (smoothed with a Gaussian kernel of ) (b) and a reconstruction with kernel CSD 
method (c) from LFP computed at a grid of 8x14 electrodes from the data in (a). Data were taken 
from the cortical part of a simulation of 3500 cells in the model of thalamocortical loop based on 
Traub et al. (2005), 10 ms after simulated thalamo-cortical stimulus. Dominating contributions to 
CSD come from infra- and supragranular pyramidal cells. Vertical distance given in μm from 
cortical surface, horizontal from the center of the simulated column (H. Głąbska).

Figure 2.  Current I injected at the 
origin of the system spreads 
uniformly in all directions in infinite, 
homogeneous and isotropic medium.

http://www.springerreference.com/docs/link/2307491.html?s=348609&t=pyramidal+cells


Methods of CSD estimation

The simplest numerical approximation to the Laplacian is the three-point formula

which was introduced by Pitts (1952). While in the original application two-dimensional case was 
considered, by far the most common use of this approach has been in the study of one-dimensional 
cortical recordings with linear multielectrodes. One then considers lateral invariance of the potential
as a consequence of laminar structure of the cortex keeping a single term in the above formula. This
approach has been made popular in early 1970's by work of  Haberly and Shepherd (1973) and 
especially Nicholson and Freeman (1975). Much of the work in this area till 1985 has been 
summarized by Ulla Mitzdorf in her still very useful review (1985). We refer to this approach as the
traditional CSD (tCSD) method.

Methodologically, there have been few advances in the estimation of CSD from the measurements 
since Pitts work till 2006. The main deficiencies of the traditional approach are lack of control over 
the assumptions made, such as extent of the sources in the dimensions which are not probed and 
between the contacts, spatial and measurement noise, and the necessity of exclusion of contacts  at 
the border. To reduce the noise, Rappelsberger et al (1981) proposed to smooth the measurements 
with a Hamming window obtaining a five-point formula in 1D 

which gained some popularity. In 1988, Vaknin et al. proposed to extend the grid of electrodes 
beyond the actual set of contacts copying the outmost recordings to the added contacts. While in 
general physically questionable, this numerical trick allowed computation of CSD values for all 
contact positions and was used in cortical studies.

Rapid development of new multielectrodes at the beginning of XXI century (Egert et al. 1998, 
Csicsvari et al 2003, Buzsaki 2004, Berdondini et al 2005, Kipke et al. 2008, Frey et al 2009) 
stimulated renewed interest in LFP recordings and analysis, including CSD analysis. In 2006, 
Pettersen et al. proposed a new, model-based approach to CSD estimation, which they termed 
inverse CSD (iCSD) method. The method was later generalized to three- and two-dimensional 
regular recording setups (Łęski et al. 2007, 2011). 

The idea behind iCSD is to assume a parametric model of the sources of as many parameters as the 
number of measurements. For example, for measurements of potential  at points

, we may take the values of CSD at measurement points  as parameters and 
spline interpolate in between (spline iCSD). Then , where  is a 
function taking 1 at , 0 at , and spline interpolated in between. From such a model one can 
compute potential at the measurement points using forward modeling formula, Eq. (1). This leads to
a matrix relation between the potential and the CSD given by , where 

.

In lower dimensionality (1D, 2D), where one does not probe all directions, it is necessary to make 
assumptions about source behavior there. For example, in 1D one may assume invariance of CSD 
on disks of some radius R (e.g. of the size of cortical column) orthogonal to the shaft, in 2D one 
may assume constancy or Gaussian decay of the source on an interval orthogonal to the MEA plane.
These assumptions lead to other forms of matrix elements  which incorporate the specific form 
of the model (Pettetsen et al., 2006; Łęski et al., 2011). 

For typical recordings the matrix relation between the LFP and CSD can be inverted leading to a 
formula for  as a function of measured potential: , and in consequence to an estimate



of current sources in the whole probed region. A convenient feature of iCSD method is that the 
matrix  is estimated once for a given setup and model of sources. Also, one can easily 
incorporate different boundary conditions overcoming naturally this limitation of the traditional 
approach (Łęski et al., 2007).

Inverse CSD is a framework which allows one to incorporate different assumptions about the 
structure of the sources or the properties of the tissue, e.g. its conductivity (Goto et al. 2010). An 
interesting variant was developed for localization of single cell current sources during action 
potential generation (spike CSD, sCSD, Somogyvari et al., 2005, 2013). The flexibility of the 
framework is in the construction of the  function space used for estimation. However, iCSD was 
developed for regular recording grids and under assumption of negligible recording and position 
noise, which could not be easily overcome within this framework. 

A general solution to these problems was provided with Kernel Current Source Density (kCSD) 
method (Potworowski et al., 2012). While in iCSD the dimension of the function space in which 
one does estimation is equal to the number of measurements, in kCSD one constructs spaces of 
much larger dimensionality. The flexibility in tackling arbitrary electrode setups comes from 
separation of the construction of  estimation space from the definition of the setup. The use of 
kernel methods allows us to use standard techniques for dealing with noise (e.g. ridge regression, 
etc.) as described below.

Assume potentials  measured at points . To construct the framework of kCSD
we start with two linear spaces, the space of sources

,

and the space of potentials
,

with the dimension of the spaces, M, much greater than the number of measurements, N. The basis 
functions are related by a linear operator  so that  , and

 . In three dimensions (isotropic, homogeneous)  , in 
lower dimensionality we must assume properties of the sources in the directions not probed for the 
same reasons as in iCSD. For instance, if in 2D we assume that the sources are invariant in the 
direction z orthogonal to the electrode plane (x,y) within a layer of 2h, then the physical

 is  for  and 0 otherwise, and 

.

We require that  ( ) are linearly independent and so they constitute bases of the linear spaces  
and . To efficiently estimate in such a large space we construct a kernel function, 

,

which introduces the structure of Reproducible Kernel Hilbert Space (RKHS) on  (Aronszajn, 
1950). Using representer theorem from RKHS theory (Schoelhopf & Smola, 2002) one can show 
that minimum estimation error 

is obtained for potential function of the form 

, 

where 



which can be written in more compact notation as

with an obvious definition of terms. Having estimated the potential, we use the relation between the 
basis functions to construct a cross-kernel function, 

with which the current sources estimated in the measurement space are given by

 with  .
Parameter  can be selected from data using, for instance, cross-validation. For further details on 
kCSD see Potworowski et al. (2012). Figure 3 shows an example of CSD estimation with kCSD 
method.

Limitations of CSD analysis

The main difficulty in the interpretation of CSD profiles is that it is not possible to tell without extra
knowledge what is the nature of a given observed feature, for example, if a spot of negative CSD is 
due to excitatory synaptic stimulation or a passive return current matching inhibitory current 
elsewhere. Thus one usually has to build on extra a priori knowledge of system's anatomy and 
physiology (Gratiy et al., 2011) or use computational models of the studied systems (Makarov et al. 
2010, Potworowski et al., 2011). If possible, do both. 

CSD analysis allows one to better localize neural activity by deconvolution of the inverse distance 
kernel. However, since usually multiple cell populations overlap, observed profile of the current 
sources will reflect summary activity of all of them. One way to overcome this problem is to use a 
method of source decomposition (see Einevoll et al., 2013 for a discussion). It seems that 
independent component analysis (ICA) following CSD gives functionally meaningful results (Łęski
et al. 2010, Makarov et al. 2010, Potworowski et al., 2011). 

To tackle both the problem of overlapping populations and unknown origin of the given source it is 
particularly useful to generate ground truth data as close to the system studied as possible, for 
instance from large scale models (Potworowski et al., 2011; Reimann et al., 2013).

Figure 3: Example of source reconstruction with kCSD method. a) Model sources shown were used 
to generate potentials at randomly selected electrode locations marked with black dots. b) Potential
interpolated from the potential measured at the electrode locations. c) CSD reconstructed from the 
random 16 measurements. d), e), f) Sources reconstructed from 2, 4, 8 measurements respectively.

b)a) c)

e)d) f)



Cross-references/Related terms

Local field potentials, Independent Component Analysis
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