
Common Atlas Format and 3D Brain Atlas Re
onstru
tor:Infrastru
ture for Constru
ting 3D Brain AtlasesPiotr Majka1, Ewa Kublik1, Grzegorz Furga2, Daniel K. Wój
ik1
1 Department of Neurophysiology,Nen
ki Institute of Experimental Biology,3 Pasteur Street, 02-093 Warsaw, Poland

2 Department of Mathemati
s, Me
hani
s and Computer S
ien
e,University of Warsaw, Warsaw, PolandNovember 7, 2011Abstra
tOne of the 
hallenges of modern neuros
ien
e is integrating voluminous data of diferent modalities derived froma variety of spe
imens. This task requires a 
ommon spatial framework that 
an be provided by brain atlases.The �rst atlases were limited to two-dimentional presentation of stru
tural data. Re
ently, attempts at 
reating3D atlases have been made to o�er navigation within non-standard anatomi
al planes and improve 
apability oflo
alization of di�erent types of data within the brain volume.The 3D atlases available so far have been 
reated using frameworks whi
h make it di�
ult for other resear
hersto repli
ate the results. To fa
ilitate reprodu
ible resear
h and data sharing in the �eld we propose an SVG-based Common Atlas Format (CAF) to store 2D atlas delineations or other 
ompatible data and 3D Brain AtlasRe
onstru
tor (3dBAR), software dedi
ated to automated re
onstru
tion of three-dimensional brain stru
tures from2D atlas data. The basi
 fun
tionality is provided by 1) a set of parsers whi
h translate various atlases from anumber of formats into the CAF, and 2) a module generating 3D models from CAF datasets.The whole re
onstru
tion pro
ess is reprodu
ible and 
an easily be 
on�gured, tra
ked and reviewed, whi
hfa
ilitates �xing errors. Manual 
orre
tions 
an be made when automati
 re
onstru
tion is not su�
ient. Thesoftware was designed to simplify interoperability with other neuroinformati
s tools by using open �le formats. The
ontent 
an easily be ex
hanged at any stage of data pro
essing. The framework allows for the addition of newpubli
 or proprietary 
ontent.1 Introdu
tionOne of the 
hallenges in the pursuit of understanding brain fun
tion is integrating voluminous data of di�erent modal-ities � histologi
al, fun
tional, ele
trophysiologi
al, et
. � obtained from di�erent animal models and spe
imens. Tomake interpretation of the results a

urate or even possible they must be pre
isely lo
alized in a neuroanatomi
al
ontext (Bjaalie, 2002). Traditionally, this 
ontext is provided by 2D brain atlases � 
olle
tions of graphi
al repre-sentations (drawings and/or photographs) of 
onse
utive brain transse
tions pla
ed in a spatial 
oordinate system andproviding nomen
lature, des
ription and often additional (e.g. neuro
hemi
al) 
hara
teristi
s of anatomi
al stru
tures.Although there are plenty of well established, pre
ise brain atlases they are limited to one or, at the the best, three`standard' anatomi
al planes.Re
ent development of modern re
ording te
hniques leading to spatially distributed data (magneti
 resonan
eimaging (MRI), positron emission tomography (PET), multi
hannel lo
al �eld potential (LFP), gene expression maps,et
.), brought a ne
essity of three-dimensional brain atlases of various spe
ies. Apart from providing a 
oherentspatial referen
e for data, 3D brain atlases simplify navigation through brain stru
tures (Ma
Kenzie-Graham et al.(2004)), fa
ilitate se
tioning at arbitrary angles (Gefen et al. (2005)) or designing new 
utting planes for in vitro sli
epreparations 
ontaining the desired stru
tures or preserving spe
i�
 
onne
tions. They are also invaluable to position1




ell models in spa
e, whi
h is needed in modeling measurements of spatially distributed quantities, su
h as lo
al �eldpotentials (��ski et al., 2007, 2010; Potworowski et al., 2011).Three-dimensional atlases have already been 
onstru
ted from experimental datasets (Neuroterrain � Bertrandand Nissanov (2008), Waxholm Spa
e � Johnson et al. (2010); Hawryly
z (2009); Hawryly
z et al. (2011)), or existingtwo dimensional referen
e atlases (e.g. NESYS Atlas3D � Hjornevik et al. (2007), SMART Atlas � Zaslavsky et al.(2004), the Whole Brain Catalog � Larson et al. (2009), CoCoMa
-Paxinos3D � Bezgin et al. (2009)). They areusually prepared by manual extra
tion of the regions of interest from available delineations and 
reating 3D modelsin 
ommer
ial software. Work�ows applied in these proje
ts do not allow other resear
hers to utilize and verify theresults easily. It is parti
ularly important in 
ase of the re
onstru
tions made from popular 
ommer
ial atlases whi
h
annot be freely distributed. So far, no systemati
 and open approa
h was o�ered to enable easy and reprodu
ible
reation of 3D models.Su
h software should allow for input data of di�erent types and for data ex
hange with various atlasing systems(e.g. Ru�ns et al. (2010); Bakker et al. (2010); Nowinski et al. (2011)) and other neuroinformati
s proje
ts (e.g. Joshiet al. (2011)). The desired features in
lude automation, reprodu
ibility, 
on�gurability and transparen
y. By automati
re
onstru
tion we mean that the user must only provide the input data and spe
ify the parameters of the re
onstru
tion.Errors are logged for further review and do not stop the pro
ess whi
h runs without intera
tion. The user 
anreview results and, depending on the quality of the obtained model and error log, he 
an 
orre
t the input data or
hange the re
onstru
tion parameters. Full automation is parti
ularly important if on-line appli
ations are 
onsidered.Reprodu
ibility means that if the pro
ess is repeated with the same input data and parameters it gives identi
al results.This is in 
ontrast to manual methods: re
onstru
tions for the same input data and parameters done by di�erentpeople would usually di�er. Con�gurability means that models meeting various requirements 
an be generated easily.Sin
e both input data and the expe
ted output may vary a
ross di�erent sour
es and appli
ations, the possibilityof extensive pro
ess 
ustomization is essential. Finally, by transparen
y of the pro
ess we mean the possibility ofinspe
tion, analysis and manual 
orre
tion of the results at any stage.To address these 
hallenges we present a software pa
kage, 3D Brain Atlas Re
onstru
tor (3dBAR), dedi
ated toautomated re
onstru
tion of three-dimensional brain stru
tures from 2D atlases or other 
ompatible data. As a 
orepart of the work�ow we introdu
e a Common Atlas Format (CAF), a general representation of data 
ontaining 2Ddrawings along with additional information needed for transformation into 3D stru
tures, interoperability with otheratlasing tools, and other appli
ations. Basi
 fun
tionality is provided by a set of parsers whi
h translate any 2D datainto CAF, and the re
onstru
tion module whi
h extra
ts stru
tural elements from the CAF dataset and integrates theminto a spatial model whi
h 
an be manipulated in spe
ialized to brain atlases (e.g. NESYS Atlas3D, Sli
er3D � Pieperet al. (2006)) or general purpose (we found the Kitware Paraview parti
ularly useful � http://www.paraview.org/)3D viewers.To meet the requirements de�ned above, our work�ow is based on free software and open formats (Python envi-ronment, S
alable Ve
tor Graphi
s � SVG, eXtensible Markup Language � XML, Virtual Reality Modeling Language� VRML, Neuroimaging Informati
s Te
hnology Initiative � NIfTI format). It 
an use 2D ve
tor graphi
s, 2D and 3Draster data, it 
an also import datasets from other atlasing systems in
luding dire
t download from the Internet. Thispro
edure is highly automated so re
onstru
tions 
an be easily repeated, results reviewed, typi
al errors removed ormarked for manual 
orre
tion. Due to its modular stru
ture our work�ow 
an easily be extended.Note that the software requires stru
tures' delineation to be provided as an input. These 
an be obtained usingdedi
ated tools fa
ilitating automati
 segmentation (e.g. Yushkevi
h et al. (2006); Avants et al. (2011b)). The quality ofthe re
onstru
tion highly depends on the spatial alignment of the input data whi
h 
an be improved by the registrationpro
ess done by other spe
ialized software (e.g. Woods et al. (1992); Avants et al. (2011a); Lan
aster et al. (2011)).Those issues are beyond the s
ope of presented work�ow.2 Common Atlas FormatThe Common Atlas Format is a format for 
omplete, self-
ontained storage of pro
essed 2D atlas data. Su
h data
an be used e.g. for generating 3D models or sharing the data with other atlasing systems. The format was designedto maximize interoperability with other software, browsing or in
orporating into databases. CAF 
onsists of a set ofCAF slides whi
h hold information about shape, names of stru
tures and their lo
ations in a spe
i�
 (e.g. stereotaxi
)spatial 
oordinate system and of a single index �le providing stru
ture hierar
hy, holding metadata and summarizinginformation about all the slides.The CAF slides are stored as SVG �les extended with additional attributes in 3d Brain Atlas Re
onstru
tor XMLnamespa
e de�ned by bar: pre�x (see Listing 1 for example). This 
hoi
e is 
onsistent with the International Neuroin-2



formati
s Coordinating Fa
ility (INCF) re
ommendations for the development of atlasing infrastru
ture (Hawryly
z,2009, p. 38-39) and has the following advantages: SVG �le (even extended with 3dBAR namespa
e) 
an be openedby popular graphi
s software (Inks
ape, Adobe Illustrator, Corel Draw, et
.), moreover, a single CAF slide 
arriesdelineations and annotations thus no additional data have to be provided to de
ode �le 
ontents. An example of aCAF slide is shown in Figure 1 with 
orresponding 
ode in Listing 1.Ea
h 
ut is represented with a single CAF slide. When 
onverting di�erent atlases into CAF if there was a 
hoi
e inthe sour
e of the 
utting plane we took 
oronal slides. The subsequent des
ription of the whole framework follows thisassumption although one 
an take other planes. The spatial lo
ation of the slide is stored in transformationmatrix
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,exemplary comment labelFigure 1: An example of a CAF slide. The slide was 
reated from the 495th 
oronal sli
e of a labeled volume of theWaxholm Spa
e Atlas (Johnson et al., 2010). Original stru
ture 
olors were preserved. One 
an distinguish threetypes of labels: regular labels denoting individual stru
tures; spot labels denoting areas not separated from their parentstru
tures (S1 and Pir � se
ondary somatosensory and piriform 
orti
es, parts of Cx � 
erebral 
ortex ). A 
ommentlabel with an annotation is pla
ed below the brain outline.and 
oronal
oord attributes of bar:data elements. The CAF slide is �at � it 
ontains a single g element with onlypath and text SVG elements allowed. To simplify exporting, further data pro
essing and to redu
e the possibility oferrors, 
oordinates of all the elements must be expressed a

ording to the SVG absolute 
oordinate system (refer tohttp://www.w3.org/TR/SVG/paths.html#PathData for details).Brain stru
tures are represented by SVG 
losed path elements (as de�ned by 
losepath 
ommand) �lled with
olor uniquely assigned to the stru
ture and its name en
oded in the path id attribute. Note that a given stru
turemay be represented by several paths with 
ommon attributes. SVG text elements are used to express three typesof labels. Regular labels mark separate regions narrowed by the 
losed paths (Fig. 1 and 4B). For example, to markthe hippo
ampus on a slide the label �H
� is pla
ed within the path delineating this region (Fig. 1). Regular labelsand paths are related as ea
h label denotes a parti
ular path. This approa
h introdu
es redundan
y whi
h allows the
ross-validation of the slide and dete
tion of potential in
onsisten
ies. The spot labels whi
h denote only a narrowneighborhood of a spot are used e.g. to mark stru
tures that smoothly go over into others so that it is di�
ult to drawboundaries between them. This kind of label is also suitable for indi
ating landmarks. Spot labels begin with a dot.Finally, 
omment labels, starting with a 
omma, 
onvey additional information about a region, just like 
omments onthe 
ode in programming languages. They allow adding remarks, information about stru
ture delineation, sharing of
omments between people involved in the proje
t, et
., and are ignored in further pro
essing. See Figure 1 for examplesof labels usage.The index �le is an XML do
ument summarizing information about all slides, providing stru
ture hierar
hy, andextending the dataset with metadata (Listing 2). Obligatory 
ontent of atlasproperties element in
ludes parametersallowing 
onversion between 2D SVG and spatial 
oordinate system (RefCoords, Referen
eHeight, Referen
eWidth)and FilenameTemplate for generating �lename for parti
ular slide number. It also 
ontains the required set of meta-3



Listing 1 An example of a CAF slide sour
e.<?xml version="1.0" ?><svg id="body" version="1.1"height="512.0"width="512.0"viewBox="0 0 512 512"xmlns="http://www.w3.org/2000/svg"xmlns:bar="http://3dbar.org"><title/><des
/><defs><bar:data transformationmatrix 
ontent="0.0214999988675,-5.39650011063,-0.0214999988675,5.48249959946"/><bar:data 
oronal
oord 
ontent="-1.37600030078"/></defs><g id="
ontent"><path d="M81,248.6 ... L81.7,248 Z" fill="#af4732" id="stru
ture7854_label7854_Amy" bar:growlevel="0" stroke="none"/><path d="M406.0,245 ... L406,245 Z" fill="#af4732" id="stru
ture5_Amy" bar:growlevel="0" stroke="none"/>....<path d="M108.0,180.5 ... 180.5 Z" fill="#
b0447" id="stru
ture7883_label7883_i
" bar:growlevel="0" stroke="none"/><path d="M384.2,177.4 ... 177.4 Z" fill="#
b0447" id="stru
ture7884_label7884_i
" bar:growlevel="0" stroke="none"/><text bar:growlevel="0" id="label_stru
ture29_LD" x="182.0" y="165.0">LD</text><text bar:growlevel="0" id="label_stru
ture22_Hyp" x="264.0" y="307.0">Hyp</text>....<text bar:growlevel="0" id="label_stru
ture27_VS" x="249.0" y="146.0">VS</text><text bar:growlevel="0" id="label_stru
ture16_Th" x="249.0" y="202.0">Th</text></g></svg>data: timestamp of dataset preparation (CAFCompilationTime), the dataset author's name and email (CAFCreator,CAFCreatorEmail), name of a given dataset (CAFName), orientation of the slides (CAFSlideOrientation), unit of spa-tial referen
e system (CAFSlideUnits) and a general 
omment �eld (CAFComment). One 
an extend atlaspropertieswith additional metadata su
h as spe
ies of the atlased animal, its sex, age, strain, et
., depending on the needs andavailability of that information in a parti
ular sour
e.slidedetails 
ontains data needed to position ea
h slide in spa
e. The stru
turelist group 
ontains a summaryof the paths extra
ted from CAF slides: their bounding boxes, unique identi�ers (uid) and numbers of slides on whi
ha given stru
ture appears. Hierar
hy of stru
tures is stored under a hierar
hy element, where ea
h entry (groupelement) 
onsists of its identi�er (id), abbreviation, full name and assigned 
olour. If an element of the hierar
hy hasa representation in CAF slides (i.e. there is su
h a stru
ture among slides), the uid of its representation is atta
hedas another attribute. For example, in Listing 2, in the hierar
hy se
tion we see that the 
erebral 
ortex, whi
h isrepresented dire
tly in CAF slides, has a uid attribute, while the forebrain, whi
h is de�ned as the sum of othersub-stru
tures has not.If a di�erent representation of a dataset is required, for instan
e di�erent stru
ture hierar
hies, di�erent 
olormappings or language versions are needed, one should generate another CAF from the sour
e or from intermediatedatasets, su
h as 
ontour �les dis
ussed below, as CAF datasets are not intended to be modi�ed. Note that this is amatter of 
onvention as there is no fundamental di�
ulty in editing CAF �les. However, we feel it is more 
onvenientto work on data on earlier stages. Any 
hange in the CAF slide should be followed by an appropriate update of theindex �le whi
h may be troublesome when done manually. In our work�ow it is handled automati
ally by parsers
reating CAF datasets.3 3D Brain Atlas Re
onstru
tor � the software3dBAR was developed in Python (http://www.python.org), a powerful, open sour
e, obje
t oriented, 
ross-platformprogramming language. These features make it a language of 
hoi
e in many neuroinformati
s proje
ts these days (Davi-son et al., 2009). XML �les were pro
essed using the xml.minidom extension. SVG rasterization and image manip-ulation was handled by python-rsvg library (http://
airographi
s.org/pyrsvg/), Python Image Library (PIL �http://www.pythonware.
om/produ
ts/pil/) and S
iPy (http://www.s
ipy.org/). Graphi
al User Interfa
e wasprepared using WxPython 2.6 (http://www.wxpython.org/).3D graphi
s visualization is performed using Visualization ToolKit (VTK, S
hroeder et al. (2006), http://www.vtk.org/)whi
h was 
hosen be
ause it is the best known open-sour
e visualization library, it is well do
umented, widely used in4



Listing 2 An example CAF index �le.<?xml version="1.0" ?><slideindex><atlasproperties><property type="CAFCompilationTime" value="2011-05-14 10:03:58"/><property type="CAFCreator" value="Piotr Majka, Nen
ki Institute of Experimental Biology"/><property type="CAFCreatorEmail" value="pmajka�nen
ki.gov.pl"/><property type="CAFName" value="whs_0.5"/><property type="CAFSlideOrientation" value="
oronal"/><property type="CAFSlideUnits" value="mm"/><property type="CAFComment" value="CAF dataset based on:Waxholm Spa
e: An image-based referen
e for 
oordinating mouse brain resear
h,G.Johnson, et. al.&lt;br/&gt;NeuroImage 53 (2010) 365-372&lt;br/&gt;,/><property type="FilenameTemplate" value="%d_tra
ed_v%d.svg"/><property type="RefCoords" value="-5.39650011063,5.48249959946,0.0214999988675,-0.0214999988675"/><property type="Referen
eHeight" value="512"/><property type="Referen
eWidth" value="512"/></atlasproperties><slidedetails><slide 
oronal
oord="-0.752500333623" slidenumber="0" transformationmatrix="0.0214999988675,-5.39650011063,-0.0214999988675,5.48249959946"/>....<slide 
oronal
oord="-11.9969997413" slidenumber="1023" transformationmatrix="0.0214999988675,-5.39650011063,-0.0214999988675,5.48249959946"/></slidedetails><stru
tureslist><stru
ture bbx="186.0,277.0,314.0,337.0" name="Hyp" reversed="False" uid="100009"><slides>500 501 502</slides></stru
ture>....<stru
ture bbx="7.0,35.0,494.0,361.0" name="Cx" reversed="False" uid="100006"><slides> 253 ... 742 </slides></stru
ture></stru
tureslist><hierar
hy><group fill="#ffffff" fullname="Whole brain" id="200038" name="Brain"><group fill="#

293a" fullname="Cerebellum" id="200003" name="
b" uid="100002"/><group fill="#777777" fullname="Forebrain" id="200005" name="FB"><group fill="#ff7f00" fullname="Thalamus (remainder)" id="200007" name="Th" uid="100016">....<group fill="#454
f2" fullname="Cerebral 
ortex" id="200039" name="Cx" uid="100006"/></group><group fill="#15f9bf" fullname="Olfa
tory areas" id="200014" name="Olf" uid="100036"/><group fill="#ffa28b" fullname="Brainstem (remainder)" id="200017" name="Bs" uid="100001"/><group fill="#777777" fullname="fibres" id="200010" name="fibres"><group fill="#7f0080" fullname="Lateral lemnis
us" id="200015" name="ll" uid="100009"/><group fill="#ff5718" fullname="Spinal trigeminal tra
t" id="200023" name="sp5" uid="100003"/><group fill="#5e2612" fullname="Opti
 tra
t" id="200042" name="ot" uid="100025"/></group></group></hierar
hy></slideindex>
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medi
al imaging, and implements a wide range of algorithms. VTK is written in C++, however it has a

essible Pythonbindings. All segments of the software were prepared in an obje
t-oriented manner to simplify 
ode maintenan
e andextensibility.The ultimate goal of the proposed software is semi-automati
 generation of 3D models of sele
ted brain stru
turesfrom their two dimensional representations. The software is divided into three layers where ea
h layer may 
onsist ofmany inter
hangeable modules (see Fig. 2).

Figure 2: Organization of 3d Brain Atlas Re
onstru
tor (see text for details).The �rst layer, 
alled the Input data layer, 
onsists of 
omponents that determine the logi
al stru
ture of the inputdata and transform it into the Common Atlas Format given various pro
essing dire
tives and settings provided by theuser. As typi
al datasets are large and have many individual features we found it 
onvenient to en
apsulate individualsolutions into independent software modules, whi
h we 
all parsers, one for ea
h dataset 
onsidered.The intermediate layer, 
alled the CAF layer, holds pro
essed input data in the Common Atlas Format. It 
an beexported and pro
essed in many ways one of whi
h is generating three-dimensional models.The last layer, 
alled the re
onstru
tion layer, is where 3D models are generated from CAF data using re
onstru
tionparameters su
h as model resolution, smoothing, output format, et
. The result of this pro
ess is a set of three-dimensional models in a form depending on provided settings. We provide graphi
al and 
ommand-line interfa
eswhi
h simplify pro
essing at this stage (see se
tion 1 of supplementary materials).4 Des
ription of parsers and their propertiesThe �rst step of the 3dBAR work�ow is building a 
onsistent CAF representation of a given data input. To a
hievethis we have developed several parsers dedi
ated to spe
i�
 inputs. Di�erent solutions are used to handle ve
tor andbitmap graphi
s stored lo
ally, whi
h allows for broad range of pro
essing. Other parsers are used to import andtranslate prepro
essed data from external sour
es (e.g. other atlasing systems) into CAF.6



4.1 Ve
tor pro
essing work�owFigure 1 shows a CAF slide (de�ned in Se
tion 2), in whi
h the 
ross-se
tion of ea
h stru
ture is drawn as a 
losedSVG path �lled with 
olor. Thus, ea
h border is a
tually de�ned by two overlaid lines from two paths. To fa
ilitateslide preparation we split pro
essing of ve
tor data into two steps. First we 
reate SVG 
ontour slides (Fig. 4A) inwhi
h stru
tures are de�ned by easily editable 
ontour lines. On
e a set of 
ontour slides is available it is transformedinto the CAF slides a

ording to the provided pro
essing parameters.Contour slides 
an be 
reated automati
ally or manually drawn in ve
tor graphi
s programs (Inks
ape, AdobeIlustrator, Corel Draw). The latter may be ne
essary, for example, when a new atlas is prepared from s
rat
h or whenexisting slides require 
orre
tion. In the 
ase of published atlases, Portable Do
ument Format (PDF) or Posts
ript �lesprovided by editors may be automati
ally pro
essed to extra
t information required to build 
ontour slides. Atlas pageshas to be 
onverted to SVG (e.g. using pstoedit, http://www.helga-glunz.homepage.t-online.de/pstoedit/) andthen formatted a

ording to the following spe
i�
ation.Contour slide has to 
ontain a single g element 
onsisting of 
ontours represented by path elements that des
ribeboundaries between stru
tures or other regions of interest. All 
ontours have to be de�ned with the same 
olor andhave to be solid lines but they may vary in thi
kness. Names of the regions narrowed by 
ontours are indi
ated bylabels. Labels and 
ontours are not related and 
an be freely modi�ed without 
on
ern of data integrity. The 
ontourslide supports the same label types as the CAF slide. Both spot labels and 
omment labels are disregarded in furtherpro
essing and 
opied dire
tly to the CAF slide. Markers are used to lo
alize the slide in a spatial 
oordinate system.

Figure 3: Pro
essing of a single 
ontour slide to a CAF slide. Elements pla
ed on gray ba
kground represent optionalparts of the work�ow with error 
orre
tion features and 
an be omitted.They are text elements with spe
ial 
aptions pla
ed at pre
ise lo
ations. In general, one marker is used to determinethe position of the slide along a 
hosen primary axis, in our pra
ti
e saggital. The other two markers de�ne thedorsal-ventral and lateral-medial 
oordinates on the 
oronal planeIt is 
onvenient to introdu
e a spe
ial label vBrain denoting the 
omplement of the whole brain on every slide. This7



label has to be pla
ed somewhere outside the a
tual brain outline. We pla
e it near top-left 
orner in an area whi
h isuno

upied in every slide. If there are other regions inside the brain outline we wish to ex
lude (su
h as 
losed spa
esformed by the 
orti
al folds) additional vBrain labels may be pla
ed during 
ontour slide preparation.Edition of 
ontour slides gives an opportunity to 
ustomize a given atlas to parti
ular needs (e.g. embed experimentalresults like lesion or staining outlines). To add a new stru
ture one 
reates a label over a given region bounded by
ontours. Splitting the stru
ture into smaller substru
tures 
omes down to drawing dividing lines or new 
ontours andpla
ing 
orresponding labels. Rede�ning the shape of a stru
ture is equivalent to editing its 
ontour.The 
orre
tly prepared 
ontour slide is transformed to a CAF slide by means of a tra
ing pro
edure (Fig. 3) whi
h
onverts 
ontours and labels into 
losed paths of di�erent 
olors representing brain stru
tures.
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Figure 4: An illustration of the tra
ing pro
edure and error 
orre
tion features implemented in the 3dBAR's ve
torwork�ow. An example 
ontour slide based on S
alable Brain Atlas DB08 dataset, slide 44 (Bakker et al. (2010); Wuet al. (2000)) prepared to illustrate the 
onstru
tion of 
ontour slides and the error 
orre
tion features. A) A 
ontourslide 
ontaining three unde�ned areas and an open 
ontour (red arrow); spatial 
oordinate markers are highlighted byred outlines. B) CAF slide with brain stru
tures represented by 
losed paths and denoted by labels. Three unlabeledareas were dete
ted and denoted as Unlabeled. The broken 
ontour was 
losed using the error 
orre
tion algorithmand the neighboring stru
tures labeled FOG (fronto-orbital gyrus) and LOrG (lateral orbital gyrus) were properlyre
ognized and divided.First, spatial information is extra
ted from markers and expressed using CAF-spe
i�
 XML elements. All slidesare aligned to a 
ommon spatial grid so a single set of parameters is needed to transform the 
oordinates from SVGdrawing to the spatial system.To tra
e a 
ontour slide we separate labels from 
ontours, whi
h are then rasterized with 
on�gurable resolution(note that large image dimensions are required) to a grays
ale bitmap and stored in memory. Next, if required, an error
orre
tion me
hanism is initialized. It 
onsists of an algorithm automati
ally 
losing small holes in 
ontours betweenstru
tures, an algorithm that re
ognizes labels pla
ed outside brain outline or dire
tly on the 
ontours and dete
tion ofunlabeled and dupli
ate regions. Then, for ea
h stored label, its lo
ation (an
hor point) is taken, a temporary 
opy of therasterized slide is 
reated and a �ood-�ll algorithm is applied at the point where a respe
tive label is an
hored The resultof this pro
edure is an image with gray 
ontours and a bla
k region whi
h is then binarized (if pixel is bla
k, it remainsbla
k, otherwise it is 
hanged to white). The binarized image is sent to PoTra
e (http://potra
e.sour
eforge.net/)and tra
ed with 
ustomizable parameters. The output is a 
losed SVG path element representing the region narrowedby the 
ontours. The obtained path is postpro
essed and id, name and 
olor attributes are assigned a

ording to theuser-provided parameters.The �rst labels to be pro
essed are vBrain and the 
omplement of resulting paths gives the outline of the wholebrain and is denoted as Brain. This stru
ture is used as a referen
e to determine unlabeled areas and to dete
t if agiven label points outside the brain outline. Then all the other labels are pro
essed and a new CAF slide is 
reated.8



It 
onsists of tra
ed paths and labels taken from the 
ontour slide and, optionally, new labels indi
ating unlabeledstru
tures.The tra
ing pro
edure is 
onse
utively applied to all 
ontour slides. On
e this is done, the index �le is generated.First, for every stru
ture its name and the numbers of slides on whi
h it appears are stored and a bounding box is
al
ulated. Pre
al
ulating bounding boxes redu
es the amount of time and memory while generating a 3D model. Ifa hierar
hy of stru
tures is provided, it is used to 
reate an ontology tree. Otherwise a �at hierar
hy is 
reated � allstru
tures are gathered under superior Brain stru
ture. In addition, one 
an spe
ify the full name and 
olor for ea
hhierar
hy element.An example of ve
tor pro
essing work�ow in
luding 
ontour slide preparation and detailed des
ription of error
orre
ting features 
an be found in supplementary materials online.4.2 Bitmap pro
essing work�owThe input data may 
ome in bitmap form e.g. from segmented magneti
 resonan
e, imaging s
ans, histology plateswhere stru
tures are 
olored rather than de�ned by their boundaries, or from volumetri
 datasets (i.e. Nifti or Analyze�les). To pro
ess su
h data into CAF we developed another parser. We 
onvert bitmaps into CAF slides be
ause SVG�les 
an hold arbitrary additional information apart from stru
ture delineation and 
an be easy translated to othertypes of data su
h as database entries. Usually, SVG drawings are also smaller in terms of size than their bitmapequivalents.In sta
ked bitmaps or volumetri
 datasets brain stru
tures are en
oded as regions with the same unique value. Tode
ode these values into spe
i�
 
olors a look-up table is required. It is often provided as part of the sour
e data.Otherwise we use an additional tab-separated text �le whi
h holds the table assigning stru
ture labels and 
olorsto volume indi
es. Optionally, as in a ve
tor parser, one 
an provide additional data, su
h as a hierar
hy and fullstru
ture names. Finally, the voxel dimensions and the origin of the spatial 
oordinate system must be provided. Su
hinformation is usually available in volumetri
 datasets, but in 
ase of sta
ked bitmaps, there is no internal spatialreferen
e and it has to be de�ned by the user. The parser assumes that all the slides are aligned, that is they have thesame spatial 
oordinates of 
orners in the 
oronal plane. However, they do not have to be uniformly distributed alongthe anterior-posterior axis.Bitmaps are pro
essed dire
tly into CAF slides without the intermediate 
ontour slide stage. The parsing pro
edurestarts with loading the ne
essary input data 
onsisting of 
olor 
odes and spatial referen
e of the sour
e dataset. Thensta
ked bitmaps or sli
es extra
ted from the volumetri
 dataset are pro
essed one by one. All 
olors present in theanalyzed bitmap are identi�ed and a binary mask is 
reated for ea
h of them. By default, pat
hes smaller than a given,
ustomizable, number of pixels are skipped. Ea
h mask is sent to PoTra
e where it undergoes the tra
ing pro
edure.Resulting SVG path is then post-pro
essed by setting its attributes su
h as id, name of 
orresponding stru
ture, 
olor,et
., and a regular label related to the path is 
reated. Final CAF slides undergo indexing routine (see ve
tor pro
essingwork�ow) whi
h 
ompletes generation of a CAF dataset.4.3 Ex
hanging 
ontent with external atlasing systemsWith the development of digital atlasing infrastru
ture more and more often one wants to intera
t with external toolsand pro
ess data available remotely. To a
hieve this goal we have implemented me
hanisms fa
ilitating import andexport of data from/to external tools, databases or web pages. Data may be ex
hanged on the level of CAF datasetor of �nal 3D re
onstru
tions saved in the form of volumetri
 dataset or polygonal mesh. As an example we haveprepared a parser whi
h allows data ex
hange between 3dBAR and S
alableBrainAtlas (SBA, Bakker et al. (2010),s
alablebrainatlas.in
f.org, Fig. 11) atlasing systems whi
h both use SVG-based storage format. The parseralways downloads the most re
ent version of the 
hosen SBA template and then 
onverts it into CAF dataset. Thereis no need for additional input sin
e SBA templates in
lude all the ne
essary information.The intera
tion with SBA is bidire
tional as CAF data from 3dBAR may be exported and displayed in S
alable-BrainAtlas although CAF does not 
ontain 
omplete information required for full fun
tionality of SBA servi
es. Theinteroperability between 3dBAR and other neuroinformati
s proje
ts will be further explored.5 Re
onstru
tionThe main purpose of 3d Brain Atlas Re
onstru
tor is building 3D models of brain regions. This is fa
ilitated by graphi
aland 
ommand-line based tools (see supplementary materials). The pro
ess of re
onstru
tion relies on su

essive �lling9



a bounding box with the stru
ture of interest and lo
ating this volume in a spatial 
oordinate system. Detailedre
onstru
tion work�ow is presented in Fig. 5.

Figure 5: The re
onstru
tion work�ow.An exe
ution of re
onstru
tion routine 
reates a model of a single hierar
hy element. If it 
ontains substru
tures,they will all be merged (Fig. 6A, B). Te
hni
ally, a set of all the identi�ers of the sele
ted stru
ture and its substru
turesis 
reated and a list of all the slides 
ontaining at least one of them is built. Dimensions of a single voxel are de�nedseparately in the 
oronal plane and along the anterior-posterior axis. The size of the bounding box to be �lled with there
onstru
ted model depends on a given resolution whi
h also 
ontrols re
onstru
tion a

ura
y and level of detail tobe a
hieved. To use all the available data the anterior-posterior resolution should not ex
eed the distan
e between two
onse
utive slides. For smaller resolution some slides may be skipped. On the other hand, sele
ting higher resolutionresults in more detailed re
onstru
tions but longer pro
essing times. Thus it is re
ommended to adapt the resolutionindividually for ea
h dataset and sele
ted stru
tures.A set of bitmap masks is 
reated by rasterizing 
onse
utive slides (Fig. 6C). The height and the width of thesemasks is based on the maximal extent of the stru
ture in 
oronal planes. A depth of ea
h mask (span along theanterior-posterior dimension) may vary sin
e it is de�ned by the distan
e between 
onse
utive slides (Fig. 6D). Theentire bounding box is �lled with masks 
reating volumetri
 representation of the given stru
ture (Fig. 6E).The volume prepared this way is further shaped with the support of VTK visualization library pipeline (Fig. 7).After optional anisotropi
 Gaussian smoothing of input volume (vtkImageGaussianSmooth) the surfa
e of the stru
tureis extra
ted using a mar
hing 
ubes algorithm with a given threshold value (vtkMar
hingCubes). The extra
tedpolygonal mesh may then be smoothed using Lapla
ian smoothing (vtkSmoothPolyDataFilter). If ne
essary, it 
an be10
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Figure 6: An exemplary re
onstru
tion of 
erebral 
ortex stru
ture 
onsisting of various 
orti
al areas (Ma
aquemonkey, CAF dataset 
reated using S
alable Brain Atlas DB08 template, Wu et al. (2000)). A) An exemplary CAFslide 
ontaining 
orti
al �elds and other stru
tures not belonging to 
erebral 
ortex. B) Corti
al areas available onthe given slide a

ording to a provided hierar
hy are extra
ted. C) Cerebral 
ortex binary mask is 
reated by mergingthe 
orti
al areas. D) The depth is assigned to all the masks (it may vary a
ross slides) whi
h are then sta
ked into avolume. Note that spa
es between 
onse
utive masks were added for �gure 
larity while in the a
tual re
onstru
tion themasks �ll 
ontinuously entire bounding box (only the �rst 25 of 161 masks are presented). E) A volumetri
 renderingof re
onstru
ted hemisphere of 
erebral 
ortex. A part of the model was 
ut o� to emphasize the volumetri
 nature ofthe re
onstru
tion.
ompressed using vtkQuadri
Clustering �lter. This allows us to eliminate unne
essary polygons and verti
es redu
ingmodel 
omplexity and size of the output �le. Additionally, if the CAF dataset has de�ned only one hemisphere, it ispossible to mirror it to 
reate the se
ond hemisphere (vtkTransformPolyDataFilter). The �nal re
onstru
ted model
an be exported as a volumetri
 dataset or polygonal mesh.If we de�ne re
onstru
tion error as the maximum distan
e between 
orresponding points of the 
ontour in the CAFslide and in the re
onstru
tion 
reated using default re
onstru
tion settings (isosurfa
e extra
tion using the thresholdvalue of 128 in the mar
hing 
ubes algorithm and no further mesh pro
essing) it will always be smaller than twi
e thevoxel resolution along a given axis.6 ResultsDuring development and testing of 3d Brain Atlas Re
onstru
tor we have prepared several CAF datasets based onthree types of sour
e atlas: a PDF �le, a volumetri
 dataset and on data derived from external atlasing systems.The biggest 
hallenge was to derive two datasets from PDF �les 
ontaining digital editions of published printedatlases, The Rat Brain in Stereotaxi
 Coordinates, 6th edition (Paxinos and Watson, 2007) and The Mouse Brain inStereotaxi
 Coordinates (Paxinos and Franklin, 2008). Slides in those atlases 
onsist of 
ontours delineating the wholebrain into separated regions and their labels whi
h makes them suitable for ve
tor work�ow. While similar in generalformat these atlases di�er signi�
antly in details. Be
ause of this ea
h sour
e atlas was pro
essed using a separateparser derived from the generi
 ve
tor parser des
ribed in Se
tion 4.1. Conse
utive stages of pro
essing and samplere
onstru
tions are presented in Fig. 8. The mouse data required signi�
ant manual 
orre
tions to a
hieve satisfa
torymodels. Comparison of re
onstru
tion before and after this pro
ess is shown in Fig. 9. CAF datasets from both atlases
an still be re�ned by further users.These atlases 
ome with supplementary data su
h as full names of stru
tures, however, both of them la
k ontology11



Figure 7: The VTK Pipeline. Ea
h element represents a parti
ular VTK �lter used for pro
essing. Elements withsolid outlines are obligatory. Filters with stroked outlines are optional and may be enabled or disabled in the GUI.The elements annotated with an asterisk (*) may be 
ustomized using the GUI.trees binding all stru
tures into 
onsistent hierar
hies. As we did not �nd ontologies 
ompletely adapted to any of thosetwo atlases we 
reated a hierar
hy 
overing the majority of stru
tures by 
ombining databases from the NeuroNames(Bowden and Duba
h (2003), an ontology for Ma
a
a fas
i
ularis), Brain Ar
hite
ture Management System (BAMS,Bota et al. (2005), ontology trees based on various atlases), and by in
luding our neuroanatomi
al knowledge.The se
ond group of CAF atlases was derived from volumetri
 data. One dataset was obtained from the atlas ofC57BL/6 mouse brain (Johnson et al., 2010) based on MRI and Nissl histology introdu
ing the Waxholm Spa
e � theproposed referen
e 
oordinate system for the mouse brain. The volume 
ontaining 37 stru
tures used for 
reating theCAF dataset is available at the INCF Software Center (http://software.in
f.org/software/waxholm-spa
e) andwas extended with a simple hierar
hy. Re
onstru
tions 
reated by 3dBAR using this template are also lo
alized in theWaxholm Spa
e spatial referen
e system.Another dataset derived from a volumetri
 sour
e atlas is the average-shape atlas of the honeybee brain (Brandtet al., 2005) 
reated using 
onfo
al imaging of 20 spe
imens of honeybee brains and delineated using average-shape algo-rithm. The data used for 
reation of the CAF dataset were downloaded from http://www.neurobiologie.fu-berlin.de/beebrain.Examples of re
onstru
tions based on these volumetri
 datasets are shown in Fig. 10.The last group of available CAF datasets were 
reated using interoperability with the S
alable Brain Atlas. ThreeS
alable Brain Atlas templates were 
onverted into CAF: Paxinos Rhesus Monkey atlas (PHT00, Paxinos et al. (2000)),NeuroMaps Ma
aque atlas (DB08, Wu et al. (2000)) and Waxholm Spa
e for the mouse (WHS09, Johnson et al. (2010)).Note that WHS09 dataset is di�erent from the volumetri
 dataset de�ning the Waxholm spa
e in form and in 
ontentbeing derived from a sample of the original. Figure 11 shows exemplary re
onstru
tions from SBA datasets.7 Summary and outlookWe have designed and implemented a work�ow dedi
ated to pro
essing two dimensional data of di�erent quality,
omplexity and origin, into three dimensional re
onstru
tions of brain stru
tures. We have also proposed a 
ommonformat for these data, 
onvenient for our purposes but of broader appli
ability, whi
h we 
alled the Common AtlasFormat (CAF). Every dataset in CAF 
onsists of an XML index �le and SVG slides representing brain sli
es. Ea
h slide
ontains a de
omposition of a brain sli
e into separate stru
tures represented by 
losed paths and holds informationabout the spatial 
oordinate system in whi
h the brain is lo
ated. The CAF index �le has an embedded ontology12
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Figure 8: Various examples of rat brain re
onstru
tions. A) A 
ontour slide 
reated by parsing the sour
e atlasreprodu
ed from Paxinos and Watson (2007), with permission. B) An example of a CAF slide 
ontaining 62 stru
tures.Five paths and �ve labels are denoted as Unlabelled and gathered as the Unlabelled stru
ture. C) The thalamusde
omposed up to the �rst level and the pyramidal tra
t. Both models presented as polygonal meshes. D) A horizontal
ut of volumetri
 representation of the thalamus. Ea
h 
olour represents a di�erent substru
ture. E) The hippo
ampalformation presented in the form of a polygonal mesh; additional smoothing was applied. F) An analogous re
onstru
tionwithout any additional mesh pro
essing. The re
onstru
tion is de
omposed up to the �rst level of substru
tures. Thepale green model: hippo
ampus, brown: enthorinal 
ortex, green: subi
ulum, gray: postsubi
ulum, olive: parasubi
ulum) (
olor online).
13
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Figure 9: Re
onstru
tions of the mouse brain stru
tures based on Paxinos and Franklin (2008) showing distortions
aused by data in
onsisten
ies, parti
ularly by leaking stru
tures. A) A 
omparison of two re
onstru
tions of amygdala:left before, right � after manual 
orre
tions to the 
ontour slides. The number of deformations is signi�
antly redu
edand the shape of the re
onstru
tion is mu
h 
loser to expe
tations. B) Two models of Lateral septal nu
leus : left beforemanual 
orre
tions, shows a minor deformation of the model, right � the same stru
ture after manual 
orre
tions. C)The iso
ortex re
onstru
ted as the parent stru
ture with the �rst level of substru
tures a

ording to a given ontologytree.
A B

Figure 10: 3dBAR re
onstru
tions based on volumetri
 datasets, 
olors from the original datasets were used. A)C57BL/6 mouse brain � the Waxholm Spa
e dataset, Johnson et al. (2010). B) The honeybee brain (Brandt et al.,2005). 14
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Figure 11: Re
onstru
tions based on CAF datasets derived from S
alable Brain Atlas templates (Bakker et al., 2010).A-C) A ma
aque brain 
reated using DB08 (Wu et al., 2000) template. D-E) Rhesus brain based on PHT00 (Paxinoset al., 2000) template. A) Separated 
orti
al gyri in the form of a polygonal mesh B) A volumetri
 representationof full-depth model of neo
ortex. Ea
h de�ned substru
ture is represented using a di�erent 
olor. Part of the lefthemisphere was 
ut o� to visualize a 
ross se
tion of the re
onstru
tion. C) The thalamus in the form of a polygonalmesh without additional pro
essing. D) The par
elated iso
ortex, E) Exemplary sub
orti
al stru
tures: the thalamus,the amygdala and the basal ganglia.tree binding all the stru
tures into a 
onsistent hierar
hy and may in
lude additional information su
h as full names ofstru
tures or external referen
es to databases. All presented parsers and CAF dataset elements (slide, stru
tures, labels,et
.) were implemented in a Python module with an appli
ation programming interfa
e (API) allowing manipulationof CAF datasets and 
reation of new parsers by extending generi
 
lasses.The re
onstru
tion pro
ess leading to a three dimensional model operates in two steps. The �rst step is parsingthe sour
e atlas and produ
ing a CAF dataset. Any data 
ontaining 
onsistent information about brain stru
turesanalogous to CAF 
ontent may be pro
essed using one of the provided parsers or by deriving one for a new format. These
ond stage involves pro
essing CAF datasets and results in a 
omplete 3D re
onstru
tion in the form of a volumetri
dataset or polygonal mesh obtained with the support of VTK Visualization Toolkit.The presented work�ow leads to highly-automated and reprodu
ible re
onstru
tions, and it 
an be 
ustomizedas needed. Moreover, it enables tra
king and reviewing of the whole re
onstru
tion pro
ess as well as lo
ating andeliminating potential re
onstru
tion errors or data in
onsisten
ies. We have used this work�ow to pro
ess seven sour
eatlases. Two of them were based on PDF �les 
ontaining digital versions of published printed atlases. Another twowere prepared from volumetri
 datasets and the other three derived from S
alable Brain Atlas (Bakker et al., 2010).The proposed work�ow 
an be extended to a

omodate sour
e data in additional formats requiring only a new parserfor ea
h format. The re
onstru
tion pro
ess was wrapped with a GUI resulting in a fully fun
tional appli
ationwhi
h 
an be used for loading CAF datasets, generating and exporting re
onstru
tions and allowing �ne-tuning of there
onstru
tion pro
ess.Clearly, in order to produ
e reasonable re
onstru
tions, 3dBAR needs input data of good quality. This requires
areful pro
essing of raw data in
luding pre
ise segmentation and alignment. However, sin
e these issues are addressedby other dedi
ated, open software (e.g. Woods et al. (1992); Avants et al. (2011a); Lan
aster et al. (2011)) we skipthem in our work�ow.In further development of the software, we 
onsider implementing more sophisti
ated sli
e interpolation algorithms15
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Figure 12: A 
omparison of re
onstru
tions of rat brain stru
tures (Paxinos and Watson, 2007) performed by the3dBAR (left) and analogous re
onstru
tions 
reated by T. Hjornevik et. al. (Hjornevik et al., 2007) using a di�erentwork�ow (right). A) The ventri
ular system. B) Caudate putamen and nu
leus a

umbens.(i.e. Barrett et al. (1994); Cohen-or and Levin (1996); Braude et al. (2007)) as the naive algorithm 
urrently implementedonly assigns thi
kness to the sli
es without any interpolation in between. We develop an optimized version of 3dBrain Atlas Re
onstru
tor as an on-line servi
e (available at http://servi
e.3dbar.org/). It provides a browser-basedinterfa
e with re
onstru
tion module and a

ess to hosted datasets and models . It also a

epts dire
t HTTP querieswhi
h simpli�es intera
tion with external software. We intend to integrate this servi
e with the INCF digital atlasinginfrastru
ture.Another 
hallenge is the distribution of re
onstru
ted stru
tures or CAF datasets. It requires solving pra
ti
al and� for some data � legal issues. Our software has been designed to be data-agnosti
 as mu
h as possible. As a result,any owner of 
ompatible data may generate a CAF and models of stru
tures of interest and de
ide what and how toshare. This applies also to 
ommer
ially available datasets (see Information Sharing Statement, below).A
knowledgementsWe are grateful to Jan Bjaalie and Rembrandt Bakker for illuminating dis
ussions during various stages of this proje
t.In parti
ular, di�erent types of labels arose in dis
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Information Sharing Statement3d Brain Atlas Re
onstru
tor software with a sele
tion of parsers and a repository of re
onstru
tions is available throughthe INCF Software Center and the Neuroimaging Informati
s Tools and Resour
es Clearinghouse (NITRC). Visithttp://www.3dbar.org for release announ
ements. Supplementary materials 
ontaining the des
ription of the GUI aswell as the dis
ussion of error 
orre
tion in the ve
tor parser are available at http://www.3dbar.org/wiki/barSupplement.The external software we used and the sour
e datasets are available at the lo
ations given within the text withthe ex
eption of CAF datasets 
reated from Paxinos and Watson (2007) and Paxinos and Franklin (2008) whi
h arebased on proprietary data and have restri
ted 
opyrights. Users owning legal 
opies of these atlases 
an prepare CAFdatasets and re
onstru
tions by themselves using dedi
ated parsers and hierar
hies provided with the 3d Brain AtlasRe
onstru
tor distribution. The authors may be 
onta
ted for details.Referen
esAvants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., and Gee, J. C. (2011a). A reprodu
ible evaluation ofants similarity metri
 performan
e in brain image registration. Neuroimage, 54(3), 2033�2044.Avants, B. B., Tustison, N. J., Wu, J., Cook, P. A., and Gee, J. C. (2011b). An open sour
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