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Variability of Visual Responses of Superior Colliculus
Neurons Depends on Stimulus Velocity
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Visually responding neurons in the superficial, retinorecipient layers of the cat superior colliculus receive input from two primarily
parallel information processing channels, Y and W, which is reflected in their velocity response profiles. We quantified the time-
dependent variability of responses of these neurons to stimuli moving with different velocities by Fano factor (FF) calculated in discrete
time windows. The FF for cells responding to low-velocity stimuli, thus receiving W inputs, increased with the increase in the firing rate.
In contrast, the dynamics of activity of the cells responding to fast moving stimuli, processed by Y pathway, correlated negatively
with FF whether the response was excitatory or suppressive. These observations were tested against several types of surrogate data.
Whereas Poisson description failed to reproduce the variability of all collicular responses, the inclusion of secondary structure to
the generating point process recovered most of the observed features of responses to fast moving stimuli. Neither model could
reproduce the variability of low-velocity responses, which suggests that, in this case, more complex time dependencies need to be
taken into account. Our results indicate that Y and W channels may differ in reliability of responses to visual stimulation. Apart
from previously reported morphological and physiological differences of the cells belonging to Y and W channels, this is a new
feature distinguishing these two pathways.

Introduction
Sensory systems transform external information of all modalities
into electrical signals. The reliability of this process depends on
the precision of coding at different stages of information process-
ing. Variability of cell responses may originate at any level from
molecular to network (Paninski et al., 2007; Faisal et al., 2008).
Several measures were proposed for quantification of neural
variability (Perkel et al., 1967; Gabbiani and Koch, 1998;
Dayan and Abbott, 2001; Shinomoto et al., 2009). Interspike
intervals variability is typically quantified with the coefficient
of variation (Holt et al., 1996; Chelvanayagam and Vidyasagar,
2006), whereas spike count distributions used in estimation of
trial-to-trial variability are quantified with the Fano factor
(FF) (Fano, 1947).

In the visual system, variability was studied extensively in the
geniculate pathway, from the retina, through the dorsal lateral
geniculate nucleus to visual cortex (for review, see Lestienne,
2001; Field and Chichilnisky, 2007). It was shown that, when
stepping up the levels of the hierarchy of the geniculate visual
pathway, the variability of neuronal signal increases (Kara et al.,
2000). To our knowledge, there are no available data on the vari-
ability of spike trains in the superior colliculus, the first stage of

information processing in the extrageniculate visual pathway re-
laying information through the second-order thalamic nuclei to
the higher-order visual areas.

Superior colliculus (SC), the main retinorecipient nucleus of
the mammalian midbrain, is involved in visually guided behavior
and orientation response directing eyes and head toward the ob-
ject of interest. SC neurons receive direct inputs from only two
classes of retinal ganglion cells: Y and W, which innervate pre-
dominantly distinct SC layers (for review, see Waleszczyk et al.,
2004). These two inputs shape the characteristic properties of SC
neurons, including their velocity preference (Hoffmann, 1973;
Waleszczyk et al., 1999, 2007; Wang et al., 2001). The cat SC cells
receiving principal input from the Y channel have relatively high
background and evoked activity and respond to stimuli at low
spatial and high temporal frequencies. These last two features
imply that cells driven exclusively by Y inputs respond only to fast
stimuli. On the other hand, collicular cells with W inputs respond
well to stimulation by slowly moving objects, whereas their
“spontaneous” and evoked activities are lower.

The aim of our present study was to analyze how distinct
patterns of projection to the SC of the two channels (Y and W)
influence the variability of responses of collicular neurons to vi-
sual stimulation. To measure response variability, we calculated
the FF, compared its changes along with the firing rate, and ver-
ified hypothesis using stochastic modeling approach. One would
expect that, during the response, the variability would decrease,
as the cell should then transmit maximum information about the
stimulus. This expectation proved to be true for responses to
fast-moving stimuli, when information is transmitted via the Y
pathway, but not in the case of the activation by slowly moving
stimuli, transmitted via the W channel.
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A preliminary report of these findings has been published
previously in abstract form and conference materials (Mochol et
al., 2008a,b).

Materials and Methods
Surgical procedures
Acute experiments were performed on anesthetized adult cats of either
sex. All experimental procedures were performed to minimize the num-
ber and the suffering of the animals and followed the European Commu-
nities Council Directive of November 24, 1986 (S6 609 EEC) and
National Institutes of Health guidelines for the care and use of animals
for experimental procedures. The experimental protocol was approved
by the Local Ethics Committee at the Nencki Institute of Experimental
Biology. Typically, experiments lasted 4 d, during which neuronal activ-
ity from the superficial layers of the superior colliculus was recorded
continuously with short breaks needed for track changes. On the day
preceding the experiment, cats were given dexamethasone phosphate
(0.3 mg/kg, i.m.; Dexamethasone; Eurovet Animal Health BV) to reduce
the possibility of brain edema. During the experiment, the animals were
initially anesthetized with a mixture of xylazine (3 mg/kg, i.m.; Xylavet;
ScanVet), propionylpromazine (1 mg/kg, i.m.; Combelen; Bayer), and
ketamine (20 mg/kg, i.m.; Ketanest; Biovet) injected intramuscularly
with atropine sulfate (0.1 mg/kg; Atropinum Sulfuricum; Warszawskie
Zakłady Farmaceutyczne Polfa). Tracheal and cephalic vein cannulations
were performed to allow, respectively, artificial ventilation and infusion
of paralyzing drugs. Bilateral sympathectomy was performed to further
minimize eye movements. During the recording session, anesthesia was
maintained with a gaseous mixture of N2O/O2 (2:1) and isoflurane (0.5–
1%). Antibiotic (enrofloxacin, 5 mg/kg; Baytril; Bayer), dexamethasone
phosphate (0.3 mg/kg), and atropine sulfate (0.1 mg/kg, to reduce mu-
cous secretion) were injected intramuscularly daily. Paralysis was in-
duced with intravenously injection of 20 mg of gallamine triethiodide
(Sigma) in 1 ml of sodium lactate solution and maintained with contin-
uous infusion of gallamine triethiodide (7.5 mg � kg �1 � h �1, i.v.) in a
mixture of equal parts of 5% glucose and sodium lactate solutions. Ani-
mals were artificially ventilated, and body temperature was automatically
maintained at �37.5°C with an electric heating blanket. Expired CO2 was
continuously monitored and maintained at 3.5– 4.5% by adjusting the
rate and/or stroke volume of the pulmonary pump. The electrocortico-
gram (ECoG) from the occipital lobe and the heart rate were also moni-
tored continuously. Slow-wave synchronized cortical activity and heart
rate below 220 beats/min were maintained by adjusting the isoflurane
level in the gaseous mixture. Atropine sulfate (1–2 drops, 0.5% Atropi-
num Sulfuricum; Warszawskie Zakłady Farmaceutyczne Polfa) and
phenylephrine hydrochloride (1–2 drops, 10% Neo-Synephrine; Winthrop-
Breon Laboratories) were applied daily on the cornea to dilate the pupils and
retract the nictitating membranes. Air-permeable zero-power contact lenses
were used to protect the corneas.

A fiber optic light source was used to project the optic discs onto a
screen (Pettigrew et al., 1979). The positions of the areae centrales were
plotted by reference to the optic discs (Bishop et al., 1962).

Recording and visual stimulation
Extracellular single-unit recordings were made from neurons located in
superficial, retinorecipient layers of the SC. For recordings, a plastic cyl-
inder was mounted and glued around the craniotomy (Horsley–Clarke
coordinates P1–A5 and L0 –L5) above one of the SC. The cylinder was
filled with 4% agar gel and sealed with warm wax. Action potentials of
single SC neurons were recorded extracellularly with a tungsten or
stainless-steel microelectrode (6 –10 M�; FHC Inc.), conventionally am-
plified, monitored via a loudspeaker, and visualized on oscilloscope. Re-
corded signals were digitized and fed to a personal computer for online
display, analysis, and data storage with the use of CED 1401 Plus and
Spike2 software (Cambridge Electronic Design). Signals containing spike
waveforms were bandpass filtered between 0.5 and 5 kHz and digitized at
a sampling rate of 50 kHz. The ECoG was bandpass filtered between 0.1
and 100 Hz and digitized at a sampling rate of 1 kHz. The responsiveness
of a neuron to visual stimulation and origin of its input from ipsilateral
and/or contralateral eye were determined with black or white hand-held

stimuli, and the excitatory contralateral and/or ipsilateral receptive fields
(minimum discharge fields) of recorded neurons were plotted. The ocu-
lar dominance was first determined by listening to neuronal responses
via loudspeaker with spikes converted into standard pulses (transistor–
transistor logic), and the dominant eye was chosen on this basis for visual
stimulation (with the other eye covered). If conditions allowed, i.e., reg-
istered signal was stable with well isolated single-unit activity, responses
were also recorded to stimulation of the second eye, and ocular dominance
class was determined quantitatively following commonly used criteria (Dis-
tler and Hoffmann, 1991; Waleszczyk et al., 1999; Hashemi-Nezhad et al.,
2003).

To determine velocity response profiles and trial-to-trial variability,
we recorded responses of single SC neurons to multiple sweeps of a light
rectangles of 1° � 2° or 0.5° � 1° (4 – 6 cd/m 2 luminance against 0.5–1
cd/m 2 background) moving with constant velocity. A slide projector
under computer control was used to project stimuli onto a spherical
concave screen located at a distance of 0.75 m in front of the cat’s eyes and
covering an area of 70° in diameter of visual field. The center of the screen
was adjusted to overlap the receptive field center of the recorded neuron.
The stimulus moved through the receptive field center along its horizon-
tal or vertical axis with velocity ranging from 2 to 1000°/s, the chosen
values being approximately uniformly distributed on the logarithmic
scale. Movement of the stimulus on the screen was achieved by computer
control of the mirror attached to the axle of galvanometer. Voltage
changes transferred to galvanometer were generated with Spike2 soft-
ware and digital-to-analog converter CED 1401 Plus (Cambridge Elec-
tronic Design). To ensure smoothness of the stimulus movement, single
sweep with full amplitude of 50° was achieved in 500 steps of voltage
changes for the fastest stimulus used (1000°/s) up to 5000 steps for the
slowest stimulus (2°/s). One trial consisted of motion in one direction,
followed by a 1 s waiting period, and then motion in the reverse direction
with the same velocity, also followed by 1 s waiting time. The number of
trials was proportional to stimulus velocity (from 10 for 2°/s to 100 for
1000°/s).

Localization of recording sites
At the end of recording sessions, small electrolytic lesions were made.
The animals were killed with overdose of sodium pentobarbitone (intra-
venously; Nembutal Sodium Solution, Abbott Laboratories). Brains were
removed and immersed in 4% paraformaldehyde in 0.1 M phosphate
buffer, pH 7.4. The electrode tracks were reconstructed from 50 �m
coronal sections stained with cresyl violet.

Data analysis
Of 140 recorded collicular cells for the study of variability, we chose 35
neurons for which we were sure that every spike was correctly classified
during offline discrimination. Thus, for the analysis, we chose these re-
cordings in which signal-to-noise ratio was at least 2. As signal-to-noise
ratio, we took peak amplitude of the spike divided by the maximal am-
plitude of background activity (e.g., spike amplitude of next unit). Spike
sorting was based on waveform analysis and performed with Spike2 soft-
ware (Fig. 1 A–C). In all cases, correctness of the single-unit discrimina-
tion was confirmed by the presence of an absolute refractory period in the
autocorrelogram or interspike interval histogram (Fig. 1C). In one case,
two units were discriminated from a simultaneous recording by one
electrode. Spike2 software was used to perform offline conversion of
single-unit activity waveforms into discrete times of spike occurrence.

For later numerical analysis, we used sets of single spike trains corre-
sponding to the stimulus motion in one direction and backward sepa-
rated by waiting periods (Fig. 1 A). After each sweep across the screen, the
stimulus was outside the receptive field for 1 s. This waiting time was
needed to observe delayed response components, especially in the case of
very fast movements. The peristimulus time histograms (PSTHs) were
constructed from the responses to all repetitions of a given stimulus
whose number varied from 10 for slow to 100 for fast stimuli (Fig. 1 D, E,
black line). We made similar analysis in two paradigms. In the first case,
the time base was divided into 200 bins regardless of the duration of the
trial. This approach resulted in different bin lengths depending on the
stimulus velocity. In the second paradigm, we used a sliding window of
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length ranging from 10 to 100 ms shifted with resolution of 1 ms. In both
cases, the PSTHs were smoothed using a Gaussian filter extending over
six bins (Fig. 1 E, gray histogram). The records during 500 ms preceding
stimulus movement, when the stimulus was outside the receptive field,
were used for background activity estimation. The maximum or mini-
mum (for excitation or suppression, respectively) of the firing rate with
respect to the mean background activity was taken as the response level
(presented in the form of tuning curves in Fig. 2 A).

All numerical analysis and simulations were performed using Matlab
software (MathWorks).

Fano factor. Trial-to-trial variability was quantified using the FF (Fano,
1947) defined as the variance of spike counts normalized by its mean,
where the variance and mean were taken over repetitions:

FF(tk) �
var�Nk�

mean�Nk�
,

where tk is discretized time in kth bin, and Nk is the number of spikes in
kth bin. The FF was estimated as a discrete function of time to overcome
the apparent nonstationarity of the data. In each bin, the variance and the
mean of spike counts were calculated separately giving FF locally in time
(Fig. 1 F, gray line, raw estimates; black, smoothed FF). In bins with no
activity, we put FF equal to 1 to indicate the assumed Poissonian charac-
ter of low-rate firing. Confidence intervals for FF were computed using
bootstrap technique for 1000 samples with replacement (Efron, 1979).
The resulting time-dependent FF and its error bars were smoothed using
Gaussian filter in the same way as PSTHs.

Correlation coefficient. To quantify the dependence between the vari-
ability and intensity of neuronal response, we calculated the Pearson’s
correlation coefficient between FF and firing rate values (with subtracted
means) for response period. The response period was defined as the
longest continuous time interval during which firing rate exceeded the
cutoff level for each PSTH. The cutoff level was taken at 10% of response
above the background activity for excitation or 10% of response below
background activity for suppression. The positive correlation coefficient
indicates simultaneous increase (or decrease) of both FF and firing rate
during the response period, whereas a negative correlation coefficient
means the opposite behavior: increase of one with decrease of the other.

Surrogate data. To find out how much the observed phenomena de-
pend on the probabilistic structure of the recorded spike trains, the ex-
perimental results were compared with the results of the analysis of
surrogate data. We used a stochastic modeling approach: the experi-
mental spike trains were treated as realizations of a point process
under the assumption that such a process is completely characterized
by the conditional intensity function (Johnson, 1996; Brown et al.,
2002) defined as the probability to observe a spike at time t given the
spiking history Ht up to t:

��t�Ht� � lim
�t30

Pr�N�t � �t� � N�t� � 1�Ht�

�t
,

where N(t) is the number of spikes up to t in a given realization. The
above definition can be expressed in terms of the spike time probability
density p(t�Ht), as follows:

��t�Ht� �
p�t�Ht�

1 � �
t̃

t

p�u�Ht�du

,

where t̃ is the time of the last spike before t. Given the conditional inten-
sity function �(t�Ht) and the spike history up to t(Ht), the probability of
spike occurrence in a small interval �t is approximately �(t�Ht) � �t.

The first model we used was inhomogeneous Poisson process (IP pro-
cess) (Perkel et al., 1967; Dayan and Abbott, 2001) in which the condi-
tional intensity function does not depend on the history �(t�Ht) � �(t).
This means that the firing probability at any time depends only on the
stimulus and spike occurrences are independent. In this case, �(t) could
be estimated from the empirical firing rate r(t) (that is smoothed PSTH)
calculated in discrete bins (in our case 1 ms). Then, the probability to
generate a spike in the kth bin was r(tk) � �t.

There are several useful generalizations of the IP process (Barbieri
et al., 2001; Kass and Ventura, 2001; Truccolo et al., 2005; Soteropoulos
and Baker, 2009). We used the family of inhomogeneous renewal pro-
cesses (Gerstner and Kistler, 2002) also called inhomogeneous Markov
interval processes (IMI processes) (Kass and Ventura, 2001) in which the
whole spiking history is reduced to the time from the last spike �, where
� � t � t̃ and �(t�Ht) � �(t,�). To simplify model estimation, we

Figure 1. An example of extracellular recording from a cat superior colliculus cell re-
sponding to high velocity motion and a scheme of data analysis method. A, Top shows
responses of SC cells to visual stimulus: a bar of light moving back and forth through the
receptive field of the neurons with velocity of 500°/s. Bottom represents position of the
stimulus on the screen in time. The first slope denotes the stimulus movement from
the left side of the screen (L) to the right (R); the second corresponds to the movement in
the reverse direction. Horizontal lines correspond to the time when the stimulus remains
stationary outside the receptive field. B, Waveforms of three spike types selected from the
record presented in A. Only the unit of the highest amplitude (black solid line) was con-
sidered for further analysis. Horizontal black bar indicates the timescale; 0.15 ms is the
time from minimum to maximum of black spike waveform. C, Interspike intervals histo-
gram for the selected unit confirming correctness of spike discrimination by a clear pres-
ence of the refractory period. D, Raster plot of responses of the selected cell to 50
repetitions of stimulus, as in A. The cell responded to stimulus movement in both direc-
tions with a preference of movement from left to right. E, PSTH of the responses for the
same cell and stimulus parameters as in D. Black line represents raw PSTH, and gray
histogram shows firing rate smoothed with a Gaussian kernel. F, Raw (gray line) and
smoothed FF (black line) as a function of time for the same data. In each of nonoverlapping
200 bins, mean and variance of spike count were computed. The ratio of these two quan-
tities, known as Fano factor, was used as a measure of trial-to-trial variability. Arrows
indicate duration and direction of stimulus motion in every plot in this and subsequent
figures.
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further assumed the multiplicative form of the conditional intensity
function �(t�Ht) � �1(t) � �2(�).

In the multiplicative IMI process, the first component �1(t) describes
the time-dependent modulation of the spiking activity of the neuron
reflecting its responsiveness to different stimuli (Berry and Meister, 1998;
Brown et al., 2003; Schaette et al., 2005). The second component �2(�),
which might be called “postimpulse probability” following Poggio and
Viernstein (1964), reflects the membrane properties of the neuron in-
cluding its refractory periods.

We used two versions of the model in which �2(�) was obtained
through parametric (assuming gamma distribution) or nonparametric
(kernel smoothing) fits to interspike interval distribution p(�) estimated
from the background activity. Under stationary condition, �1(t) is con-
stant and can be set to unity. From p(�), the component �2(�) was com-
puted as follows:

�2��� �
p���

1 � �
0

�

p�u�du

Given �2(�), we could calculate the modulatory factor �1(t). To do so, the
time of experiment was divided into bins of length �t short enough that
there would be at most one spike per bin. Given N repetitions of stimulus,
we estimated �1(tk) in kth bin as follows:

�1�tk� �
N � rk

�
j�1

N

�2��k
j�

,

where rk was the rate in kth bin: rk �
1

�t
�

Nk

N
; Nk was the number of

trials in which we observed a spike in the kth bin, and �k
j was the interval

between current time and the time from the last spike in jth repetition.
Details of the estimation technique have been presented previously
(Wójcik et al., 2009).

Given conditional intensity function, surrogate data were generated
using the thinning method (Dayan and Abbott, 2001; Press et al., 2007).
Each set of surrogate data had the same structure (time duration and the
repetition number) as the corresponding experimental dataset.

Goodness-of-fit between the proposed models and spike train data
series was assessed on the basis of the time-rescaling theorem (Brown et
al., 2002). If the assumed model is correct, then the experimental inter-

vals �k rescaled via conditional intensity function �̃k � �
0

�k

��t,��d� are

independent exponential variables with the mean equal to unity. One can
then transform the rescaled intervals to uniform distribution through
z � 1 � exp��̃k� and use the Kolmogorov–Smirnov (K–S) test to quantify
the quality of estimation (Brown et al., 2002).

Results
We studied trial-to-trial response variability of neurons recorded
from upper (retinorecipient) layers of SC (stratum zonale, stra-
tum griseum superficiale, stratum opticum, and upper part of
stratum griseum intermediale). For each neuron, we recorded
responses to a visual stimulus moving at constant velocity in a
range from 2 to 1000 o/s along a horizontal or vertical axis of the
receptive field. Responses of 35 neurons for which there was no
doubt that every spike was correctly sorted during offline dis-
crimination (see Materials and Methods) were taken for analysis.
The cells were recorded from the rostral half of the superior col-
liculus, which contains binocular representation of the visual
field (Feldon and Kruger, 1970; Lane et al., 1974). All cells had
binocular inputs. Assuming five classes of eye dominance, 54% of
cells (14 of 26 cells for which we could quantitatively determine
relative intensity of responses via both eyes) could be classified as
belonging to group 3 (equal magnitude of response recorded via

the contralateral and ipsilateral eye), 19% (5 of 26) showed con-
tralateral eye dominance (group 2), and 27% (7 of 26) showed
ipsilateral eye dominance (group 4). Eye dominance of neurons
in our sample was similar to those recorded in previous studies
(Bacon et al., 1998; Waleszczyk et al., 1999; Hashemi-Nezhad et
al., 2003). In most cases, responses to stimulation of the dom-
inant eye (usually contralateral) were analyzed, but for some
neurons (n � 6), we also analyzed data obtained during stim-
ulation of the other eye. No qualitative differences in the re-
sponse properties of cells or results of later analysis of
variability were observed between responses evoked via the
ipsilateral and contralateral eye.

On the basis of velocity tuning curves, cells were separated
into four groups according to the criteria established in our pre-
vious experiments (Waleszczyk et al., 1999). Thus, eight cells that
were responsive only to slow stimulus movement (�200 o/s) con-
stituted the low velocity excitatory (LVE) group, six neurons that
responded exclusively to velocities above 10 o/s constituted the
high velocity excitatory (HVE) group, and 13 cells that were ex-
cited in a broad range of velocities constituted the LVE/HVE
group. Finally, the activity of eight cells was increased at low and
suppressed at high velocity of stimulus movement (LVE/HVS
group).

Quantification of trial-to-trial variability of responses to
different stimulus velocities
Figure 2 shows velocity tuning curves (Fig. 2A), responses to
several repetitions of one velocity movement in the form of raster
plots (Fig. 2B), and PSTHs (Fig. 2C, gray histograms) for exem-
plary cells from three groups: an LVE cell (left), an HVE cell
(middle), and an LVE/HVS cell (right). The smoothed PSTHs
were compared with the time-dependent FFs (Fig. 2C, black
lines) considered as a measure of trial-to-trial variability. In D, we
show extended parts of Figure 2C, including neuronal responses,
FFs, and additionally 95% confidence bounds for FFs.

We found that the relation between the firing rate and FF did
not depend on the cell type but rather on the stimulus velocity
and the character of response. In the case of activation evoked by
slow stimuli, an increase of firing rate during the response was
accompanied by the increase of FF (Fig. 2C,D, left panels). This
effect was observed for excitatory responses at low velocities in
LVE, LVE/HVE, and LVE/HVS cells.

In contrast, during excitatory responses evoked by rapid stim-
uli, we observed a decrease of FF when the firing rate increased.
Such behavior was observed in both the HVE (Fig. 2C,D, middle
panels) and LVE/HVE groups. Also for LVE/HVS neurons in the
high velocity range, in which neuronal activity was suppressed by
fast stimulus, clear negative correlation between the firing rate
and FF was found. In this case, however, the decrease of the firing
rate was accompanied by the increase of FF (Fig. 2C,D, right
panels). It is worth mentioning that, in the case of LVE/HVE cells,
we observed both an increase in variability of excitatory re-
sponses to low velocity stimulation (Fig. 3A) and a decrease in
variability during vigorous responses evoked by high velocity
stimuli (Fig. 3B).

We noted large width of the confidence bounds for FF
during response to slow stimuli for which we had fewer repe-
titions than for fast stimuli (Fig. 2 D, left plot). To find out
whether the effect was attributable to limited statistics or a
consequence of large variability, we performed additional
bootstrap analysis for responses to high velocity using a subset
of data with the same number of repetitions as for low velocity
responses. There were no significant differences in confidence
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intervals calculated for the truncated and the original dataset
of responses at high velocities. Thus, the broader range of
confidence bounds for low velocity responses is a consequence
of the higher variability of data.

To quantify the observed effects, we calculated the Pearson’s
correlation coefficient between the FF and the firing rate during
the response period (see Materials and Methods). Summary re-
sults of dependence of the correlation between firing rate and FF
on velocity for the whole set of experimental data are presented in
Figure 4. For very slow stimuli, the correlation coefficients were
found to be almost exclusively positive (Fig. 4A, 2 and 5°/s).
However, in a range of moderate velocities, we found both posi-
tive and negative correlation coefficients with a negative trend for
higher velocities. For fast stimuli, most coefficients were negative.
These observations are supported by the graph presented in Fig-

ure 4B, in which for each velocity the
mean correlation coefficient is shown.
The crossover velocity for LVE/HVE or
LVE/HVS cells (that is, a velocity at which
the correlation coefficient changed sign)
spans between 20 and 200°/s. For the
whole dataset, the mean correlation coef-
ficients between rate and FF were positive
at low velocities of stimulus movement,
up to 20°/s, and negative for velocities
above 50°/s.

Other factors potentially affecting
calculated trial-to-trial variability
Two factors in the above analysis could
potentially affect variability measure and
thereby give rise to opposite behavior of
FF in the case of low and high velocity
responses. One is the different bin size
used for FF estimation (Teich et al., 1997).
To test the putative influence of bin size
on FF, we performed the whole analysis
using a fixed number of bins for every re-
sponse (200) or using fixed size sliding
windows shifted with 1 ms resolution re-
gardless of stimulus duration and velocity
(see Materials and Methods) for the whole
set of collected responses. Regardless of
the window size (10, 25, 50, or 100 ms), we
observed a monotonous decrease of the
firing rate � FF correlation coefficient
with increasing velocity (Fig. 5), similar to
the fixed-number-of-bins analysis.

Another aspect broadly described in
the literature (Softky and Koch, 1993;
Holt et al., 1996; Kara et al., 2000) is the
influence of the level of activity (magni-
tude of firing rate) on the trial-to-trial
variability: the higher the firing rate, the
lower the FF. A simple approach to exam-
ine this effect is to generate surrogate data
with comparable activity but without
any higher-order temporal dependencies
between action potentials. We used the
IP process to generate reference spike
trains. In the Poisson process, genera-
tion of an action potential depends only
on the mean firing rate and trial-to-trial

variability is equal to unity for an infinite number of repeti-
tions. However, for an experimentally feasible number of rep-
etitions, one expects fluctuations of FF, which in principle
might be related to the changes in rate. The model data had the
same length and the same number of repetitions as the exper-
imental sets, and all the analyses were conducted in the same
manner as for the responses of the SC neurons (Fig. 6).
Whereas the firing rate of IP surrogate data was almost the
same as the experimental rate and the response pattern was not
very different, the surrogate FF curves only slightly fluctuated
around 1, the theoretical value of the Poisson process. Such an
effect was observed both for low and high velocities (Fig. 6 B, E,
bottom plots). We therefore concluded that the effects ob-
served experimentally could not result from simple variation
of rate or from limited statistics.

Figure 2. Responses and FFs calculated for three SC neurons showing different velocity response profiles. Each column repre-
sents different type of collicular cell. From left to right, An LVE cell, an HVE cell, and an LVE/HVS cell. A, Velocity tuning curves. As a
response level, the difference between the peak of response (maximum discharge rate in case of excitation) or trough (minimum
in case of suppression) and background activity was taken. The horizontal axis is in logarithmic scale. B, Raster plots of neuronal
responses during all repetitions of stimulus moving with exemplary velocity for a particular cell. One row represents a single
response to stimulus movement in both directions. Each dot corresponds to the occurrence of a single spike. Length of the arrow
indicates duration of the stimulus and its head the direction of motion. Velocity of the stimulus for the LVE cell is 10°/s, for HVE cell
is 1000°/s, and for the LVE/HVS cell is 200°/s. C, Relationship between firing rate (gray histogram) and FF (black solid line) for
responses shown in the form of raster plot in B. The left vertical axes indicate the firing rate level, and the right vertical axes indicate
the value of FF. Time base of the full PSTH and FF was divided into 200 bins. The region between the “rate” axis and the vertical black
line including the time of response is expanded in D. D, Expanded part of cell activity presented in C. Gray histogram is the firing
rate, and the black line denotes the FF with black dotted lines standing for error bars. Broad extent of confidence intervals in the
case of low velocity excitatory response (left plot) is the effect of the higher trial-to-trial variability. The time axis begins with the
stimulus onset. Each plot presents responses to the preferred direction.
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Inclusion of spiking history in simulations of neural spiking
activity in different groups of collicular cells
To better understand stochastic properties of the experimental
results, we went one step further in modeling the data and incor-
porated first-order temporal dependencies between action po-
tentials. Using the IMI model (Berry and Meister, 1998; Kass and
Ventura, 2001), in which the probability of generating a spike was
a product of two terms, stimulus-dependent and spike-history
components, we generated a second family of surrogate data (see
Materials and Methods). As for the IP model, the resulting PSTHs
for IMI processes were very similar to experimental ones for both
low and high stimulus velocities (Fig. 6, compare A, D with C, F,

bottom plots). The IMI model reproduced well the observed
dependency of the FF and firing rates in the case of high ve-
locity responses (Fig. 6 F, bottom plot) but did not mimic the
experimental results for low velocity responses (Fig. 6C,
bottom plot).

Goodness-of-fit between the proposed model and the exper-
imental data was assessed on the basis of time-rescaling theorem
and Kolmogorov–Smirnov statistics (Brown et al., 2002; Truccolo et
al., 2005; Czanner et al., 2008). For a good model of the data,
experimental interspike intervals, rescaled and transformed
using the model conditional intensity, should be uniformly dis-
tributed random variables on the interval [0,1]. Histograms of
rescaled times and the K–S plots for different models of exem-
plary responses are presented in Figure 7. A and C show histo-
grams of rescaled interspike intervals obtained for conditional
intensity functions estimated with the IP model or IMI models
(parametric gamma and nonparametric) for low and high veloc-
ity examples, respectively. For high velocity data, the most uni-
form distribution of the rescaled interspike intervals is obtained
for the nonparametric IMI model. In the case of the low velocity
example, however, neither model leads to a uniform distribution
of the rescaled interspike intervals.

Similarly, the curves in the K–S plots (Fig. 7B,D) were ob-
tained by appropriate rescaling of interspike intervals using con-
ditional intensity functions estimated with either the IP model
(gray curve) or IMI models (nonparametric, thick solid line;
parametric gamma, dash– dotted line). Diagonal (thin solid line)
corresponds to the perfect model of data for which rescaled in-
terspike intervals are uniformly distributed. The distance from
the diagonal can be used as a measure of the quality of the model.
All models describe data obtained for high velocity responses
(Fig. 7D) much better than those for low velocities (Fig. 7B). In
the low velocity example (Fig. 7B), performance of the IP and
parametric IMI models is worst in the range of medium intervals.
The nonparametric IMI model seems most adequate except at
short intervals. All three models seem to account reasonably well
only for the longest interspike intervals because all the K–S curves
in this range lie within the 95% confidence bounds (Fig. 7B,D,
two parallel thin dashed lines). For the high velocity example, the
IP model provides the worst description of the data. The IMI
models give a much better description, with K–S curve for the
nonparametric IMI model lying entirely within the 95% confi-
dence bounds.

Figure 3. An example of the relationship between the firing rate and FF for a collicular cell
responding in a broad range of stimulus velocities (LVE/HVE cell). Each plot shows the PSTH in
the form of gray histogram, with scale given on the left vertical axis. Black lines represent the
changing values of the FF with scale given on the right vertical axis. Lengths of the horizontal
arrows below the time axis indicate duration of the stimulus, and their heads show the direction
of motion. A, Response to low velocity (5°/s) stimulus. During response increase of variability
(FF) coincided with an increase of the rate. B, Response to high velocity (500°/s) stimulus.
During response, decrease of variability (FF) coincided with an increase of the rate. Notice that,
in the case of A and B, peak values of firing rate were similar.

Figure 4. Correlation coefficient between the firing rate and FF as a function of stimulus
velocity. Pearson’s correlation coefficients for experimental data were computed only for peri-
ods of responses to visual stimulation. A, Fraction of positive (above the 0 baseline) and fraction
of negative (below the 0 baseline) correlation coefficients for a given velocity of stimulus for the
whole cell population. B, Mean correlation coefficients for particular velocities obtained by
averaging over the responses of all cells. Error bars correspond to SEM values. The firing rate and
the FF values were computed in 200 bins for each velocity.

Figure 5. Mean correlation coefficients between firing rate and FF as a function of stimulus
velocity calculated in sliding windows with different window lengths: 10 ms (A), 25 ms (B), 50
ms (C), and 100 ms (D). Error bars correspond to SEM values.
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As for the experimental data, Pearson’s correlation coeffi-
cients between the firing rate and the FF were calculated for the
surrogate data generated for the IP model and for the parametric
and nonparametric multiplicative IMI models. Summary results
concerning velocity dependence of correlation between firing
rate and FF for the whole set of surrogate data are shown in Figure
8. Data generated using the IP model are presented in the left
column, and data for the nonparametric IMI model are shown in
the right column. The correlation coefficients for IP surrogate
data do not show any clear dependence on velocity (Fig. 8A,C).

For almost all velocities, there was a
slightly higher fraction of negative than
positive correlations (Fig. 8A), which re-
sulted in mean correlation coefficients be-
low zero (Fig. 8C). The mean correlation
coefficients of the IMI surrogate dataset
show a similar dependence on velocities as
for the experimental data (Fig. 8D) only
in the range of moderate and high veloci-
ties. At low velocities, correlation coeffi-
cients fluctuated around zero (Fig. 8B).
The conclusions from the above analysis
are similar to those obtained from K–S
plots. The IP model seems to be com-
pletely inadequate in the description of
our data, whereas the IMI models seem to
adequately describe the firing of collicular
neurons, including variability of responses,
in the range of moderate to high stimulus
velocities.

Discussion
In this study, we showed that trial-to-trial
response variability of cells in cat’s reti-
norecipient layers of SC strongly depends
on velocity of visual stimuli. For cells re-
sponding to fast moving stimuli (receiv-
ing Y-retinal input), the time-dependent
FF correlated negatively with the firing
rate. The trial-to-trial variability dropped
during excitatory responses and increased
during suppression. These findings agree
with the intuition that, at high firing rates,
responses are less variable and are in line
with the previous reports for the visual
geniculate pathway (Tolhurst et al., 1983;
Kara et al., 2000; Carandini, 2004; Gur
and Snodderly, 2006). However, during
excitatory responses to slow stimuli (in-
formation conveyed by the W channel),
variability increased with the firing rate.
We know only one such report: bursting
responses recorded from the cat’s lateral
geniculate nucleus (Kara et al., 2000).

Our results indicate that Y and W
channels may differ in reliability of re-
sponses to visual stimulation. Apart from
previously reported morphological and
physiological differences of cells belong-
ing to Y and W channels (for review, see
Stone, 1983; Burke et al., 1998; Casagrande
and Xu, 2004), this is a new feature distin-
guishing these two pathways.

Factors influencing observed differences
Firing rate dependence
Trial-to-trial variability may depend on magnitude of the firing
rate. At high activation level, refractory period limits response
irregularity (Berry and Meister, 1998; Kara et al., 2000). More-
over, because FF is the variance normalized by the mean, despite
no change in the response variance, the increase of mean rate
results in the decrease of FF. This could explain the increase of
FF during suppressive responses for high-velocity stimuli.

Figure 6. Comparison of experimental and surrogate data results for two cells: one from the LVE group (A–C) and the second
from the HVE group (D–F ). In the left column (A, D), experimental data (EXP) are presented. In the middle column (B, E), surrogate
data generated with the IP process are presented. In the right column (C, F ), surrogate data generated with the IMI process are
presented. Each dataset is presented as a raster plot (top) and PSTH (below, gray histogram with scale set on the left vertical axis).
The black solid line superimposed on every PSTH is the FF as a function of time (with scale set on the right vertical axis). Lengths of
the horizontal arrows below the time axis indicate duration of the stimulus, and their heads show the direction of motion. A,
Experimental data. Responses of an LVE cell to slowly moving stimulus (10°/s). Variability of response increases together with the
increase of the rate. B, Surrogate data from the IP model. The model was estimated from smoothed experimental firing rate of
neuron responses presented in A. In this case, FF oscillates around 1, which is the theoretical value for the Poisson process. Notice
that no increase in FF during response can be seen. C, Surrogate data from the IMI model estimated from the responses presented
in A. FF in the peak of the response does not reach the value of FF obtained for experimental data. D, Experimental data. Responses
of an HVE cell to high velocity (1000°/s) stimulus. Notice that changes in FF are negatively correlated with changes of firing rate
during the response. When the rate increases, the variability of response (FF) goes down. E, F, Surrogate data generated with IP and
IMI models, respectively. Parameters of models were estimated from responses presented in D. In the case of IP data, FF oscillates
around 1, with only slight decrease at peak response, whereas for IMI data, dependency of changes of FF and firing rate replicates
experimental results. In all the plots, the number of bins on the time axis was 200.
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However, in cells responding well in a
broad range of velocities (convergence
of W and Y channels), the distinct be-
havior of FF at low and high velocities
did not result from different magnitude
of the firing rate (Fig. 3).

To explain this effect, one should take
into account not only the differences in
the levels of evoked but also in back-
ground activity of SC cells. Azouz and
Gray (1999) argue that the intensity of vi-
sually evoked responses in V1 positively
correlates with the background mem-
brane potential immediately preceding
the visual response. The opposite holds
for the latency of evoked response. Thus,
the membrane potential preceding the vi-
sual response influences its reliability and
precision (for review, see Tiesinga et al.,
2008). In our experiments, the LVE cells
were characterized by both relatively low
peak discharge rate and low or virtually
absent background activity. This might
suggest that these cells operated well be-
low spike generation threshold in the
spontaneous state and close to the thresh-
old level when activated with visual stim-
uli, which resulted in high variability of
their responses.

Dependence on dynamics of
stimulus features
Several in vivo studies performed on differ-
ent levels of the visual pathway showed that
dynamic stimulation elicited more reliable
response than slowly varying stimuli (Bair
and Koch, 1996; Berry et al., 1997; de Ruyter
van Steveninck et al., 1997; Buracas et al.,
1998) (but see Warzecha and Egelhaaf,
1999). This is consistent with intracellu-
lar in vitro (Mainen and Sejnowski, 1995)
and in vivo (Azouz and Gray, 1999) stud-
ies connecting the reliability of cortical
cell responses with the dynamics of mem-
brane voltage changes, which associated
the highest precision of the action poten-
tial generation with rapid membrane de-
polarization. Also the spike generation
threshold was shown to depend on the
rate of changes of membrane voltage just
before the action potential and was lower
when preceded by a brief depolarization
(Azouz and Gray, 1999). Thus, it is likely
that the spike generation mechanism,
which acts as a high-pass filter, favors high
velocity visual stimuli that induce rapid
changes of membrane voltage and trans-
forms information about such stimuli
more precisely.

Differences between cell classes
Response variability may also originate from intrinsic cellular
membrane properties (for review, see Tiesinga et al., 2008), such
as types of voltage-gated conductances and their distributions

through dendritic and somatic membranes, varying in different
cell classes. Thus, the diversity of the morphological types of neu-
rons in the superficial layers of the SC (for review, see May, 2006)
may be the cause of the found differences in the response vari-

Figure 7. Comparison of the goodness-of-fit of different models using histograms of rescaled interspike intervals (A, C) and the
K–S plots (B, D) for exemplary responses to stimuli of low (A, B) and high (C, D) velocity presented in Figure 6. Histograms and K–S
curves were obtained by appropriate rescaling of interspike intervals (see Materials and Methods) with conditional intensity
estimated for the IP model (histograms in the left panels, gray lines in K–S plots), the parametric gamma IMI model (histograms in
the middle panels, dash– dotted lines in K–S plots), and the nonparametric IMI model (histograms in the right panels, thick solid
lines in K–S plots) and then transformed to a uniform distribution on interval [0,1]; vertical axis indicates values of cumulative
distribution function (CDF). Diagonals (thin solid lines) correspond to a perfect model of data, and the two parallel thin dashed lines
demarcate 95% confidence bounds. The distance of every curve from the diagonal is a measure of the quality of a given model.
Notice the poor behavior of all the models for the low velocity example.

Figure 8. Velocity dependence of correlations between firing rate and FF for surrogate data for the whole population of cells.
Data generated using the IP model are presented in the left column (A, C). Data from the nonparametric IMI model are shown in the
right column (B, D). Mean Pearson’s correlation coefficients between the firing rate and FF were computed over periods corre-
sponding to the response to visual stimulation in the original experimental data (EXP). A, B, Fraction of positive (above the 0
baseline) and fraction of negative (below the 0 baseline) correlation coefficients for a given velocity in the whole population of cells.
C, D, Means of correlation coefficients for a given velocity; error bars correspond to SEM values. Results for surrogate data (for IP and
IMI, respectively) are presented in black. For comparison, the experimental results are plotted in gray (compare with Fig. 4).
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ability. Several studies compared the variability of responses be-
tween different cell classes in different visual structures (Sestokas
and Lehmkuhle, 1988; Hartveit and Heggelund, 1994; Gur and
Snodderly, 2006; Andolina et al., 2007; Victor et al., 2007). Al-
though the available results are vague, two studies showing strik-
ing similarities to our results are worth mentioning. In the studies
of parasol retinal ganglion cells in the macaque monkey (ho-
mologs of cat’s Y cells) (Crook et al., 2008), spike count variance
across trials was much lower than its mean (Uzzell and Chichilni-
sky, 2004). The finding was inconsistent with Poisson statistics
but matched a model that included the relative refractory period.
In the in vitro study on neurons from the nucleus of the optic tract
(Prochnow et al., 2007), one group of cells, spontaneously active
in the in vitro preparation and giving regular responses to current
injections, preferred high velocity visual stimuli, as identified
previously in the in vivo experiments. The other cells, not spon-
taneously active and responding in an irregular manner, pre-
ferred low stimulus velocities.

Network and modulatory influence
Several reports indicate that modulatory (not spike generating)
inputs may affect response reliability (Hartveit and Heggelund,
1994; Andolina et al., 2007; Mitchell et al., 2007). Collicular cells
that receive W- or/and Y-type input may also constitute parts of
different neural networks within SC and be under the influence of
different modulatory inputs. Comparison of laminar distribu-
tion of retinal Y and W inputs in the SC (Berson, 1988) and
terminals of different cortical areas (for review, see Dreher, 1986;
Harting et al., 1992) suggests that collicular cells receiving distinct
retinal inputs are also activated by many, rather distinct, popula-
tions of cortical neurons.

Moreover, it was suggested that collicular W-input cells have
more complex local network of GABAergic interneurons then
Y-input cells (Mize, 1996), which is in line with studies showing
much stronger influence of the suppressive surround for SC cells
responding to slowly moving stimuli (Waleszczyk et al., 1999).
GABAergic influence was suggested to increase response variabil-
ity (Softky and Koch, 1993) (but see Hu et al., 2002); thus, the
specific impact of cortical inputs and local GABAergic networks
onto SC cells receiving W or Y retinal input might explain their
differences in variability.

Data modeling perspective
On the basis of the present data, we cannot settle which of the
factors above caused the observed differences between Y and W
channels. However, modeling the data under different assump-
tions, we were able to investigate and exclude some of them. If the
firing rate was the only meaningful aspect of the data, the IP
process should reproduce the results, including fluctuations of
time-dependent FF. Because it failed, we incorporated a spike-
history component reflecting the membrane properties of the
neuron, including refractory period, in a multiplicative IMI
model. This provided adequate description of responses to fast
stimuli but failed at low velocities. One may wonder which fea-
tures of the low velocity data make them so difficult to model in
the considered framework and how this framework should be
modified. One possibility is to include long-term fluctuations in
rate level not related directly to the stimulus, and another is to use
population approach considering network influences (Pillow et
al., 2008). This will require further studies.

Coding of information and functions of W and Y channels in
the SC
Reich et al. (1997) suggested that “the mode of information trans-
mission may switch from detection (in a regime in which spike
trains are imprecise and timing is not used to convey informa-
tion) to discrimination (in a regime in which spike times are
precise)”. Thus, the increase of FF during responses to slowly
moving stimuli would indicate that W channel does not convey
information in a temporally precise spike pattern. This sugges-
tion meshes with the general functions postulated for the W
channel, such as ambient vision (Stone et al., 1979) or local move-
ment detection (Rowe and Cox, 1993), and also with the function
of the SC in spatial localization of sensory stimuli and orienting
behavior, in which detection of stimulus is more important than
discrimination of its features.

In contrast, participation of the SC in visuomotor behavior,
particularly in reflex adjustment of head and eyes, which often
has to be performed in the shortest possible time, indicates the
need for fast and reliable transmission of information about
the visual environment. The pathway from retina through the
superficial and then deep layers of the SC to the oculomotor
nuclei (for review, see Munoz 2002) contains few synapses, is
relatively short, and is therefore appropriate for fast orientat-
ing response to visual stimuli. The Y channel with fast trans-
mission of information (Burke et al., 1998) and low variability
of responses to rapid changes in the environment seems to
fulfill such demands.

Our results are merely the first indication of the possible dif-
ferences in coding between Y and W channels or between differ-
ent groups of collicular cells. Clearly, a deeper analysis of coding
in the SC requires more sophisticated measures applied to re-
sponses to more complex stimuli (de Ruyter van Steveninck et al.,
1997; Shinomoto et al., 2009).
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