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We propose an approach for inferring strength of coupling between two systems from their transient dy-
namics. This is of vital importance in cases where most information is carried by the transients, for instance,
in evoked potentials measured commonly in electrophysiology. We show viability of our approach using
nonlinear and linear measures of synchronization on a population model of thalamocortical loop and on a
system of two coupled Rössler-type oscillators in nonchaotic regime.
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I. INTRODUCTION

Coherent actions of apparently distinct physical systems
often provoke questions of their possible interactions. Such
coherence in interacting systems is often a result of their
synchronization �1�. It became a popular topic with the dis-
covery of synchronization of nonidentical chaotic oscillators
�2�. Over the years different types of synchrony were stud-
ied, notably phase synchronization �3�. There were also nu-
merous attempts to study more complicated interactions un-
der the names of generalized synchronization or
interdependence �4–8�. In biological context synchronization
is expected to play a major role in cognitive processes in the
brain �9–11� such as visual binding �10� and large-scale in-
tegration �11�. Various synchronization measures were suc-
cessfully applied to electrophysiological signals �11–18�. In
this work we concentrate on nonlinear interdependence
�12,14�.

For an experimentalist it is often interesting to know how
two systems synchronize during short periods of evoked ac-
tivity �19,20�. Such questions arise naturally in analyzing
data from animal experiments �21–24�. One measures there
electrical activity on different levels of sensory information
processing and aims at relating changes in synchrony to the
behavioral context, such as attention or arousal. It may be the
case that the stationary dynamics �with no sensory stimula-
tion� corresponds to a fixed point. For instance, when one
measures the activity in the barrel cortex of a restrained and
habituated rat, the recorded signals seem to be noise �21–23�.
On the other hand, transient activity evoked by specific
stimuli seems to provide useful information. For example,
bending a bunch of whiskers triggers nontrivial patterns of
activity �evoked potentials �EPs�� in both the somatosensory
thalamic nuclei and the barrel cortex �23,25�.

Explorations described in this paper aim at solving the
following problem. Suppose we have two pairs of transient
signals, for example, recordings of evoked potentials from
thalamus and cerebral cortex in two behavioral situations
�21,23�. Can we tell in which of the two situations the
strength of coupling between the structures is higher? Thus

we investigate if one can measure differences in the strength
of coupling between two structures using nonlinear interde-
pendence measures on an ensemble of EPs. Since EPs are
short, transient signals, straightforward application of the
measures motivated by studies of systems moving on the
attractors �stationary dynamics� is rather doubtful and a more
sophisticated treatment is needed �20,26�. Our approach is
similar in spirit to that advocated by Janosi and Tel for the
reconstruction of chaotic saddles from transient time series
�27�. �Note that the transients we study should not be con-
fused with the transient chaos studied by Janosi and Tel.�
Thus we cut pieces of the recordings corresponding to well-
localized EPs and paste them together one after another.
Since we are interested in the coupled systems, unlike Janosi
and Tel, we obtain two artificial time series to which we then
apply nonlinear interdependence measures and linear corre-
lations. It turns out that this approach allows us to extract the
information about the strength of the coupling between the
two systems.

We test our method on a population model of information
processing in a thalamocortical loop �Fig. 1� consisting of
two coupled Wilson-Cowan structures �28,29�. Sensory in-
formation is relayed through thalamic nuclei to cortical
fields, which in return send feedback connections to the
thalamus. This basic framework of the early stages of sen-
sory systems is to a large extent universal across different
species and modalities �30�. To check that the results are not
specific to this particular system we also study evoked dy-
namics of two coupled Rössler-type oscillators in nonchaotic
regime.

The paper is organized as follows. In Sec. II we define the
measures to be used. In Sec. III we describe the models used
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FIG. 1. �Color online� Structure of the model of the thalamocor-
tical loop used in the simulations.
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to test our method. Our model of thalamocortical loop is
discussed in Sec. III A and a system of two coupled Rössler-
type oscillators is described in Sec. III B. In Sec. IV we
present the results. In Sec. IV A we show how various inter-
dependence measures calculated on the transients are related
to the coupling between the systems, while in Sec. IV B we
study how the resolution of our methods degrades with
noise. Finally, in Sec. IV C, we apply time-resolved interde-
pendence measure Hi �26� and compare its utility with our
approach. We summarize our observations in Sec. V.

II. SYNCHRONIZATION MEASURES

In the present paper we mainly study the applicability of
nonlinear interdependence measures on the transients. These
measures, proposed in Ref. �12�, are nonsymmetric and
therefore can provide information about the direction of driv-
ing, even if the interpretation in terms of causal relations is
not straightforward �31�.

These measures are constructed as follows. We start with
two time series xn and yn, n=1, . . . ,N, measured in systems
X and Y. We then construct m-dimensional delay-vector em-
beddings �32� xn= �xn , . . . ,xn−�m−1���, similarly for yn, where
� is the time lag. The information about the synchrony is
inferred from comparing the size of a neighborhood of a
point in m-dimensional space in one subsystem to the spread
of its equal-time counterpart in the other subsystem. The idea
behind it is that if the systems are highly interdependent then
the partners of close neighbors in one system should be close
in the other system. Several different measures exploring this
idea can be considered depending on how one measures the
size of the neighborhood. These variants include measures
denoted by S, H �12�, N �14�, M �33�. We have studied the
properties of most of these measures but for the sake of
clarity here we report only the results for the “robust” variant
H and a normalized measure N, as they proved most useful
for our purposes.

Let us, following Ref. �12�, for each xn define a measure
of the spread of its neighborhood equal to the mean squared
Euclidean distance

Rn
�k��X� =

1

k
�
j=1

k

�xn − xrn,j
�2,

where rn,j are the time indices of the k nearest neighbors of
xn, analogously, sn,j denotes the time indices of the k nearest
neighbors of yn. To avoid problems related to temporal cor-
relations �34�, points closer in time to the current point xn
than a certain threshold are typically excluded from the
nearest-neighbor search �Theiler correction�. Then we define
the y-conditioned mean

Rn
�k��X�Y� =

1

k
�
j=1

k

�xn − xsn,j
�2,

where the indices rn,j of the nearest neighbors of xn are re-
placed with the indices sn,j of the nearest neighbors of yn.
The definitions of Rn

�k��Y� and Rn
�k��Y �X� are analogous. The

measures H and N use the mean squared distance to random
points

Rn�X� =
1

N − 1 �
j�n

�xn − x j�2

and are defined as

H�k��X�Y� =
1

N
�
n=1

N

ln
Rn�X�

Rn
�k��X�Y�

,

N�k��X�Y� =
1

N
�
n=1

N
Rn�X� − Rn

�k��X�Y�
Rn�X�

.

The interdependencies in the other direction H�k��Y �X�,
N�k��Y �X� are defined analogously and need not be equal
H�k��X �Y�, N�k��X �Y�.

Such measures base on repetitiveness of the dynamics:
one expects that if the system moves on the attractor the
observed trajectory visits neigborhoods of every point many
times given sufficiently long recording. The same holds for
the reconstructed dynamics. However, if the stationary part
of the signal is short or missing, especially if we observe a
transient such as evoked potential, this is not the case. Still,
if we have noisy dynamics, every repetition of the experi-
ment leads to a slightly different probing of the neighbor-
hood of the noise-free trajectory. This observation led us to
an idea of gluing a number of repetitions of the same evoked
activity �with different noise realizations� together and using
such pseudoperiodic signals as we would use trajectories on
a chaotic attractor. A similar idea was used by Janosi and Tel
in a different context for a different purpose �27�. An ex-
ample of a delay embedding of a signal obtained this way is
presented in Fig. 2. Note that artifacts may emerge at the
gluing points. This is discussed in Ref. �27�, and some coun-
termeasures are proposed. For simplicity we proceed with
just gluing as we expect that the artifacts only increase the
effective noise level. The influence of noise is studied in Sec.
IV B.

Recently, time-resolved variants of the methods described
above were studied �20,26�. They are applied to ensembles

−2 0 2
−2

0

2

10
2

V
T

h
(P

C
2)

102 V
Th

(PC
1
)

−2 0 2
−4

−2

0

2

10
2

V
C

x
(P

C
2)

102 V
Cx

(PC
1
)

FIG. 2. �Color online� Delay-vector embeddings �shown in
planes defined by the first two principal components� of pseudope-
riodic signals obtained by gluing 50 evoked potentials generated in
a model of thalamocortical loop. On the left �signal from “thala-
mus”� a point is chosen �black square� and its 15 nearest neighbors
are marked with red �gray� diamonds. On the right �“cortex”� the
equal-time partners of the marked points from the left picture are
shown.

SZYMON ŁĘSKI AND DANIEL K. WÓJCIK PHYSICAL REVIEW E 78, 041918 �2008�

041918-2



of simultaneous recordings, each consisting of many differ-
ent realizations of the same �presumably short� process. Let
us denote the nth state vector in jth realization of the time
series by xn

j �yn
j , respectively�, j=1, . . . ,J. The idea in Ref.

�20� is, for given xn
j to find one neighbor in each of the

ensembles. Then a measure �denoted T� based on distances
to these neighbors is constructed. The proposition of Ref.
�26� is to look not at the nearest neighbors of a given xn no
matter what time they occur at, but rather at the spread of
state-vectors at the same latency across the ensemble. In Sec.
IV C we study the measure Hi as defined in Ref. �26�. Let ri

j,l

denote the ensemble index of the lth nearest neighbor of yn
j

among the whole ensemble �yn
j � j=1,. . .,J. Define the quantities

Ri
j,�k��X�Y� =

1

k
�
l=1

k

�xi
j − xi

ri
j,l

�2,

Ri
j,�k��X� =

1

J − 1�
s�j

�xi
j − xi

s�2.

The time-resolved interdependence measure is further de-
fined as

Hi
�k��X�Y� =

1

J
�
j=1

J

ln
Ri

j,�k��X�
Ri

j,�k��X�Y�
.

Analogously one can define Hi
�k��Y �X� and also time-

resolved variants of other interdependence measures.
In the numerical experiments described in this paper we

use the following parameters of the nonlinear interdepen-
dence measures: time lag for construction of delay vectors
�=1, embedding dimension m=10, number of nearest neigh-
bors k=15, Theiler correction T=5. To calculate the interde-
pendencies we used the code by Rodrigo Quian Quiroga and
Chee Seng Koh �37�. In case of the measure Hi we use the
same embedding dimension and time lag; here k=1. To cal-
culate this measure we used the code provided in supplemen-
tary material to Ref. �26�. To compare the linear and nonlin-
ear analysis methods we calculated the cross-correlation
coefficients using MATLAB.

While in numerical studies the correctness of reconstruc-
tion can often be easily checked by comparison with original
dynamics, in analysis of experimental data it can be a com-
plex issue. Correct reconstruction is a prerequisite for appli-
cation of our technique. For technical details on best prac-
tices of delay embedding reconstructions, pitfalls and
caveats, see Ref. �35�.

III. MODEL DATA

A. Connected Wilson-Cowan aggregates

Our model of the thalamocortical loop was based on the
Wilson and Cowan mean-field description of interacting
populations of excitatory and inhibitory neural cells �28,29�.
In the simplest version, which we used, each population is
described by a single variable standing for its mean level of
activity

�E
dE

dt
= − E + �kE − rE E�SE�cEE E − cIE I + P� ,

�1�

�I
dI

dt
= − I + �kI − rI I�SI�cEI E − cII I + Q� .

The variables E and I are the mean activities of excitatory
and inhibitory populations, respectively, and form the phase
space of a localized neuronal aggregate. The symbols �, k, r,
c denote parameters of the model, S are sigmoidal functions,
P and Q are input signals to excitatory and inhibitory popu-
lations, respectively. These equations take into account the
absolute refractory period of neurons which is a short period
after activation in which a cell cannot be activated again.
Such models exhibit a number of different behaviors �stable
points, hysteresis, limit cycles� depending on the exact
choice of parameters �28,29�. To relate the simulation results
to the experiment �21,23� we considered the observable V
=E− I, since the electric potential measured in experiments is
related to the difference between excitatory and inhibitory
postsynaptic potentials �see the discussion in Ref. �28��.

We studied a model composed of two such mutually con-
nected aggregates, which we call “thalamus” and “cortex”
�Fig. 1�. Note that the parameters characterizing the two
parts are different �see the Appendix for a complete specifi-
cation of the model�. Specifically, there are no excitatory-
excitatory nor inhibitory-inhibitory connections in the thala-
mus. Only the thalamus receives sensory input, and we
assume that Q is always a constant fraction of P. The con-
nections between two subsystems are excitatory only.

To model the stimulus we assumed that the input �P ,Q�
switches at some point from 0 to a constant value �PC ,QC�,
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FIG. 3. �Color online� “Evoked potentials” �V=E− I�, �a�, �b�
and their delay-vector embeddings shown in a plane defined by the
first two principal components �c�, �d�. Plots �a� and �c�: thalamus,
�b� and �d�: cortex. The intervals above the EP indicate the duration
of the nonzero stimulus. Black �thick� lines are solutions for the
system without noise, blue �thin� curves are five different realiza-
tions of noisy dynamics.
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and after a short time �on the time scale of relaxation to the
fixed point� switches back to zero. This is clearly another
simplification, as the real input, which could be induced by
bending a bunch of whiskers �21–23�, would be a more com-
plex function of time. However, the transient nature of the
stimulus is preserved. In this simple setting we can under-
stand that the “evoked potential” corresponds to a trajectory
approaching the asymptotic solution of the “excited” system
�with the nonzero input PC ,QC�, followed by a relaxation to
the “spontaneous activity” in the system with null input.

The model parameters were chosen so that its response to
brief stimulation were damped oscillations of V both in the
thalamus and the cortex similar to those observed in the ex-
periments, both in terms of shape and time duration �21–23�
�Fig. 3�. However, apart from that, we exercised little effort
to match the response of the model to the actual activity of
somatosensory tract in the rat brain. Our main goal in the
present work was establishing a method of inferring coupling
strength from transients and not a study of the rat somatosen-
sory system. For this reason it was convenient to use a very
simplified, qualitative model. Interestingly, the response of
the model, measured for example as the activity of excitatory
cells in the thalamus, extends in time well beyond the end of
the stimulation �Fig. 3�. Such behavior is not observed in a
single aggregate and requires at least two interconnected
structures �29�.

We performed numerical simulations in three modes: ei-
ther stationary �null or constant input� or not �transient in-
put�. The dynamics of the model is presented in Fig. 4.

In case of transient input the simulation was done for
−1000� t�1000 ms. We used the stimulus P and Q which
was 0 except for the time 200� t�220 when it was PC
=3.5 and QC=0.3. The system settled in the stationary state
during the initial segment �t�195� which was discarded
from the analysis. The noise was simulated as additional in-
put to each of the four populations, see the Appendix for the
equations. For each population we used different Gaussian
�mean �=0, standard deviation �=0.025� white noise,
sampled at 1 kHz and interpolated linearly to obtain values
for intermediate time points. In case of stationary dynamics
we simulated longer periods, −1000� t�20 000 ms. The
signals were sampled at 100 Hz before the synchronization
measures were applied.

In case of constant or null stimulation the system ap-
proaches one of the two fixed-point solutions which are
marked by large dots in Fig. 4. For the amount of noise used
here the dynamics of the system changes as expected: the
fixed points become diffused clouds �Fig. 4�. During the
transient—“evoked potential”—the switching input forces
the system to leave the null-input fixed point, approach the
constant-input attractor, and then relax back to its original
state �Fig. 4�. Of course, in the presence of noise the shape of
the transient is affected �Fig. 4�. Observe the similarity be-
tween the embedding reconstructions of the evoked poten-
tials �Fig. 3, bottom row� and the actual behavior in VTh
−VCx coordinates �Fig. 4, bottom row�.

B. Coupled Rössler-type oscillators

While we are specifically interested in the dynamics of
thalamocortical loop which dictated our choice of the studied
system, we checked if our approach is not specific to this
model. Our second model of choice consisted of two coupled
Rössler-type oscillators �3,36�

dx1

dt
= − �1 + ���y1 − z1 + �C�x2 − x1� + 	1,

dy1

dt
= �1 + ���x1 − 0.15y1 + P + 	2,

dz1

dt
= 0.2 + z1�x1 − 10� + 	3,

dx2

dt
= − �1 − ���y2 − z2 + �C�x1 − x2� + 	4,

dy2

dt
= �1 − ���x2 − 0.15y2 + 	5,

dz2

dt
= 0.2 + z2�x2 − 10� + 	6.

We used the frequency detuning parameter ��=0.05 and the
maximum coupling constant C=0.06. The scaling parameter
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FIG. 4. �Color online� Dynamics of the model. The green �lower left� and red �upper right� dots are fixed points in case of null or constant
stimulation, respectively, the black �thick� line is the noise-free transient dynamics. Blue �thin� lines are example trajectories of the model in
the presence of noise. The plots show projections of the same dynamics to different planes.
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� took values from 0 to 1. The stimulation parameter P was
0 except for 200� t�250 where it was set to 0.8; the noise
inputs 	i, i=1, . . . ,6 were Gaussian white noise with param-
eters as for the Wilson-Cowan model. The simulation was
done for t� �0,300� and segments from t=195 to t=300,
sampled every �t=0.125, were used for the analysis of the
transients. The synchronization was measured between x1
and x2. Parameters of the system were chosen so that asymp-
totically it moved into a stable fixed point �note the signs in
the equations for y1 and y2� for both P=0 and P=0.8. There-
fore the transient dynamics �Fig. 5� is of the same type as in
the model of thalamocortical loop: the system switches
briefly to the second stable point and then returns. Note that
the level of noise in the second subsystem is quite high and
the evoked activity is barely visible at the single trial level
�Fig. 5, right column�.

IV. RESULTS

A. Inferring connection strength

We aim at solving the following problem: suppose we
have two pairs of signals, for example, recordings from
thalamus and cerebral cortex in two behavioral situations
�21–24�. Can we tell in which of the two situations the
strength of connections between the structures is higher?
Thus we need to find a measure being a monotonic function
of the coupling strength. We have studied this problem in our
model of thalamocortical loop �Sec. III A�. We scaled the
strength of connections from thalamus to cortex by changing
� between 0 and 1, and calculated synchrony measures on
signals from these structures. The strength of connections
from cortex to thalamus was constant �
=1�; see the Appen-
dix for the details.

Consider first stationary signals with P=0 or P=const.
Without noise the system is in a fixed point and obviously it
is impossible to obtain the connection strength. However,
given the noise, in principle the dynamics in the neighbor-
hood of the fixed point is also probed. Thus there is a possi-
bility that the interdependence and the strength of the cou-
pling could be established during stationary parts of the
dynamics. It turns out that for null stimulation neither the
interdependence measures nor the linear correlations detect
any changes in the coupling strength �Fig. 6, left column�.
For constant nonzero input there is a connection between the
coupling strength and the values of the measure but they are
anticorrelated and the dependence is not very pronounced
�Fig. 6, right column�. One must also bear in mind that while
it is possible to have no stimulation, in brain studies pro-
longed and constant stimulation in the present sense cannot
be experimentally realized �at least for most sensory sys-
tems� because of the adaptation of receptors. The natural
stimuli are necessarily transient.

To use the synchrony measures on the transient we cut out
pieces of signal corresponding to the evoked potential, and
pasted them one after another. The thus obtained pseudope-
riodicsignal contained the same underlying dynamics with
each piece differing due to the noise. We then applied the
same measures as we did for the stationary signals. In the
simulations we calculated 50 “evoked potentials” �Fig. 3� for
each value of �. Plots in the middle column of Fig. 6 show
the values of the synchronization measures evaluated for dif-
ferent coupling strengths. It can be seen that they are increas-
ing functions of the coupling strength between the sub-
systems. Therefore, our approach is indeed a viable solution
to the problem of data-based quantification of the coupling
strength.

It is interesting to study the values of these interdepen-
dence measures in different cases. Observe that H�VTh �VCx�
�H�VCx �VTh� for P=0. The opposite is true for transients
�for small ��. This is even more clearly visible for N. In all
the cases linear correlations showed similar trends to the
nonlinear measures N�VTh �VCx�, N�VCx �VTh�.

The asymmetry in the interdependence measures was
originally intended to be used for inferring the direction of
the coupling or driving. However, the inference of specific
driving structure in every case must follow a careful analysis
of underlying dynamics �see, for example, discussions in
Refs. �31,12��. Let us consider the plots in the middle col-
umn of Fig. 6. For small � the dominant connections are
from the cortex to the thalamus so one might expect that the
state of the thalamus might be easier predictable from the
states of the cortex than the other way round. Thus one
would intuitively expect H�VTh �VCx��H�VCx �VTh�. How-
ever, we observe the opposite. The reason is that the mea-
sures used are related to the relative number of degrees of
freedom �12�. Loosely speaking, as discussed �31�, the effec-
tive dimension of the driven system �thalamus for small �� is
usually higher than the dimension of the driver �which means
that the response—the dynamics of the thalamus—is “more
complex”�. This effect is further enhanced by the fact that we
stimulate the thalamus in moments unpredictable from the
point of view of the cortex. Summarizing, the result is com-
patible with the analysis in Ref. �31�. What happens for
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FIG. 5. �Color online� �a�, �b�: signals �x coordinate� from
coupled Rössler-type oscillators; �c�, �d�: their delay-vector embed-
dings, shown in a plane defined by the first two principal compo-
nents. The intervals in �a� and �b� indicate the duration of nonzero
input P. Black �thick� lines are solutions for the system without
noise, blue �thin� curves are five different realizations of noisy
dynamics.
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higher � when the two measures become equal is probably
the coupling between the two subsystems becoming so
strong that the quality of prediction in any direction is com-
parable.

In the stationary case the situation is different as we ob-
serve the asymptotic behavior. It turns out that for P=0 for
every �, and for P=const�0 for small � we have
H�VTh �VCx��H�VCx �VTh�. But it seems that another effect
also plays a role here. The noise in the cortex has a higher
amplitude than in the thalamus and as a consequence it is
easier to predict the state of the thalamus from that of the
cortex than in the other direction. The reason for this dispar-
ity in the amplitudes is the difference in the shape of the
sigmoidal functions Sq. To summarize, here, the asymmetry
of the measures reflects internal properties of the two sub-
systems and not the symmetry properties of the coupling
between them.

Figure 7 shows similar results obtained for two coupled
Rössler-type systems. In stationary situation the interdepen-
dence measures are very noisy. Although a weak trend is
visible, one would not be able to reliably discriminate be-
tween, say, �=0.25 and �=0.75. The equality of the mea-
sures in two directions is due to the fact that the systems are
almost identical and symmetrically coupled.

If the interdependence is quantified on transient parts of
the dynamics, the situation improves considerably. H�X2 �X1�
has a high slope and is a very good measure of the coupling
strength between the systems. Although H�X1 �X2� has a

slope comparable to that in the stationary case for P=0, the
variability of the results is much smaller, compared to the
size of the fluctuation in the ensemble mean in the stationary
case. The difference between H�X2 �X1� and H�X1 �X2� re-
flects the asymmetry of the driving �which makes the dynam-
ics of X1 “more complex” than the dynamics of X2�, not of
the coupling �which is symmetric�.

B. Influence of noise

The performance of the procedure described above de-
pends on the level of noise present in the system. To study
this dependence we performed the simulations of the
thalamocortical model �the case of transient dynamics� for
25, 50, 100, and 200 % of the original noise level. We found
that for increasing level of noise the dynamics of the system
may change qualitatively: if the noise level is large enough
the system may be kicked out of the basin of attraction of the
fixed point and would not return there after P is reset to 0.
Instead it may fall into the basin of attraction of another
stable orbit or switch between the basins repeatedly. We ob-
served such behavior only once for 2500 simulations per-
formed with 200% of the original noise and this trial was
excluded from the analysis. Such behavior becomes more
frequent with increasing noise �e.g., 400%� and so we did not
study this situation as it was very different from the original
dynamics of the system.

As one would expect, the higher the noise, the less sensi-
tive the measures are �Fig. 8�. However, even for twice the
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original level of noise a weak trend in the interdependence is
clearly visible.

C. Time-resolved measure Hi

Since we are interested in the dynamics of nonautono-
mous systems one might wonder if time-resolved measures,
such as Hi introduced in Ref. �26�, would not perform better
in the problem of inferring connection strength. We per-
formed tests on cut-and-pasted transient signals. This prob-
lem is different from the one studied in Ref. �26�.

There, two Lorenz systems were coupled for short periods
of time and Hi was shown to identify these times of coupling
well. In our problem the coupling is constant in time, it is
only the input to the system that is varying. For the problem
at hand the values of Hi do not seem to change with varying
coupling constant � �Fig. 9�a�� when 
 is constant, 
=1. The
reason for this may be that even for �=0 the subsystems are
coupled through the connections from cortex to thalamus.
This hypothesis can be tested in another experiment, where
all the connections between the subsystems are scaled and
�=
.

Indeed, in this setup the measure Hi is sensitive to the
coupling strength �Fig. 9�b�; Fig. 10�. One may also note that
Hi�VTh �VCx� is on average higher than Hi�VCx �VTh�, exactly
as for H in case of P=0 and contrary to what is observed
using H on transients �Fig. 6�a��. Thus it seems that for the
problem of inferring coupling strength between two systems
the optimal approach is to use H or N, or linear correlations,
on the transients, as described in Sec. IV A.

V. CONCLUSIONS

To summarize, we have proposed a general approach for
inference of the coupling strength using transient parts of
dynamics. We have shown that our approach gives more in-
formation about the coupling between subsystems than the
approach using the stationary part of dynamics in the case
when the asymptotic dynamics is on a fixed point. We have
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checked the validity of this approach on a model of a
thalamocortical loop of sensory systems and on two coupled
Rössler-type oscillators. We showed that our method is quite
robust with respect to increasing level of noise as long as the
dynamics does not change qualitatively. We have also shown
that this method measures different aspects of coupling than
a time-resolved measure Hi and than linear correlations. We
believe that our approach will be of use in many other physi-
cal systems studied in the stimulus-response paradigm, espe-
cially in the experimental context.

The results of Sec. IV A are compatible with our prelimi-
nary studies of data from real neurophysiological experi-
ments �23�. There one cannot discern coupling strength in
two contextual situations basing on stationary recordings, but
the analysis of transients leads to clear differences between
two variants of experiment. The results of this analysis will
be published elsewhere.
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APPENDIX: PARAMETERS OF THE MODELS

We use the following equations for the model of thalamo-
cortical loop:

�
dETh

dt
= − ETh + �kETh

− rETh�SETh
�P − c1ITh + 
e1ECx + 	1� ,

�
dITh

dt
= − ITh + �kITh

− rITh�SITh
�Q + c2ETh + 
e2ECx + 	2� ,

�
dECx

dt
= − ECx + �kECx

− rECx�

� SECx
�c3ECx − c4ICx + �e3ETh + 	3� ,

�
dICx

dt
= − ICx + �kICx

− rICx�SICx
�c5ECx − c6ICx + �e4ETh + 	4� ,

where

Sq�x� =
1

1 + e−aq�x−
q� −
1

1 + eaq
q
,

q standing for ETh, ITh, ECx, ICx, and 	i, i= ,1 . . . ,4 are noise
inputs. The normalizing constants kq are defined as kq=1
− �1+eaq
q�−1. In the numerical experiments we used the fol-
lowing parameter values:

c1 = 1.35, c2 = 5.35, c3 = 15,

c4 = 15, c5 = 15, c6 = 3,

e1 = 10, e2 = 20, e3 = 10,

e4 = 5, � = 10 ms, r = 1,

aETh
= 0.55, 
ETh

= 11, aITh
= 0.25,


ITh
= 9, aECx

= 1, 
ECx
= 2,

aICx
= 2, 
ICx

= 2.5.

The strength of connections was scaled by �� �0,1�. Every-
where except in Sec. IV C we used 
=1. In Sec. IV C we
used either �� �0,1� and 
=1, or �� �0,1� and 
=�.
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