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Abstract. Dynamic states of the brain determine the way information is
processed in local neural networks. We have applied classical conditioning
paradigm in order to study whether habituated and aroused states can be
differentiated in single barrel column of rat's somatosensory cortex by means
of analysis of field potentials evoked by stimulation of a single vibrissa. A
new method using local classifiers is presented which allows for reliable and
meaningful classification of single evoked potentials which might be
consequently attributed to different functional states of the cortical column.
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INTRODUCTION

In this article we present a new approach to the
problem of classifying evoked potentials recorded
within barrel cortex of awake rat. In our previous
research (Kublik 2004, Wrobel et al. 1998, Wypych et
al. 2003) we were able to identify two functional class-
es that represented two states of rat's barrel cortex. The
approaches we used so far employed different parts of
recorded potentials, ranging in length from 2ms to
around 128ms. The part of the potential used depended
on the method applied (Kublik 2004, Wrobel et al.
1998, Wypych et al. 2003). The new method for signal
classification used here (Jakuczun 2005) creates a set
of classifiers which use limited information from the
analyzed signals, ranging from a few samples to the
whole signal. With this method we were able to local-
ize the parts of the evoked potentials carrying informa-
tion most important for classification and we found
that they were consistent with current understanding of
the function of underlying neural circuits.

The article is divided into two main parts. In the first
part we describe the theoretical bases of the method
with minimum mathematical details. In the second part
we apply the method to experimental data. We conclude
with physiological interpretation of the obtained results.

THEORETICAL DESCRIPTION
OF THE METHOD

The aim of discrimination analysis is to learn more
about the differences between the signals belonging to
different classes. It should be stressed that we are inter-
ested not only in a good classification accuracy but
also in understanding the differentiating features of the
two signal classes. Widely used classifiers (discrimi-
nants) such as decision trees or artificial neural net-
works are rarely applied to a raw signal classification
problem since very often they produce results which
are difficult to interpret.

In this section we review a new method for signal
discrimination analysis (Jakuczun 2005). It is a combi-
nation of the lifting scheme (Sweldens 1998) and
Support Vector Machines (Vapnik 1998). The method
employs decomposition of analyzed signals with
respect to the specially designed bi-orthogonal base.
The base has two important features:

- Each base vector is nonzero for only a fraction of
indices. This feature called locality is particularly use-

ful when we expect that only a part of analyzed signal
is important.

- Expansion coefficients of analyzed signals with
respect to each base vector are as discriminable as pos-
sible.

Before we proceed to the method description let us
introduce some definitions and notations that will be
used. Assume we are given a set X of sampled ver-
sions of signals that belong to two classes. That is we
have

X ={(x,3) e R x{-1.1} :i=1,... .k} (1)

where x; are sampled signals to be analyzed of length
N, y, is a label indicating the class the i-th example
belongs to (for instance "habituated" or "aroused"),
and k is the number of signals.

Definition 1. Support of the vector x € R is the set
of indices for which x, # 0.

Definition 2. Bi-orthogonal base for space R” is the
set of pairs of vectors (¢,¢,) where i=1, ..., N such that

<¢ q;>— 1 fori=j
77710 otherwise

where <X, J’> is the usual scalar product in R". We can
write every vector x e R"Y as

X = Z<x9¢z>¢~z

¢, are called analysis base vectors, ¢, are called syn-
thesis base vectors. In this article we present some
properties of the analysis part of the bi-orthogonal
base. The synthesis part of the base is uniquely deter-
mined by the base definition.

Local classifiers

Assume that the dimension N of analyzed signals
equals to 2" for some integer n > (0. We choose some
integer J such that J < n and construct bi-orthogonal
base in two parts. The first part of the base, (/;,\/;)

) N
where le{l,...,z—J}, plays a similar role to the

scaling part of the classical wavelet base and is not
used in our analysis. This part of the base spans coarse
approximation of the analyzed signals (Sweldens
1998). The second part of the base, (¢, ;,9, ;), where



jE {l,...,J} and i e {1,...,%}, plays a similar role
to wavelet part of the classical wavelet base. Index j
denotes decomposition level of the method. Since we
only use vectors ¢ in what follows we shall refer to
them simply as base vectors. The precise construction
of the whole base is given by Jakuczun (2005).
Supports of the base vectors from the same decom-
position level {9} are of the same length equal to 2'L
for some integer L which is the parameter of the
method. Moreover, support of the base vector ¢, ;s
shifted to the right by 2’ indices compared to the sup-
port of the base vector ;_; ;. This is a property of vec-
tors constructed for analysis of signals of infinite
length. In case of finite length signals the supports of
first L/2 base vectors are located at the left edge and the
supports of last L vectors are located at the right edge.

0 4,1
031

1 2 3 4 5 6 i 8

Fig. 1. Supports of all four analysis base vectors for the first
decomposition level for N=8 data points and L=2.

Figure 1 presents supports of four base vectors from
the first decomposition level (i.e., for j=1) with N=8
and L=2. Choosing appropriate L and the decomposi-
tion level the researcher controls time resolution of the
method.

Let X be the training set as defined in Eq. (1). We
find each base vector ¢i, ; by solving the following
optimization problem

{xk 2(9(<xks¢j,j>+bi>f)¢yk}
Y]

where || means the number of elements of the set, 6(-)
is defined by

+1 forz>0
0(t)=
-1 fort<0

min
¢f.j Sbl.j

2
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and b,; € R. This means that we want to find such
base Vectors that lead to expansion coefficients that are
different for signals from different classes. Each base
vector acts as a local classifier because its support is
strictly positioned and its length is shorter than length
of the analyzed signal.

Filtering local classifiers

In the previous subsection we have introduced the
method that finds the bi-orthogonal base W),
(¢i’j,¢i,j) given the training set (Eq. (1)). As we have
mentioned each base vector ¢,; can be used as a classi-
fier. In this section we present our approach for select-
ing the most informative base vectors.

The naive criterion would be selecting those base
vectors that have the smallest training error defined as
follows

. {xk :0(<xk,¢,’j>+bi’j) * yk}
]

where b,; is defined in Eq. (2). This approach would
work best if the number of training examples were
large. In case of a small number of training examples
there is a risk that small training error is obtained only
by chance. To exclude this possibility we propose to
use the following procedure:
- For each base vector ¢, calculate its training error 8
- For k=1, ..., K where K is the large number (e g .
1000) repeat the following:
- Create a new training set X* from set (1) by ran-
domly permuting labels y..
- Find the bi-orthogonal base for such modified
training set X*.
- For each base vector ¢fi
error 8k
For each base vector calculate the following statistics

_ ‘k:gi’j Zgi,j‘
ij K
This is the estimation of the probability that training

error 8,-(? ; was not obtained by chance. Its confidence
interval is given by

]—;,j(l_

calculate its training

7;,1 ~Uign U_ar2
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where « is the confidence level and #,_,, is the quan-
tile of order 1-o/2 of normally distributed variable u
(Feller 1968).

- Choose those base vectors whose confidence inter-
vals contain the desired probability that the training
error was not obtained by chance. This desired proba-
bility is a parameter of the method.

We used the base vectors selected this way as the most
valuable for discrimination analysis of the signals.
Note that since we use bi-orthogonal bases the shape of
base vectors cannot be given physiological interpreta-
tion easily which is why we do not discuss it.

CLASSIFICATION OF EVOKED
POTENTIALS

In this section we apply the method presented above to
obtain classification of evoked potentials recorded with-
in the primary sensory cortex of non-anaesthetized rats.

The vibrissa-barrel system of rat is a perfect model
for the anatomical and functional study of the mam-
malian sensory systems. Whiskers on the rat's snout
constitute very sensitive and precise sensory organ.
They grow in five horizontal rows containing 4—6 big
whiskers forming vertical arches. Bending of each vib-
rissa generates receptor potential and this activation is
then represented in clearly defined cell groups within
consecutive stages of the sensory pathway. Thus, the
somatotopic map in the primary sensory (barrel) cortex
mirrors the rows/arches organization of facial vibrissae
(Fig. 2A). Such a map allows precise insertion of
microelectrodes into the required site in order to record
cortical potentials evoked (EP) by the stimulation of a
chosen whisker in different behavioral situations. We
hypothesized that EPs recorded during well habituated,
"idle" state of the cortex and during "active" mode
aroused by application of aversive stimulus will differ
due to functional reorganization of neuronal network
in the cortical column (Wrobel et al. 1998).

Experimental paradigm and recording procedure

Experiment was carried out on 5 male rats weighing
300—400 gram. At the beginning the animals were han-
dled and accustomed to restraining hammock (Fig. 2B).
The surgery was then performed during which 3 to 4
electrodes (0.025 mm insulated tungsten wire of
~150 kQ impedance at 1 kHz) were implanted into the
barrel cortex at the level of 4th cortical layer. The ref-
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Fig. 2. (A) Schematic maps of vibrissal pad and its repre-
sentation in the barrel cortex. Left: whiskers grow on the
mystacial pad in five rows named by capitals A-E.
Consecutive arches of whiskers are numbered from back
to front of the snout. Signal from a single vibrissa is trans-
mitted with relatively precise somatotopy through the
thalamus to individual functional “barrel” columns of the
contralateral primary somatosensory cortex (“barrel cor-
tex”). Right: tangential section of the barrel cortex at the
level of layer 4 shows spatial organization of barrel-
columns repeating a whisker pattern. Cortical column
from which signals are recorded (e.g., B2) and correspon-
ding whisker are addressed to as central (or principal) col-
umn and central (principal) whisker. (B) During the exper-
iment rat was restrained in a specially designed hammock,
with the head immobilized and principal whisker glued to
a piezoelectric stimulator. Signal from electrodes implant-
ed into the barrel cortex was filtered, amplified and stored
on an analog tape for off-line analysis. (C) Each daily
recording session contained approximately 100 whisker
stimulations delivered at different inter-stimuli intervals
(15-45 seconds). Experimental session consisted of two
parts. The CONTROL part contained 20, 30 or 50 stimu-
lations (vertical lines) without reinforcement. During the
subsequent, CONDITIONING part all whisker stimula-
tions were followed by aversive stimulus (a mild electric
shock applied onto the skin of the ear).



erence electrodes made of stainless steel screw was
inserted into the frontal bone. Recordings started after
several days of recovery. Recorded signals were fil-
tered (0.1-5000 Hz), amplified (x1000) and digitized
with sampling frequency of 10 kHz. Down-and-up
whisker movements of about ~0.1 mm amplitude were
produced by piezoelectric slab glued to the whisker
about 20 mm from the face and triggered by computer
generated square impulse (2 ms duration, 18 V). CED
1401 analog-digital interface (Cambridge Electronic
Design) and Spike 2 software were used to control the
experiment and to digitize recorded signals.

At the beginning we compared EP amplitudes
recorded at a given cortical site by stimulation of each
vibrissa and for further experiments we chose the
whisker inducing the largest response (called 'principal
whisker"). During the following 4 to 8 daily sessions the
animals' responses were habituated by repetitive stimu-
lation (100 times during about an hour session) with
pseudo-random inter-trial interval (1545 s). The con-
secutive “experimental” session included two parts: 1.
CONTROL part, during which habituation procedure
was continued (this part consisted of the first 30-50
stimulations) and 2. CONDITIONING part, during
which each whisker stimulation was followed by a mild

Table I
1 2 3 4 5
Rat  barrel / No of No of Number
whisker CONTROL EP COND EP  of used

all / good all / good classifiers
R33 B2 251722 65/62 2
R49 C2 31/27 69 /57 1
R50 C2 31/25 69 /53 2
R52 B2 51/42 49 /40 1
R60 E3 51/37 49 /31 1

Summary of the data set. Consecutive collumns show: (1)
rat number, (2) recording place and stimulated whisker, (3,4)
number of recorded EPs (all) and analysed EP without
artifacts (good) in CONTROL and CONDITIONED part of
the session, (5) number of classifiers from 11.7-12.8 ms
time window accepted for the analysis.
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electric shock applied onto the skin of rat's ear in order
to evoke arousal state of the animal (Fig. 2C).

The 150 ms fragments of field potentials, starting
from the stimulus onset were chosen for the analysis as
they encompassed the most characteristic waves of EP
(Fig. 4, Wrébel et al 1998). Sweeps contaminated by
artifacts (either electronic or of muscular origin) were
removed from the data set by means of visual preselec-
tion. Table I shows the number of all EPs recorded at an
experimental session for each rat together with the num-
ber of potentials used for analysis after artifact removal.

Classification experiment

Local classifiers introduced in the first part of this
paper were used for classification of preselected poten-
tials from dataset described in Table I. EP sweeps of
150 ms length sampled with the frequency of 10 kHz
gave 1500 data points for the analysis.

We used four decomposition levels (J=4) and the
base length parameter was L=10 which corresponds to
20 data points. With these settings the length of base
vector support for level 1 vectors was 2 ms, for level 2
it was 4 ms, for level 3-8 ms, and so on. For the dis-
crimination analysis we set the desired probability that
the training error was not obtained by chance to 0.9.
Since we found no classifiers at the confidence level
o=1 we reduced it until at least one time-window with
satisfactory classifiers for every rat was found. This
was obtained for a=0.95. Reducing the confidence
level even further would result in more classifiers but
with increased probability of random responses. We did
not investigate thoroughly these additional classifiers.

We used the same data for both steps of the method:
training and evaluation/classification due to the rela-
tive scarcity of data. Although in principle this
approach can lead to over-training we think that the
risk here is not high for two reasons: 1) The classifiers
used are based on the concept of separating hyperplane
with a soft margin which is quite robust to outliers
(Vapnik 1998); 2) The classifiers “stability” was
checked by the statistical test introduced before.

The evoked potentials from the experimental ses-
sion were naturally divided into two groups: CON-
TROL (the first 30-50 potentials) and COND (the
remaining 50—70 potentials to the end of the session).
Our previous results (Wrébel et al. 1998) showed that
in the first (control) part of the experimental session
animals remained mostly in the habituated, relaxed
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0 5 10 15 20 25 ms

Fig. 3. Histograms showing the sum of time windows in which
significant classifiers were found during analysis of datasets
from five rats. Results for consecutive base vector levels. (A)
level 1 (2 ms resolution); (B) level 2 (4 ms resolution); (C)
level 3 (8 ms resolution). (D) level 4 (16 ms resolution). The
height of the histogram shows the number of rats for which
there was at least one classifier with support at a given time.

state, which we call here INACTIVE state. On the con-
trary, during conditioned part of the experiment rats
were mostly aroused by aversive stimuli and this state
we call here the ACTIVE state. Thus each response
was evoked at one of the two states and it might easily
be assumed that most of EPs recorded during CON-
TROL period occurred in the INACTIVE cortical state
while most of EPs from COND period appeared in the
ACTIVE states. Thus, we can think of CONTROL and
COND EP groups as good approximations of the
INACTIVE and ACTIVE EP classes, respectively. To
avoid spurious bias which could be introduced by dif-
ferent sizes of the compared EP groups we have limit-
ed the COND group in order to match its size to the
CONTROL one.

The main aim of the experiment was to construct a
reliable classifier allowing attribution of a given poten-
tial to one of the classes and thus recognition of actual

state of the cortex: ACTIVE or INACTIVE.
Identification of the EP fragments carrying information
most relevant for such classification would then allow
for interpretation of the underlying physiological mech-
anisms.

Figure 3 presents supports of those base vectors
which passed the discrimination procedure described
above, for the group of five rats. The height of the his-
togram shows the number of rats for which there was
at least one classifier with support at a given time. In a
search for the general mechanisms we turned our atten-
tion only to those time intervals that were supported by
the whole group, and restricted analysis to the first
30 ms after stimulus which contain easily interpretable
EP waves. During this time there are only two intervals
relevant for the whole group of rats, that is 2.9—4 ms
and 11.7-12.8 ms. Both occur at the second decompo-
sition level whose time resolution is 4 ms (Fig. 3B).
Activation evoked by the whisker stimulation does not
reach the cortex before 5 ms, when the small, positive
wave P1, representing the volley of incoming thalamo-
cortical fibers is seen in EP. The earlier fragment of EP
is most probably a reflection of background cortical
activity that is not a subject of our consideration in this
project. Thus, for further analysis we accepted only the
second interval which falls in with N1 wave of EP, rep-
resenting stimulus-evoked neuronal activity within the
central barrel column. Then, for each rat, we selected
base vectors from the second decomposition level
whose supports intersected with identified time inter-
val (Table I). Figure 4 shows averaged potentials from
groups CONTROL and COND together with the dis-
tribution of supports of the analysis vectors accepted
for a given rat (each plot presents results for a single
rat).

In three animal cases our method gave single signif-
icant classifiers with supports intersecting the chosen
time interval. In two other cases (rats R33 and R50)
two significant classifiers were found (Table I). Each
of them could be sensitive to slightly different features
in the potential or they could match the same feature
but none of them perfectly. Whichever the reason — dif-
ferent classifiers may attribute a given potential to dif-
ferent classes.

There are many ways to avoid ambiguity when more
than one classifier is used. For instance one can choose
the most efficient one, or attribute the potential to one
of the two classes ACTIVE or INACTIVE if majority
of the classifiers agreed. We decided to take the most
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Fig. 4. Averaged potentials from groups COND (solid line) and CONTROL (dashed line). Gray bars indicate time window
and number of selected classifiers. Left ordinate — voltage, right ordinate — number of classifiers.

conservative rule, that is to attribute the potential to one
of the classes only if all (both in our case) of the classi-
fiers agreed. Otherwise the potential was marked UN-
KNOWN. Figure 5 shows the results of the classifier
voting. We believe that potentials classified by the
described procedure as ACTIVE or INACTIVE indeed
represent the two different states of rat’s barrel cortex.
In Fig. 6 we show averaged potentials from the
ACTIVE and INACTIVE classes.

Physiological considerations

The idea of dynamic state control of the brain has
been proposed a long time ago. Specifically, activation
of thalamo-cortical systems has been shown to depend
on modulatory influences from different sources (Arieli
et al 1996, McCormick and van Krosigk 1992, Moruzzi
and Magoun 1949). An active state of the neural net-
work is characterized by widespread, but functionally
limited, activation of specific local systems. These states
have been characterized in sensory, motor, and associa-
tion systems of many mammals. Particular interest was
directed to the dynamic state changes in the cortico-thal-
amic loops of sensory systems (Abeles et al. 1995, Arieli
et al 1996, Kisley and Gerstein 1999, Livingstone and

Hubel 1981, Waleszczyk et al. 2005). In both behaving
and anaesthetized animals random fluctuations between
those modes occur (Arieli et al 1996, Livingstone and
Hubel 1981, Mukherjee and Kaplan1995, Wrébel et al.
1998). These dynamic changes are lost or diminished
during averaging. It implies that reliable methods for
characterizing local brain states are needed in order to
study the computational capacities of the conscious
brain (Arieli et al 1996, Roland 2002).

The result of our analysis showed that the evoked
potentials recorded in our experiment from each rat
were not homogeneous. Despite (or thanks to) the
great variance of the EPs from the experimental ses-
sion, classification experiment showed that they can
be divided into two distinct classes (ACTIVE/INAC-
TIVE) which appear with different frequency during
habituated and aroused periods of the experiment. We
want to stress that potentials of the ACTIVE class
were recorded also in the control part of the experi-
ment and the INACTIVE ones during conditioning
part of the session. It was the frequency of the appear-
ance of the ACTIVE EPs that increased rapidly when
the cortex was aroused by the aversive stimulation
(Fig. 5). Such a result supports the hypothesis that the
state of the cortex (identified here by class of record-
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Fig. 5. Results of the classification. Filled circles indicate EPs classified to ACTIVE state (A), empty circles — EPs classi-
fied to INACTIVE cortical state (I). Gray circles mark EPs which were not classified by the the method (UNKNOWN) and
gray asterisks mark those which were removed from the sample during arbitrary preselection. Vertical line at each plot marks
the time when the aversive shock was introduced.

ed evoked potentials) is a dynamic feature constantly  ponent is delayed of about 3 ms to the supragranular
modulated by external and internal influences. This component and peaks at 12—13 ms after sensory stim-
finding matches our previous results with classifica- ulation in the behaving rats (Musiat et al. 1998). This
tions based on different analytical methods (Kublik component has been shown to increase considerably
2004, Wrébel et al. 1998, Wypych et al. 2003) and is  during the activated state of the barrel cortex (Wrobel
in accordance with the other reports showing dynam- et al. 1998). On the other hand we have also shown
ic changes of the brain states (Abeles et al. 1995, that P2 component that represent the activation of
Arieli et al 1996, Kisley and Gerstein 1999). columns neighboring the principal one (Kublik 2004)

The time window in which significant classifiers grew in COND part of a session. It is not surprising
were found for each rat was between 11.7-12.8 ms that dishabituation evoked by arousal stimuli involve
(Fig. 3 and 4). This period matches the late phase of transmission of information of the reinforced sensory
N1 wave of recorded EPs (Fig. 4). It has been shown stimulus to the surrounding network (Kublik 2004,
to be composed from two main components which can ~ Wrdbel et al. 1998). Thus, the results of present ana-
be attributed to supra- (layers II-1I1) and infragranular  lytical method match our previous findings. It promis-
(layers V-VI) pyramidal cell sources (Kublik et al. esto become an adequate tool for differentiating local
2001, Musiat et al. 1998). The infragranular cell com-  brain states during behavioral experiments.
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Fig. 6. Averaged evoked potentials classified as ACTIVE and INACTIVE.

CONCLUSION

In this paper we have found that the new method of
local classifiers is a viable tool for classification of sin-
gle evoked potentials in behaving animals.
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