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Abstract. We find all null conformal Killing vectors irR* with the metric d du — dx dy. We
classify one and two-dimensional totally null algebras generated by such vectors. Reductions of
the self-dual Yang—Mills equations are obtained for gauge fields invariant with respect to these
algebras.
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1. Introduction

Let R?>? denote the manifoldk* with global coordinates* = (¢, u, x, y) and the metric
ds? = dr du — dx dy (1.1)

of the signature++——. The Yang—Mills field onR?? is represented by a one-form
A = A, dx* with values in the Lie algebra of a Lie group. The form A undergoes the
following gauge transformations

A— A =g lAg+gldg (1.2)
whereg(x*) € G. The field strengths ofA are given by
Fu = 3,A, — 0,A, +[A,, A)). (1.3)

We say thatd is self-dual iff F,,, is Hodge self-dual with respect to the metric (1.1). For
some choice of orientation this condition amounts to the equations

Fo =0, Fyy =0, Fou + Fey = 0. (1.4)

Equations (1.4) are integrability conditions of the following linear equations [W1, BZ] for
a matrix functiony (1, x*), where dety) # 0 anda is a parameter,

(au + Au - )‘(ay + Ay))l/f = 01 (15)
(0x + Ay — 20 + A))Y = 0. (1.6)
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The system of equations (1.4) is an important example of so-called completely integrable
equations (see e.g. [AC]). The point symmetry group of (1.4) is the conformal group
C(2.2) (isomorphic toO (3, 3)). Many lower-dimensional completely integrable equations,
including Korteweg de Vries (KdV) and Nonlinear Sédinger (NLS) equations [MS], can

be obtained from (1.4) (or its complexification) by assuming an invariancé ohder a
subgroup ofC (2, 2) (for reviews, see [W2, AC, MW]). Not all reductions of this type are
known, mainly because there is no complete classification of subgroups of the conformal
group [Wi] (see [KLG] and [DS] for partial results in the Euclidean or complex case).

In this paper we consider algebras of vector fieldsR#? generated by one or two
(orthogonal) null conformal Killing vector;. Such algebras (we call them ‘totally null’)
correspond to particular subgroups 6f2, 2). An invariance ofA under one of these
subgroups is equivalent to the equation(s)

LxA=0, 1.7)

where Lk, denotes the Lie derivative alonkj;. We classify all the totally null algebras
modulo conformal transformations (section 2) and we find reductions of the self-duality
equations for gauge fields satisfying (1.7) (section 3). Some of these reductions are already
known [W3, S, T] (see also [St]).

Each of the two-dimensional algebrae generated hyK» defines at each point &2 a
totally null plane which is either self-dual (then the ten&ay, K»,) satisfies equations (1.4))
or antiself-dual (therKyj, K>, satisfies equations following from (1.4) by the interchange
of x and y). In the case of self-dual planes the reduction of the self-dual Yang—Mills
equations is singular in the sense that the linear system (1.5), (1.6) does not reduce to a
lower-dimensional one (one cannot assume an invariange with respect tok; [T]). We
are not able to prove that, in this case, equations (1.4) are trivial (as partial differential
equations (PDE’s)) for any gauge group, however, there are indications (section 3) that this
is the case.

2. Null conformal Killing vectors
The conformal transformations &2 are generated by translations, rotations, dilations and
the special conformal transformation

.X/M — S_ZX;L’ (21)

wheres? = tu — xy. Every one-dimensional subgroup 612, 2) generates a conformal
Killing vector field K on R%2 which preserves (1.1) up to a factfx)

Lxg =ag. (2.2)

It is easy to write down the general expression for However, it is not easy to split the
set of vector fieldX into classes of fields which are related by conformal transformations
of coordinates (this problem is equivalent to finding all conjugacy classes of elements of the
Lie algebra ofC (2, 2) [DPWZ]). We show in the following theorem that such classification
is quite simple for null Killing vectors, i.e. under the assumption that

K =K'd+ K", + K*3, + K9, K'K" — K*KY =0. (2.3)
Theorem 1. All null conformal Killing vectors inR%? are given by

K = (a1u + a2y + a3)[(b1u + bax 4 b3)d, + (b1y + bat + bs)d,]
+(arx + azt + ag)[(bru + box + b3)dyx + (b1y + bot + bg)d,], (2.4)
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whereq;, b; are real constants defined modulo the transformation> ca;, b; — ¢~ 1b;, c €
R. Every vector (2.4) can be put into one of the inequivalent forms

K =9,, (2.5)

K =a(ud, + yd,), a = constant (2.6)

by means of a conformal transformation which preserves an orientation.

Proof. Any vector satisfying (2.3) can be written as

K = a(dy + nd; +vo, + puvoy) (2.7)
or

K =K*9, + K'9, (2.8)
or

K =K"0, + K"9,. (2.9)

Expressions (2.8) and (2.9) can be obtained from (2.7) (wite O or v = 0) by simple
interchanges of coordinates which preserve (1.1). For this reason we will focus on the case
(2.7). In this case the Killing equation (2.2) gives rise to the following equations

d,a =0, (o) =0, (2.10)
9 (av) =0, dy(apv) =0, (2.11)
0, (ap) — 9, = 0, dy(v) — 9, (apv) = 0, (2.12)
dy(ap) — oy (apv) =0, 0y (av) — 0, =0, (2.13)
O (o) + 9, (av) — 9, (@puv) — 0y = 0. (2.14)
For u = 0 or v = 0 equations (2.10)—(2.14) yield, respectively,
K = (b + byx + b3)d, + (bry + bat + ba)d,. (2.15)
K = (a1u + azy + az)d, + (a1x + ast + aa)o;. (2.16)

Expressions (2.15) and (2.16) are special cases of (2.4).
If v # 0 then equation (2.14) follows from equations (2.10)—(2.13). Equations (2.12)
and (2.13) can be replaced by
Oy + o =0, yp 4+ po =0, (2.17)
dyv +vd,v =0, v+ v, v =0, (2.18)
(for instance, the first equation in (2.17) follows, in virtue of (2.10), from the first equation

in (2.12)). A direct consequence of (2.17) and (2.18) is that the funcjioasd v satisfy
the wave equation

0;0upt — 0x0yt = 0, 0,0,V — 9,0yv = 0. (2.19)

Equations (2.10) and (2.11) can be written as the following system of differential equations
for the functiona

9 loga = 0, d,loga = o, u, (2.20)
o, loga = 9, v, dyloga = d,;u + 9,v. (2.22)

Integrability conditions of (2.20), (2.21) are linear equations doand v, which yield, in
virtue of (2.19),

M= p1+tuz +xus, v = v+ uvy + xvs, (2.22)
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whereu; = w;(u, y) andv; = v; (¢, y). Substituting (2.22) into (2.17) and (2.18) yields
aix + ast + ag biu + box + b3
aiu + axy + az’ Y b1y + bt + by’
whereq; andb; are constants. Given (2.23) one can solve equations (2.20), (2.2&) for
The corresponding vector field (2.7) takes the form (2.4).

In order to prove that every field (2.4) can be transformed into (2.5) or (2.6) we will
consider separately fields for which exactlpf the constantas, a, b1, b, vanish. Ifn =0
then the rescaling = axbyt, u' = a1biu, x’ = a1byx, y' = axb;y transforms all constants
a1, az, by, by to identity. In the new coordinatek takes the form (hereafter we will omit
primes after every transformation of coordinates)

K =@W+y+a3)[u+x+b3)d, + (y+t + bs)dy]
+(x + 1t +ag)[(u+x +b3)d; + (v + 1+ bg)dy]. (2.24)
In virtue of the translation

(2.23)

t' =1+ by, u' =u+ asz, x'=x+bz— as, y =y (2.25)
followed by the special conformal transformation (2KL)transforms into

K =1+au)@, — )+ (L —ay)@ —d,), (2.26)
wherea = a4. Fora # 0 a shift inu andy yields

K =au(d, — 9,) + ay(0;, — 9y), (2.27)

and expression which transforms into (2.6) by means of the transformdtient + y,
u' =u,x'=x4u,y =y. Fora =0 equation (2.26) yields

K=0,—9,+0, — 9, (2.28)
hence (2.5) follows by means of the transformatior= —¢t' — ' — x' — ¥/, u = —u/,
x=u+x,y=u+Yy.

If exactly one of the constants, a,, b1, b, vanishes we can achiewg = 0, a;b1b, # 0
by a simple interchange of coordinates. The constants;, b, can be set equal to identity
due to the transformationl = byt, u’ = aibyu, x' = ai1box, y' = byy. Transformation
(2.25) followed by (2.1) yield

K =au(d; — 9,) + (L —ay)(d, — 9), a = constant (2.29)

For a # 0 one obtains (2.27) which is equivalent to (2.6). ko 0 the transformation
t=—uw,u=—-t'—x',x=x', y=u'+y putK into the form (2.5).
If exactly two of the constants,, az, b1, b, vanish we can obtain either

a) =day = 0, blbg 75 0 (230)
or
bl =dy = 0, a1b2 75 0 (2.31)

by an interchange of coordinates. In the case (2.30) the transformdtienb,t + by,
u' = byu + bz, x’ = box, y = b1y leads to

K = (x + u)(c10y + c20x) + (t + y)(c20; + c19,), (2.32)

wherec; = bias, ¢ = boas. In virtue of the transformation’ = ¢t — y, v’ = x + u,
x'=x—u,y =t-+y one obtains

K = (c2+ c1) (o, + ydy) + (c2 — c1)(udyx + yo,). (2.33)
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For ¢; # +c, an appropriate rescaling ofandx yields again (2.27). Fot; = ¢, relation
(2.33) coincides with (2.6). Far, = —c¢; = ¢ we obtain the expression

K = 2c(ud, + yd,), (2.34)
which transforms to (2.5) under the transformation
= ’ybf —x, u= %, x = ch—fl, y= 2:)}/. (2.35)
In the case (2.31) we first make the transformatibn= byt + by, u' = aiu + as,
x" = ay(box + b3), y) = y, which leads to
K =u(xd, +193,) + (x +¢)(td; + x9y), (2.36)
wherec = byas — bza;. The vectorK takes the form
K = —cud, + (1 —cy)o, (2.37)

upon transformation (2.1). Far # 0 a shift of y yields (2.6). Forc = 0 one obtains
K = 9, which is equivalent to (2.5).

If exactly three of the constants,, az, b1, b, vanish we can assume that # 0,
a; = a; = b, = 0. The transformation’ = ¢, u' = biu + b3, x’ = x, y) = b1y + by
leads toK of the form (2.33), hence (2.5) or (2.6) follows.

If a1 =ay = b1 = by =0 thenK corresponds to a null translation and it can be easily
transformed to (2.5).

Thus, any field of the form (2.4) can be transformed to (2.5) or (2.6) by means of a
conformal transformation. To show that it can be done by a conformal transformation which
preserves an orientation it is sufficient to note thats invariant under the transformation

’ /

' =t, u =u, x' =y, y =x (2.38)

and thatud, + yd, is invariant, modulo the factor -1, under the transformation
t=s"2u, u =s"%, x =572y, y =s"%x (2.39)

wheres? = tu — xy. Transformation (2.38) and (2.39) change an orientatioR%f. Given
a conformal transformation which transforrksinto (2.5) or (2.6) one can always combine
it with (2.38) or (2.39) in order to obtain a transformation which preserves the orientation.

The fieldsd, anda(ud, + yd,) are not related by any conformal transformation. This
can be proved by solving the conditiép = a(ud, + yd,) for a coordinate transformation
and showing that such transformation cannot be conformal. O

Given the classification of null infinitesimal conformal isometriesR3f, one can use
it to find two-dimensional algebras of vector fields (2.4). If these vectors are orthogonal to
each other we will call the corresponding algebra a totally null two-dimensional subalgebra
of the conformal algebra.

Theorem 2. Every totally null two-dimensional subalgebra of the conformal algebrRt
is equivalent, modulo a conformal transformation which preserves an orientation, to one of
the following

Spar{d,, d,}, Spard,, xd, +t9,}, Spar{d,, ud, + yd,}, (2.40)
Spar{d,, 0}, Spar{d,, yo, + toy}, Sparfd,, ud, + xa,}, (2.41)

Tangent planes defined by (2.40) and (2.41) are, respectively, self-dual and antiself-dual.
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Proof. One can assume the following commutation relations for a b@sis K,) of a
subalgebra under consideration

[K1, K2] = €K1, €e=0,1. (2.42)

Due to theorem 1 there are coordinai#ssuch thatk; is given by (2.5) or (2.6). In these
coordinatesk, takes the general form (2.4). K1, K, are to define self-dual totally null
planesk, has to take the form

K> = (biu + box + b3)d, + (b1y + bot + b4)3y. (243)

For K, given by (2.43) andk; given by (2.6) equation (2.42) cannot be satisfied. For
K1 = 9, equation (2.42) yields; = €. Fore = b, = 0 one obtains the algebra Sgan a,}.
Fore = 0, b, # 0 a simple shift inx and¢ leads to the algebra Sp@n, xd, + ¢d,}. For
€ =1 one can easily get rid dfs andbas. If b, = 0 then the algebra Spgh, ud, + yd,}
follows. For b, # 0 one obtains the same algebra due to the transformatiea ¢,
u = u+byx, x' = x,y = y+ by. The first two algebras in (2.4) are Abelian and
the third is non-Abelian. The Abelian ones are nonequivalent since there is no conformal
transformation of coordinates such tféat xd, + 9, are spanned by, anda, .

The algebras (2.41) are obtained from (2.40) by the transformatier, u’ = u, x’ =
v, ¥ = x which changes an orientation (hence self-dual planes become antiself-dual).

3. Reductions of the self-duality equations

In terms of the gauge potentials, = (A,, A,, Ay, A,) the self-duality equations (1.4) take
the form

Ay — 0 Ay +[Au, Ax] =0, (3.1)
8[Ay - ayAl + [Atv A)] = O’ (32)
Ay — 0 A +[Ar, Al + 0, Ay — 0,A +[A, Ay] =0 3.3)

In this section we consider reductions of equations (3.1)—(3.3) for the Yang—Mills fields
invariant under one- or two-dimensional algebras given in section 2 (see (2.5), (2.6), (2.40),
(2.41)). For all the algebras except (2.40) the reduced equations are related to a linear
system which follows from (1.5), (1.6) under the assumption th& annihilated by vector
fields from the algebra (this is also true for all other one- or two-dimensional subalgebras
of the conformed algebra).

We say that the Yang—Mills field is invariant with respect to an algebra generated by
vector fieldsk; iff

Ly A=0 (3.4)

in some gauge. (Note that for the considered algebras condition (3.4) is equivalent to the
more general requirement thatis preserved by; up to gauge transformations [HSV].)

If K = 9, then it follows from (3.4) that all the functiong, are independent ai.
Due to (1.2) one can impose the gauge condition

A, =0 (3.5)

(an alternative gauge condition is considered in [MW, section 5.3]). Then equation (3.1)
yields

A, = B(1, y). (3.6)
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It follows from (3.2) that there is a functioni(z, x, y) € G such that

A, =J7%%,J, A, =771, (3.7)
Equation (3.3) yields the following condition fof
3 (J 9,0y +[J 18,4, Bl + 8B = 0. (3.8)

Thus, for the symmetrk = 9, equations (3.1)—(3.3) reduce to (3.8), whée, y) can be
chosen arbitrarily.

For K = 9, and G = SL(2,C) a more sophisticated reduction of the self-duality
equations can be obtained as follows [W3,S] (see also section 5.3 in [MW)]). In this case
the freedom of gauge transformations (1.2) wite- g(z, y) allows us to transforna,, into
one of the following forms

A, =0, 3.9)

a=ir( 5) r=re, (310)
0 1

(23 o

In the case (3.9) equations (3.1)—(3.3) reduce to linear ones. In the case (3.10) one obtains
the following generalization [Z] of the NLS equation

i¢, + 3¢y +pp =0, (3.12)

—ig, + 1dy + pd =0, (3.13)
where

Py = ($P) . (3.14)

In the case (3.11) equations (3.1)—(3.3) reduce either to a system of ordinary and linear
equations or to the following generalization of the KdV equation

4¢,ty + ¢,xyyy - 8¢$y¢,xy - 4¢x¢n =0 (3-15)
(the corresponding equation (5.3.5) in [MW] contains an error).
For K = ud, + yd, the symmetry condition (3.4) yields
At = A~t7 Au = (u)’)il/zfiu, Ax = Axv A)‘ = (uy)71/2A~)’ (316)

where AM = Aﬂ(t,x,z) and z = y/u. By means of a gauge transformation with
g = g(t,x,z) one obtains (3.5). Then, from (3.1) it follows thatA, = 0. Using
again (1.2) (now with somg = g(z, z)) leads to

A, =A,=0. (3.17)
In virtue of (3.16) and (3.17) equations (3.2) and (3.3) yield

A, — 729, A, +[A,, A)] =0, (3.18)

%29, A, + 8,A, = 0. (3.19)
It follows from (3.18) that there is a functiof(z, x, z) such that

A, =J719,J, Ay =uty e, (3.20)

In terms of J, equation (3.19) takes the following form
(0 +20)(J720.0) +z[J 78,0, T Y0.J] = 0. (3.21)
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Thus, for the symmetry (2.6), the self-duality equations (3.1)—(3.3) reduce to equation (3.21)
for a functionJ (¢, x, z) € G. It seems that in this case one cannot obtain equations similar
to (3.12)—(3.15) (forG = SL(2, C)).

The invariance ofd with respect to one of the algebras (2.40) yields, respectively,

A=A, (3.22)

A=A, —yt724A,, A, =174, A, = A, — yi?A,, A, =114,
(3.23)

A = A, A, =y A, A, = A,, A, =y A, (3.24)

whereAM = Au(t, x). In all the cases the self-duality equations (3.1)—(3.3) reduce to the
following system (equivalent to that in section 6.5 in [MW])

A, +[Ay, A,] =0, (3.25)

A, +[A, A,] =0, (3.26)

A, +[A, A]+ A, +[A,, A)] =0. (3.27)
In order to simplify equations (3.25)—(3.27) we assume the gauge condition

A, =0 (3.28)

(note that relations (3.22)—(3.24) are preserved by transformation (1.2)gwithg (z, x)).
In this gauge equation (3.25) yields

A, = B(), (3.29)

whereB is a Lie algebra-valued function of Equation (3.26) can be solved by introducing
a potential/ (z, x) such that

A, = J719,J, A, =J7rC(x)J, (3.30)
whereC is a Lie algebra valued function of. Equation (3.27) yields
[J7'8,J, Bl +d,(J*CJ)+8,B=0. (3.31)

Thus, in the case of symmetries (2.4), the self-duality equations (3.1)—(3.3) reduce to
equation (3.31) fod/ (¢, x), B(t) andC(x). For these algebras one cannot reduce the linear
equations (1.5), (1.6) by assumir () = K»(y) = 0 since then equation (1.5) would
imply the constraintsA, = A, = 0 which do not follow from (3.1)—(3.3). Equation (3.31)

is related to a pair of Lax operators in a similar way as in the case of completely integrable
ordinary equations.

For the gauge grougU (2) equations (3.25)—(3.27) can be integrated explicitly as
follows. As before, we assume the gauge condition (3.28) and we obtain (3.29).
Equations (3.26) and (3.27) can be considered as algebraic linear equatiohs ¥dich
are solvable iff the following equations are satisfied

Tr(A,8,A,) =0, (3.32)
Tr(A,8,A, + A,8,A,) =0, (3.33)
Tr(A,A,) + Tr(A,8,A, + A,8,A,) = 0. (3.34)
Equations (3.32)—(3.34) are equivalent to the following algebraic condition8 famd A_\,
Tr(B)? = c1t? + 2cot + c3, (3.35)
Tr(BANy) = —C1tx — cox + cat + cs, (3.36)

Tr(Ay)2 = c1x° — 2cax + cg, (3.37)
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wherec; are real constants. Thus, the self-duality equationsSté(2) gauge fields with
symmetries (2.40) do not reduce to interesting differential equations. We do not know
whether this is also true for other gauge groups however our results (unpublished) for
SL(2,C) andSU (3) are also discouraging (we expect similar results for any gauge algebra
which admits an ad-invariant scalar product).

The invariance of the Yang—Mills fieldt with respect to one of the algebras (2.41)
yields, respectively,

A, =A@, y), (3.38)
A = A, —xA,, A, = tA,, A, = tA,, A, = A, —xA,, (3.39)
A, = A, A, = x A, A, =xtA,, A, =A,, (3.40)

whereA, = A,(t, y). Equations (3.1)—(3.3) take the following form

[A., A,] = €A,, (3.41)
A, — A, +[A, A,] =0, (3.42)
atAu + [A,, Au] - ayAx - [Ays Ax] = Ov (343)

wheree = 0 in the cases (3.28) and (3.39) and= 1 in the case (3.40). It follows from
(3.42) that

A=A, =0 (3.44)
in some gauge. From (3.44) and (3.43) one obtains

A, = ,R, A, = 0,R, (3.45)
whereR = R(z, y) is a Lie algebra-valued function. It has to satisfy the equation [T]

[0:R, 9yR] = €0, R, (3.46)

which follows from (3.41). Thus, for symmetries (2.41), the self-duality equations (3.1)—
(3.3) reduce to equation (3.46) f&(z, y), wheree =0, 1.

Fore =1 and a compact gauge group equation (3.46) admits only the trivial solutions
R = R(y). Fore =0 andG = SU(2) equation (3.46) is also trivial since it is equivalent
to R = R(y) ortod,R+ f9,R =0, wheref is a real function. However, in other cases it
might be interesting. For instance, wheer= 0, G = SU(3) andd, R is generic in the sense
that it has three distinct eigenvalues, equation (3.46) is equivalent to the nonlinear equation

#R = f13, R +1f2((3,R)* — 3 Tr(d,R)?, (3.47)

where f1, f> are real functions which can be arbitrarily prescribed. Equation (3.47) can be
replaced by the following quasilinear equation 0r= 9, R

3,0 = d,(f10 +if2(Q* — 3 Tr 0%). (3.48)

Equations (3.41)—(3.43) become more interesting when supplemented by algebraic
conditions on gauge fields. In particular, in this way one can obtain {fer 0) the
Boussinesq equation and tlewave equation (see section 6.4 in [MW] and references
therein). One can try to apply analogous techniques whenl.
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