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algebras.
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1. Introduction

Let R2,2 denote the manifoldR4 with global coordinatesxµ = (t, u, x, y) and the metric

ds2 = dt du− dx dy (1.1)

of the signature++−−. The Yang–Mills field onR2,2 is represented by a one-form
A = Aµ dxµ with values in the Lie algebra of a Lie groupG. The formA undergoes the
following gauge transformations

A→ A′ = g−1Ag + g−1 dg (1.2)

whereg(xµ) ∈ G. The field strengths ofA are given by

Fµν = ∂µAν − ∂νAν + [Aµ,Aν ]. (1.3)

We say thatA is self-dual iffFµν is Hodge self-dual with respect to the metric (1.1). For
some choice of orientation this condition amounts to the equations

Fux = 0, Fty = 0, Ftu + Fxy = 0. (1.4)

Equations (1.4) are integrability conditions of the following linear equations [W1, BZ] for
a matrix functionψ(λ, xµ), where det(ψ) 6= 0 andλ is a parameter,

(∂u + Au − λ(∂y + Ay))ψ = 0, (1.5)

(∂x + Ax − λ(∂t + At))ψ = 0. (1.6)
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The system of equations (1.4) is an important example of so-called completely integrable
equations (see e.g. [AC]). The point symmetry group of (1.4) is the conformal group
C(2.2) (isomorphic toO(3, 3)). Many lower-dimensional completely integrable equations,
including Korteweg de Vries (KdV) and Nonlinear Schrödinger (NLS) equations [MS], can
be obtained from (1.4) (or its complexification) by assuming an invariance ofA under a
subgroup ofC(2, 2) (for reviews, see [W2, AC, MW]). Not all reductions of this type are
known, mainly because there is no complete classification of subgroups of the conformal
group [Wi] (see [KLG] and [DS] for partial results in the Euclidean or complex case).

In this paper we consider algebras of vector fields onR2,2 generated by one or two
(orthogonal) null conformal Killing vectorsKi . Such algebras (we call them ‘totally null’)
correspond to particular subgroups ofC(2, 2). An invariance ofA under one of these
subgroups is equivalent to the equation(s)

LKiA = 0, (1.7)

whereLKi denotes the Lie derivative alongKi . We classify all the totally null algebras
modulo conformal transformations (section 2) and we find reductions of the self-duality
equations for gauge fields satisfying (1.7) (section 3). Some of these reductions are already
known [W3, S, T] (see also [St]).

Each of the two-dimensional algebrae generated byK1,K2 defines at each point ofR2,2 a
totally null plane which is either self-dual (then the tensorK1[µK2ν] satisfies equations (1.4))
or antiself-dual (thenK1[µK2ν] satisfies equations following from (1.4) by the interchange
of x and y). In the case of self-dual planes the reduction of the self-dual Yang–Mills
equations is singular in the sense that the linear system (1.5), (1.6) does not reduce to a
lower-dimensional one (one cannot assume an invariance ofψ with respect toKi [T]). We
are not able to prove that, in this case, equations (1.4) are trivial (as partial differential
equations (PDE’s)) for any gauge group, however, there are indications (section 3) that this
is the case.

2. Null conformal Killing vectors

The conformal transformations ofR2,2 are generated by translations, rotations, dilations and
the special conformal transformation

x
′µ = s−2xµ, (2.1)

where s2 = tu − xy. Every one-dimensional subgroup ofC(2, 2) generates a conformal
Killing vector fieldK on R2,2 which preserves (1.1) up to a factora(x)

LKg = ag. (2.2)

It is easy to write down the general expression forK. However, it is not easy to split the
set of vector fieldsK into classes of fields which are related by conformal transformations
of coordinates (this problem is equivalent to finding all conjugacy classes of elements of the
Lie algebra ofC(2, 2) [DPWZ]). We show in the following theorem that such classification
is quite simple for null Killing vectors, i.e. under the assumption that

K = Kt∂t +Ku∂u +Kx∂x +Ky∂y, KtKu −KxKy = 0. (2.3)

Theorem 1. All null conformal Killing vectors inR2,2 are given by

K = (a1u+ a2y + a3)[(b1u+ b2x + b3)∂u + (b1y + b2t + b4)∂y ]

+(a1x + a2t + a4)[(b1u+ b2x + b3)∂x + (b1y + b2t + b4)∂t ], (2.4)
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whereai, bi are real constants defined modulo the transformationai → cai, bi → c−1bi, c ∈
R. Every vector (2.4) can be put into one of the inequivalent forms

K = ∂u, (2.5)

K = a(u∂u + y∂y), a = constant (2.6)

by means of a conformal transformation which preserves an orientation.

Proof. Any vector satisfying (2.3) can be written as

K = α(∂y + µ∂t + ν∂u + µν∂x) (2.7)

or

K = Kx∂x +Kt∂t (2.8)

or

K = Kx∂x +Ku∂u. (2.9)

Expressions (2.8) and (2.9) can be obtained from (2.7) (withµ = 0 or ν = 0) by simple
interchanges of coordinates which preserve (1.1). For this reason we will focus on the case
(2.7). In this case the Killing equation (2.2) gives rise to the following equations

∂xα = 0, ∂u(αµ) = 0, (2.10)

∂t (αν) = 0, ∂y(αµν) = 0, (2.11)

∂x(αµ)− ∂uα = 0, ∂y(αν)− ∂t (αµν) = 0, (2.12)

∂y(αµ)− ∂u(αµν) = 0, ∂x(αν)− ∂tα = 0, (2.13)

∂t (αµ)+ ∂u(αν)− ∂x(αµν)− ∂yα = 0. (2.14)

For µ = 0 or ν = 0 equations (2.10)–(2.14) yield, respectively,

K = (b1u+ b2x + b3)∂u + (b1y + b2t + b4)∂y, (2.15)

K = (a1u+ a2y + a3)∂y + (a1x + a2t + a4)∂t . (2.16)

Expressions (2.15) and (2.16) are special cases of (2.4).
If αµν 6= 0 then equation (2.14) follows from equations (2.10)–(2.13). Equations (2.12)

and (2.13) can be replaced by

∂uµ+ µ∂xµ = 0, ∂yµ+ µ∂tµ = 0, (2.17)

∂yν + ν∂uν = 0, ∂tν + ν∂xν = 0, (2.18)

(for instance, the first equation in (2.17) follows, in virtue of (2.10), from the first equation
in (2.12)). A direct consequence of (2.17) and (2.18) is that the functionsµ andν satisfy
the wave equation

∂t∂uµ− ∂x∂yµ = 0, ∂t ∂uν − ∂x∂yν = 0. (2.19)

Equations (2.10) and (2.11) can be written as the following system of differential equations
for the functionα

∂x logα = 0, ∂u logα = ∂xµ, (2.20)

∂t logα = ∂xν, ∂y logα = ∂tµ+ ∂uν. (2.21)

Integrability conditions of (2.20), (2.21) are linear equations forµ and ν, which yield, in
virtue of (2.19),

µ = µ1+ tµ2+ xµ3, ν = ν1+ uν2+ xν3, (2.22)
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whereµi = µi(u, y) andνi = νi(t, y). Substituting (2.22) into (2.17) and (2.18) yields

µ = a1x + a2t + a4

a1u+ a2y + a3
, ν = b1u+ b2x + b3

b1y + b2t + b4
, (2.23)

whereai andbi are constants. Given (2.23) one can solve equations (2.20), (2.21) forα.
The corresponding vector field (2.7) takes the form (2.4).

In order to prove that every field (2.4) can be transformed into (2.5) or (2.6) we will
consider separately fields for which exactlyn of the constantsa1, a2, b1, b2 vanish. Ifn = 0
then the rescalingt ′ = a2b2t , u′ = a1b1u, x ′ = a1b2x, y ′ = a2b1y transforms all constants
a1, a2, b1, b2 to identity. In the new coordinatesK takes the form (hereafter we will omit
primes after every transformation of coordinates)

K = (u+ y + a3)[(u+ x + b3)∂u + (y + t + b4)∂y ]

+(x + t + a4)[(u+ x + b3)∂x + (y + t + b4)∂t ]. (2.24)

In virtue of the translation

t ′ = t + b4, u′ = u+ a3, x ′ = x + b3− a3, y ′ = y (2.25)

followed by the special conformal transformation (2.1)K transforms into

K = (1+ au)(∂x − ∂u)+ (1− ay)(∂y − ∂t ), (2.26)

wherea = a4. For a 6= 0 a shift inu andy yields

K = au(∂x − ∂u)+ ay(∂t − ∂y), (2.27)

and expression which transforms into (2.6) by means of the transformationt ′ = t + y,
u′ = u, x ′ = x + u, y ′ = y. For a = 0 equation (2.26) yields

K = ∂x − ∂u + ∂y − ∂t , (2.28)

hence (2.5) follows by means of the transformationt = −t ′ − u′ − x ′ − y ′, u = −u′,
x = u′ + x ′, y = u′ + y ′.

If exactly one of the constantsa1, a2, b1, b2 vanishes we can achievea2 = 0, a1b1b2 6= 0
by a simple interchange of coordinates. The constantsa1, b1, b2 can be set equal to identity
due to the transformationt ′ = b2t , u′ = a1b1u, x ′ = a1b2x, y ′ = b1y. Transformation
(2.25) followed by (2.1) yield

K = au(∂x − ∂u)+ (1− ay)(∂y − ∂t ), a = constant. (2.29)

For a 6= 0 one obtains (2.27) which is equivalent to (2.6). Fora = 0 the transformation
t = −u′, u = −t ′ − x ′, x = x ′, y = u′ + y ′ putK into the form (2.5).

If exactly two of the constantsa1, a2, b1, b2 vanish we can obtain either

a1 = a2 = 0, b1b2 6= 0 (2.30)

or

b1 = a2 = 0, a1b2 6= 0 (2.31)

by an interchange of coordinates. In the case (2.30) the transformationt ′ = b2t + b4,
u′ = b1u+ b3, x ′ = b2x, y ′ = b1y leads to

K = (x + u)(c1∂u + c2∂x)+ (t + y)(c2∂t + c1∂y), (2.32)

where c1 = b1a3, c2 = b2a4. In virtue of the transformationt ′ = t − y, u′ = x + u,
x ′ = x − u, y ′ = t + y one obtains

K = (c2+ c1)(u∂u + y∂y)+ (c2− c1)(u∂x + y∂t ). (2.33)



Null Killing vectors and reductions of the self-duality equations 839

For c1 6= ±c2 an appropriate rescaling oft andx yields again (2.27). Forc1 = c2 relation
(2.33) coincides with (2.6). Forc2 = −c1 = c we obtain the expression

K = 2c(u∂x + y∂t ), (2.34)

which transforms to (2.5) under the transformation

t = t ′u′

y ′
− x ′, u = 1

y ′
, x = 2cu′

y ′
, y = t ′

2cy ′
. (2.35)

In the case (2.31) we first make the transformationt ′ = b2t + b4, u′ = a1u + a3,
x ′ = a1(b2x + b3), y ′ = y, which leads to

K = u(x∂u + t∂y)+ (x + c)(t∂t + x∂x), (2.36)

wherec = b2a4− b3a1. The vectorK takes the form

K = −cu∂u + (1− cy)∂y (2.37)

upon transformation (2.1). Forc 6= 0 a shift of y yields (2.6). Forc = 0 one obtains
K = ∂y which is equivalent to (2.5).

If exactly three of the constantsa1, a2, b1, b2 vanish we can assume thatb1 6= 0,
a1 = a2 = b2 = 0. The transformationt ′ = t , u′ = b1u + b3, x ′ = x, y ′ = b1y + b4

leads toK of the form (2.33), hence (2.5) or (2.6) follows.
If a1 = a2 = b1 = b2 = 0 thenK corresponds to a null translation and it can be easily

transformed to (2.5).
Thus, any field of the form (2.4) can be transformed to (2.5) or (2.6) by means of a

conformal transformation. To show that it can be done by a conformal transformation which
preserves an orientation it is sufficient to note that∂u is invariant under the transformation

t ′ = t, u′ = u, x ′ = y, y ′ = x (2.38)

and thatu∂u + y∂y is invariant, modulo the factor -1, under the transformation

t ′ = s−2u, u′ = s−2t, x ′ = s−2y, y ′ = s−2x (2.39)

wheres2 = tu−xy. Transformation (2.38) and (2.39) change an orientation ofR2,2. Given
a conformal transformation which transformsK into (2.5) or (2.6) one can always combine
it with (2.38) or (2.39) in order to obtain a transformation which preserves the orientation.

The fields∂u anda(u∂u + y∂y) are not related by any conformal transformation. This
can be proved by solving the condition∂u′ = a(u∂u + y∂y) for a coordinate transformation
and showing that such transformation cannot be conformal. �

Given the classification of null infinitesimal conformal isometries ofR2,2, one can use
it to find two-dimensional algebras of vector fields (2.4). If these vectors are orthogonal to
each other we will call the corresponding algebra a totally null two-dimensional subalgebra
of the conformal algebra.

Theorem 2. Every totally null two-dimensional subalgebra of the conformal algebra ofR2,2

is equivalent, modulo a conformal transformation which preserves an orientation, to one of
the following

Span{∂u, ∂y}, Span{∂u, x∂u + t∂u}, Span{∂u, u∂u + y∂y}, (2.40)

Span{∂u, ∂x}, Span{∂u, y∂u + t∂x}, Span{∂u, u∂u + x∂x}, (2.41)

Tangent planes defined by (2.40) and (2.41) are, respectively, self-dual and antiself-dual.
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Proof. One can assume the following commutation relations for a basis(K1,K2) of a
subalgebra under consideration

[K1,K2] = εK1, ε = 0, 1. (2.42)

Due to theorem 1 there are coordinatesxµ such thatK1 is given by (2.5) or (2.6). In these
coordinatesK2 takes the general form (2.4). IfK1, K2 are to define self-dual totally null
planesK2 has to take the form

K2 = (b1u+ b2x + b3)∂u + (b1y + b2t + b4)∂y. (2.43)

For K2 given by (2.43) andK1 given by (2.6) equation (2.42) cannot be satisfied. For
K1 = ∂u equation (2.42) yieldsb1 = ε. Forε = b2 = 0 one obtains the algebra Span{∂u, ∂y}.
For ε = 0, b2 6= 0 a simple shift inx and t leads to the algebra Span{∂u, x∂u + t∂y}. For
ε = 1 one can easily get rid ofb3 andb4. If b2 = 0 then the algebra Span{∂u, u∂u + y∂y}
follows. For b2 6= 0 one obtains the same algebra due to the transformationt ′ = t ,
u′ = u + b2x, x ′ = x, y ′ = y + b2t . The first two algebras in (2.4) are Abelian and
the third is non-Abelian. The Abelian ones are nonequivalent since there is no conformal
transformation of coordinates such that∂u, x∂u + t∂y are spanned by∂u′ and∂y ′ .

The algebras (2.41) are obtained from (2.40) by the transformationt ′ = t, u′ = u, x ′ =
y, y ′ = x which changes an orientation (hence self-dual planes become antiself-dual).�

3. Reductions of the self-duality equations

In terms of the gauge potentialsAµ = (At , Au,Ax,Ay) the self-duality equations (1.4) take
the form

∂uAx − ∂xAu + [Au,Ax ] = 0, (3.1)

∂tAy − ∂yAt + [At,Ay ] = 0, (3.2)

∂tAu − ∂uAt + [At,Au] + ∂xAy − ∂yAx + [Ax,Ay ] = 0. (3.3)

In this section we consider reductions of equations (3.1)–(3.3) for the Yang–Mills fields
invariant under one- or two-dimensional algebras given in section 2 (see (2.5), (2.6), (2.40),
(2.41)). For all the algebras except (2.40) the reduced equations are related to a linear
system which follows from (1.5), (1.6) under the assumption thatψ is annihilated by vector
fields from the algebra (this is also true for all other one- or two-dimensional subalgebras
of the conformed algebra).

We say that the Yang–Mills fieldA is invariant with respect to an algebra generated by
vector fieldsKi iff

LKiA = 0 (3.4)

in some gauge. (Note that for the considered algebras condition (3.4) is equivalent to the
more general requirement thatA is preserved byKi up to gauge transformations [HSV].)

If K = ∂u then it follows from (3.4) that all the functionsAµ are independent ofu.
Due to (1.2) one can impose the gauge condition

Ax = 0 (3.5)

(an alternative gauge condition is considered in [MW, section 5.3]). Then equation (3.1)
yields

Au = B(t, y). (3.6)
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It follows from (3.2) that there is a functionJ (t, x, y) ∈ G such that

At = J−1∂tJ, Ay = J−1∂yJ. (3.7)

Equation (3.3) yields the following condition forJ

∂x(J
−1∂yJ )+ [J−1∂tJ, B] + ∂tB = 0. (3.8)

Thus, for the symmetryK = ∂u equations (3.1)–(3.3) reduce to (3.8), whereB(t, y) can be
chosen arbitrarily.

For K = ∂u and G = SL(2, C) a more sophisticated reduction of the self-duality
equations can be obtained as follows [W3,S] (see also section 5.3 in [MW]). In this case
the freedom of gauge transformations (1.2) withg = g(t, y) allows us to transformAu into
one of the following forms

Au = 0, (3.9)

Au = if

(
1 0
0 −1

)
, f = f (t, y), (3.10)

Au =
(

0 1
0 0

)
. (3.11)

In the case (3.9) equations (3.1)–(3.3) reduce to linear ones. In the case (3.10) one obtains
the following generalization [Z] of the NLS equation

iφ,t + 1
2φ,xy + ρφ = 0, (3.12)

−iφ̃,t + 1
2φ̃,xy + ρφ̃ = 0, (3.13)

where

ρ,y = (φφ̃),x . (3.14)

In the case (3.11) equations (3.1)–(3.3) reduce either to a system of ordinary and linear
equations or to the following generalization of the KdV equation

4φ,ty + φ,xyyy − 8φ,yφ,xy − 4φ,xφ,yy = 0 (3.15)

(the corresponding equation (5.3.5) in [MW] contains an error).
ForK = u∂u + y∂y the symmetry condition (3.4) yields

At = Ãt , Au = (uy)−1/2Ãu, Ax = Ãx, Ay = (uy)−1/2Ãy (3.16)

where Ãµ = Ãµ(t, x, z) and z = y/u. By means of a gauge transformation with
g = g(t, x, z) one obtains (3.5). Then, from (3.1) it follows that∂xAu = 0. Using
again (1.2) (now with someg = g(t, z)) leads to

Ax = Au = 0. (3.17)

In virtue of (3.16) and (3.17) equations (3.2) and (3.3) yield

∂t Ãy − z1/2∂zÃt + [Ãt , Ãy ] = 0, (3.18)

z3/2∂zÃt + ∂xÃy = 0. (3.19)

It follows from (3.18) that there is a functionJ (t, x, z) such that

At = J−1∂tJ, Ay = u−1J−1∂zJ. (3.20)

In terms ofJ , equation (3.19) takes the following form

(∂x + z∂t )(J−1∂zJ )+ z[J−1∂tJ, J
−1∂zJ ] = 0. (3.21)
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Thus, for the symmetry (2.6), the self-duality equations (3.1)–(3.3) reduce to equation (3.21)
for a functionJ (t, x, z) ∈ G. It seems that in this case one cannot obtain equations similar
to (3.12)–(3.15) (forG = SL(2, C)).

The invariance ofA with respect to one of the algebras (2.40) yields, respectively,

Aµ = Ãµ, (3.22)

At = Ãt − yt−2Ãy, Au = t−1Ãu, Ax = Ãx − yt−2Ãu, Ay = t−1Ãy,

(3.23)

At = Ãt , Au = y−1Ãu, Ax = Ãx, Ay = y−1Ãy, (3.24)

whereÃµ = Ãµ(t, x). In all the cases the self-duality equations (3.1)–(3.3) reduce to the
following system (equivalent to that in section 6.5 in [MW])

∂xÃu + [Ãx, Ãu] = 0, (3.25)

∂t Ãy + [Ãt , Ãy ] = 0, (3.26)

∂t Ãu + [Ãt , Ãu] + ∂xÃy + [Ãx, Ãy ] = 0. (3.27)

In order to simplify equations (3.25)–(3.27) we assume the gauge condition

Ãx = 0 (3.28)

(note that relations (3.22)–(3.24) are preserved by transformation (1.2) withg = g(t, x)).
In this gauge equation (3.25) yields

Ãu = B(t), (3.29)

whereB is a Lie algebra-valued function oft . Equation (3.26) can be solved by introducing
a potentialJ (t, x) such that

Ãt = J−1∂tJ, Ãy = J−1C(x)J, (3.30)

whereC is a Lie algebra valued function ofx. Equation (3.27) yields

[J−1∂tJ, B] + ∂x(J−1CJ)+ ∂tB = 0. (3.31)

Thus, in the case of symmetries (2.4), the self-duality equations (3.1)–(3.3) reduce to
equation (3.31) forJ (t, x), B(t) andC(x). For these algebras one cannot reduce the linear
equations (1.5), (1.6) by assumingK1(ψ) = K2(ψ) = 0 since then equation (1.5) would
imply the constraintsAu = Ay = 0 which do not follow from (3.1)–(3.3). Equation (3.31)
is related to a pair of Lax operators in a similar way as in the case of completely integrable
ordinary equations.

For the gauge groupSU(2) equations (3.25)–(3.27) can be integrated explicitly as
follows. As before, we assume the gauge condition (3.28) and we obtain (3.29).
Equations (3.26) and (3.27) can be considered as algebraic linear equations forÃt , which
are solvable iff the following equations are satisfied

Tr(Ãy∂t Ãy) = 0, (3.32)

Tr(Ãu∂t Ãu + Ãu∂xÃy) = 0, (3.33)

Tr(Ãu∂t Ãy)+ Tr(Ãy∂t Ãu + Ãy∂xÃy) = 0. (3.34)

Equations (3.32)–(3.34) are equivalent to the following algebraic conditions forB andÃy

Tr(B)2 = c1t
2+ 2c2t + c3, (3.35)

Tr(BÃy) = −c1tx − c2x + c4t + c5, (3.36)

Tr(Ãy)
2 = c1x

2− 2c4x + c6, (3.37)
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whereci are real constants. Thus, the self-duality equations forSU(2) gauge fields with
symmetries (2.40) do not reduce to interesting differential equations. We do not know
whether this is also true for other gauge groups however our results (unpublished) for
SL(2, C) andSU(3) are also discouraging (we expect similar results for any gauge algebra
which admits an ad-invariant scalar product).

The invariance of the Yang–Mills fieldA with respect to one of the algebras (2.41)
yields, respectively,

Aµ = Ãµ(t, y), (3.38)

At = Ãt − xÃx, Au = tÃu, Ax = tÃx, Ay = Ãy − xÃu, (3.39)

At = Ãt , Au = x−1Ãu, Ax = x−1Ãx, Ay = Ãy, (3.40)

whereÃµ = Ãµ(t, y). Equations (3.1)–(3.3) take the following form

[Ãx, Ãu] = εÃu, (3.41)

∂t Ãy − ∂yÃt + [Ãt , Ãy ] = 0, (3.42)

∂t Ãu + [Ãt , Ãu] − ∂yÃx − [Ãy, Ãx ] = 0, (3.43)

whereε = 0 in the cases (3.28) and (3.39) andε = 1 in the case (3.40). It follows from
(3.42) that

Ãt = Ãy = 0 (3.44)

in some gauge. From (3.44) and (3.43) one obtains

Ãu = ∂yR, Ãx = ∂tR, (3.45)

whereR = R(t, y) is a Lie algebra-valued function. It has to satisfy the equation [T]

[∂tR, ∂yR] = ε∂yR, (3.46)

which follows from (3.41). Thus, for symmetries (2.41), the self-duality equations (3.1)–
(3.3) reduce to equation (3.46) forR(t, y), whereε = 0, 1.

For ε = 1 and a compact gauge group equation (3.46) admits only the trivial solutions
R = R(y). For ε = 0 andG = SU(2) equation (3.46) is also trivial since it is equivalent
to R = R(y) or to ∂yR+ f ∂tR = 0, wheref is a real function. However, in other cases it
might be interesting. For instance, whenε = 0,G = SU(3) and∂yR is generic in the sense
that it has three distinct eigenvalues, equation (3.46) is equivalent to the nonlinear equation

∂tR = f1∂rR + if2((∂yR)
2− 1

3 Tr(∂yR)
2), (3.47)

wheref1, f2 are real functions which can be arbitrarily prescribed. Equation (3.47) can be
replaced by the following quasilinear equation forQ = ∂yR

∂tQ = ∂y(f1Q+ if2(Q
2− 1

3 TrQ2)). (3.48)

Equations (3.41)–(3.43) become more interesting when supplemented by algebraic
conditions on gauge fields. In particular, in this way one can obtain (forε = 0) the
Boussinesq equation and then-wave equation (see section 6.4 in [MW] and references
therein). One can try to apply analogous techniques whenε = 1.
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