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Time Evolution of Quantum Fractals
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We propose a general construction of wave functions of arbitrary prescribed fractal dimension, for a
wide class of quantum problems, including the infinite potential well, harmonic oscillator, linear potential,
and free particle. The box-counting dimension of the probability density Pt�x� � jC�x, t�j2 is shown
not to change during the time evolution. We prove a universal relation Dt � 1 1 Dx�2 linking the
dimensions of space cross sections Dx and time cross sections Dt of the fractal quantum carpets.
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Fractal objects are defined by their scaling behavior at
the infinitely small or large scales. Such a requirement can
be fulfilled by mathematical constructions (e.g., Cantor
set), for which one assumes that the inductive algorithm
is performed infinitely many times. Mathematical theory
of fractals is well established [1,2].

In contrast, in the physical world any scaling property
cannot hold for infinity of scales [1]. In spite of this obvi-
ous limitation, fractals found many applications in almost
every branch of physics [1,3–6]. From the physicist’s
point of view, one tends to call an object fractal if the
scaling behavior can be observed for at least several or-
ders of magnitude [1].

Can fractal behavior be found in quantum theory despite
the coarse-graining effects of the Heisenberg uncertainty
principle? Berry gave a partial answer to this question in
an insightful paper [7]. He constructed a quantum fractal
in a box from solutions of the Schrödinger equation for
a particle in an infinite potential well. Assuming initial
probability density to be uniform in the well, jC�x, t �
0�j2 � const, he showed that for (almost all) later times
t . 0, the probability function Pt�x� � jC�x, t�j2 has a
fractal nature and is characterized by the fractal dimen-
sion Dx � D 1 1�2 . 1, where D is the (Euclidean) di-
mension of the space. Berry’s wave functions are initially
discontinuous at the boundaries of the well. Because of
propagation effects these initial discontinuities cause the
wave function to become fractal.

In this Letter, we propose a general construction of
fractal solutions of the Schrödinger equation. Our con-
struction scheme is valid for a large class of one-, two-,
or three-dimensional quantum problems. It can also be
easily generalized to other wave phenomena in classical
and quantum physics. For definiteness we demonstrate
its usefulness for some textbook examples (infinite po-
tential well, linear potential, harmonic oscillator, and free
particle). All these well-known quantum problems are
integrable, and our approach does not rely on chaotic dy-
namics. Moreover, our fractal wave functions are continu-
ous everywhere.
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Several quantum models related to chaotic scattering
were also found to exhibit fractallike structures [8,9] due
to external perturbations or internal disorder. In our case
fractality emerges in a regular system as a result of a spe-
cial choice of the initial wave function.

We begin with the celebrated Weierstrass function
[10,11]:

W�x� �
X̀
n�0

bn sin�anx�, a . 1 . b . 0, ab $ 1 ,

(1)

often quoted as an example of a continuous, nowhere
differentiable function [2]. It exhibits fractal properties
and the box dimension of its graph is DW � 2 2 j

lnb
lna j.

Nonanaliticity of W�x� is linked to the power-law behavior
of its maximal oscillation oscW on the interval of length t.
It is known [2] that if oscW �t� � tk for small t, where k

is called the Hölder exponent, then the fractal (box count-
ing) dimension is dimB graph�W�x�� � 2 2 k. For the
Weierstrass function oscW �t� � t2 lnb� lna [11].

Let us consider solutions of the Schrödinger equation
i≠tC�x, t� � 2=2C�x, t� for a particle in an infinite po-
tential well. The general solutions satisfying the boundary
conditions C�0, t� � 0 � C�p , t� have the form

C�x, t� �
X̀
n�1

an sin�nx�e2in2t . (2)

In analogy to the Weierstrass function we construct fractal
wave functions of the form

CM�x, t� � N
MX

n�0

qn�s22� sin�qnx�e2iq2nt , (3)

where q � 2, 3, . . . , 2 . s . 0.
In the physically interesting case of any finite M the

wave function CM is a solution of the Schrödinger equa-
tion. The limiting case

C�x, t� � limM!` CM�x, t� , (4)

with the normalization constant N �
q

2
p

�1 2 q2�s22�� is
continuous but nowhere differentiable. It represents a
vector in the Hilbert space which does not belong to the
© 2000 The American Physical Society
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domain of the Hamiltonian H. However, it does belong to
the domain of the unitary evolution operator. It can also
be considered as a solution of the Schrödinger equation in
the weak sense: For any fixed orthonormal basis �jwn�	
for every n we have


HwnjC�t�� � ih̄
≠

≠t 
wnjC�t�� . (5)

We show that not only the real part of the wave function
C�x, t�, but also the physically important probability den-
sity P�x, t� � jC�x, t�j2 exhibit fractal nature. This is not
obvious, because jC�x, t�j2 is the sum of squares of real
and imaginary part having usually equal dimensions. But
the dimension of the graph of a sum of functions whose
graphs have the same dimensions D can be anything from
1 to D (consider 1f and 2f ).

In [12] we prove that the probability density P�x, t� for
the wave function (4) has the following properties: (1) At
the initial time t � 0 the probability density, P0�x� �
P�x, 0�, forms a fractal graph in the space variable (i.e.,
a space fractal) of dimension Dx � max�s, 1	; (2) the di-
mension Dx of graph of Pt�x� does not change in time;
(3) for almost every x inside the well the probability den-
sity, Px�t� � P�x � const, t�, forms a fractal graph in the
time variable (i.e., a time fractal) of dimension Dt�x� �
Dt :� 1 1 s�2; (4) for a discrete, dense set of points xd ,
Pxd �t� � P�xd , t� is smooth and thus Dt�xp� � 1; (5) for
even q the average velocity d
x��dt is fractal with its graph
dimension equal to Dy � max��1 1 s��2, 1	; (6) the sur-
face P�x, t� has the dimension Dxt � 2 1 s�2.

We will call the two-dimensional contour plots of the
probability density P�x, t� the fractal quantum carpets in
analogy to the term quantum carpets used in the past [13].
In Fig. 1 we show a typical fractal quantum carpet (lighter
shade means greater probability) obtained for q � 2, s �
3�2, and its time and space cross sections. Periodicity in
time inhibits the decay of correlations. The period 2p�3
visible in the carpet is connected with the structure of
the frequency spectrum vm,k � 4m 2 4m2k � 3�4m21 1

· · · 1 4m2k�, m � 1, . . . , `, k � 1, . . . , m of the probabil-
ity density P�x, t�. The equal spacing between the clusters
on the logarithmic scale

lnvm,k � m ln4 2 1�4k (6)

allows for the fractal properties of P�x, t� in time.
The dimensions Dx and Dt are the dimensions of the

(generic) cross sections of the carpet P�x, t� in the space
(Figs. 1c and 1d) and time (Fig. 1e) directions.

The Hölder exponent k in the x direction is �2 2 s�
and in the t direction is �2 2 s��2 since the frequencies
of time oscillations, exp�2iq2nt�, grow as q2n. For these
results to hold it is crucial for the series in Eq. (4) to be in-
finite. This is not the case at the points xd � kp�qm (k �
0, 1, . . . , qm), for which the series (4) consists of at most m
terms and the time dependence Px�t� is smooth (Dt � 1).
An example of this behavior is shown in Fig. 1f. Thus,
FIG. 1. Fractal quantum carpet in a box (a), average velocity
(b), space [at t � 0 (c), and t � 1 (d)] and time [at x � 1
(e), and x � p�8 (f )] cross sections obtained by superimposing
M � 20 terms in Eq. (3) with q � 2, s � 3�2.

Dt�x� � dimB graphjC�x � const, t�j2 forms a nowhere
continuous function on �0, p�; for almost all arguments
Dt�x� � Dt � 1 1 s�2, while it is equal to 1 for the
dense set of points in this interval �kp�2m	.

Our fractal wave functions (4) have infinite mean energy
necessary to generate mathematical fractals with infinite
scaling. In practice a few terms in the series may lead to
physically interesting effects. The lack of differentiability
of C�x� leads to the average momentum 
p� being ill
defined. On the other hand, we may compute the average
position 
x� and define the average velocity y � d
x��dt
not equal to 
p��m for infinite series (4). For physical
fractals (3) we recover the Ehrenfest theorem and 
y� �

p��m. Straightforward calculations give a continuous
function of the class C 1, which for even q is


x� �
p

2
2

16�1 2 q2�s22��
p

X̀
k�1

qk�s21� cos�q2k 2 1�t
�q2k 2 1�2 .

(7)

It is a semifractal, since its first derivative y produces
a fractal graph with dimension Dy � max��1 1 s��2, 1	
(Fig. 1b). For odd q, 
x� � p�2 and Dy � 1. In the
region where all the three dimensions characterizing the
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fractal carpet P�x, t� are noninteger (2 . s . 1), they are
not independent but linked by the relation

Dt 1 Dy � Dx 1 3�2 . (8)

Comprehensive analysis of the details of the fractal wave
functions in the potential well is provided in [12].

Let us now demonstrate how to generate fractal solutions
of the Schrödinger equation for the 1D harmonic oscilla-
tor. Let wn�x� denote the eigenstates of this Hamiltonian
expressed by the Hermite polynomials Hn�x�

wn�x� � �
p

2p 2nn!�21�2Hn�x�
p

2� exp�2x2�4� , (9)

where x is measured in units
p

h̄�2mv.
Consider the following superposition of eigenstates

C�x, t� � N
X̀
n�1

qn�s23�2�wq2n �x�e2i�q2n11�2�t (10)

with a natural q and a real 3�2 . s . 1. On every fixed
interval �2x0, x0� sufficiently high energy eigenstates can
be arbitrarily well approximated by

wn�x� � n21�4 sin�
q

n 1 1�2 x 2 �n 2 1�p�2� , (11)

which follows from neglecting the potential in the WKB
approximation. Thus the high n contribution to the wave
function (10) responsible for the fine scale structure of the
probability density reduces to

C̃�x, t� �
X̀
n�p

qn�s22� sin�qnx 2 uqn �e2i�q2n11�2�t . (12)

The analysis similar to the case of the infinite well allows
one to obtain the dimensions of the cross sections of the
fractal carpet jC�x, t�j2

Dx � s and Dt � 1 1 s�2 � 1 1 Dx�2 . (13)

Note that this reasoning is valid for arbitrarily large x0.
However, the larger x0 the more terms in the sum one needs
to take to observe the fractal structure. An example of the
fractal carpet for harmonic oscillator is provided in Fig. 2.

We conjecture that the relation Dt � 1 1 Dx�2 is valid
for a wide class of fractal solutions [not necessarily of the
form (3)] of one-dimensional problems. This is due to the
connection between the energy and momentum En � k2

n

FIG. 2. Fractal quantum carpet jC�x, t�j2 of dimension Dxt �
21�8 for quantum harmonic oscillator obtained for q � 2, s �
5�4, and M � 15 terms in (10).
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for high energy states (when one can neglect the poten-
tial). We provide here an explicit construction for asymp-
totically power-law potentials (for large jxj, V �x� � jxja ,
where a . 0). For these potentials we define the follow-
ing superposition of the eigenstates:

CH�x, t� � N
X̀
n�1

qn�s2211�a�wbn �x�e2iEbn t , (14)

where bn is the integer part of q�112�a�n, q . 1 and
2 . s . 0. Such a function has the following properties:
(1) It is a normalizable solution of the corresponding
Schrödinger equation in a weak sense for s , 2 2 1�a;
(2) for all tc the space dimension is constant, and
dimB graph�Ptc �x�� � Dx � max�1, s	; (3) for almost all
xa the time dimension is constant, and dimB graph 3

�Pxa �t�� � Dt � 1 1 s�2; (4) for a countable dense set of
xb , P�xb , t� is differentiable and dimB graph�Pxb �t�� � 1;
(5) the surface P�x, t� has dimension Dxt � 2 1 s�2.

To show this consider a superposition of eigenstates
(14), by construction a weak solution of the Schrödinger
equation. For large n the WKB approximation gives
eigenenergies En � nb with b � 2a��2 1 a� (e.g.,
[14]) and eigenstates wn�x� � gn sin�knx 2 un�, where
the momentum kn �

p
En � nb�2. The normalization

constant scales as gn � n2g . To determine g consider the
classical return points xn which satisfy nb � En � xa

n ,
thus xn � nb�a � n2��21a�. Therefore

Z xn

2xn

g2
n dx � 1, so gn � 1�

p
xn � n2g , (15)

where g � 1��2 1 a� � �2 2 b��4. Hence

wbn �x� � gbn sin�kbn x 2 ubn � � q2n�a sin�qnx� , (16)

and the wave function (14) might be written in the
Weierstrass-like form

CH�x, t� �
X̀
n�1

qn�s22� sin�qnx 2 ubn �e2iq2nt . (17)

Repeating the reasoning used earlier for the problem of
rectangular well we conclude that if 2 2 1�a . s . 0
then for all t the space dimension of the carpet is Dx �
max�1, s	, while for almost all xc the above series is infi-
nite and the time dimension reads Dt � 1 1 s�2 � 1 1

Dx�2. The exponents a, b, and g for the linear potential,
harmonic oscillator, and the infinite well are as follows:

Generic a b � 2a��2 1 a� g � 1��2 1 a�

Linear 1 2�3 1�3
Harm. Osc. 2 1 1�4
Well ` 2 0

These results can be generalized to D-dimensional
power-law potentials for which Dx � D 1 2Dt 2 3
when Dt $ 3�2 or Dx � D otherwise [12].

The idea of producing fractal functions by taking a suit-
able superposition of eigenstates with the wavelengths of
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FIG. 3. Quantum carpet for free particle (19) with M � 30
terms, s � 3�2 and q � 2 displays fractal properties (Dx �
3�2) only at t � 0. For t fi 0, Dx � 1.

different orders of magnitude is very general and might
be used for many problems. However, it cannot be eas-
ily generalized to continuous spectra. Let us consider, for
example, a free particle in one dimension. Following our
constructions [Eqs. (3), (10), (14)] we may write down a
fractal superposition of the plane waves. To localize it we
introduce a square integrable envelope f�x�. In this case
the wave function is the sum of two terms of the form

C6�x, t� �
X
n

qn�s22�e6iqnx2iq2ntf�x 7 2qnt, t� , (18)

where f�x, t� is the solution of the Schrödinger equation
satisfying f�x, 0� � f�x�. The fractal properties of this
packet will depend on the asymptotic behavior of f�x, t�
for large x. Fractality is destroyed if f decreases suffi-
ciently fast. This is the case (see Fig. 3) for the Gaussian
envelope of variance s2:

C�x, t� �
X̀
n�0

qn�s22� sin� xqn

11it � exp�2 x2�41iq2nt
11it �

�1 1 it�1�2 , (19)

where x is measured in units of s and t in units of
2ms2�h̄.

For any nonzero value of t the absolute value of the
last term decreases exponentially with n, which destroys
fractality. Therefore, this state is fractal only at t � 0.

In conclusion, we have presented a general method of
constructing fractal solutions of the Schrödinger equation
and other equations that admit eigenfunction expansions.
We have shown that fractals in quantum mechanics are
equally legitimate as in the classical theory. In practice,
the obvious physical limitations will not allow one to find
in nature a Platonic structure of mathematical fractals, for
which the property of scaling holds at all scales. On the
other hand, one may well try to construct experimentally
quantum states, for which scaling may be observed for at
least a few decades. Since the number of energy levels of
a particle of a mass m in a potential well of characteris-
tic length L scales as n � L

p
m, the states described by

the fractal wave functions might be easier to produce for
heavy atoms, or ions, in macroscopic traps. Alternatively,
one might look for the fractal solutions of the Maxwell
equations in microwave cavities.
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Komitet Badań Naukowych is gratefully acknowledged.

*Email address: danek@cft.edu.pl
†Email address: birula@cft.edu.pl
‡On leave from Instytut Fizyki, Uniwersytet Jagielloński,
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