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Dimension of interaction dynamics
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A method allowing one to distinguish interacting from noninteracting systems based on available time series
is proposed and investigated. Some facts concerning generalizgd dR@mensions that form the basis of our
method are proved. We show that one can find the dimension of the part of the attractor of the system
connected with interaction between its parts. We use our method to distinguish interacting from noninteracting
systems on the examples of logistic andnidie maps. A classification of all possible interaction schemes is
given.
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[. INTRODUCTION Unfortunately, linear time series analysis gives meaning-
ful results only in the case of linear systems or stochastic

Given two time series can one tell if they originated from time series. It is well known that spectral analysis alone can-
interacting or noninteracting systems? We show that with theot discriminate between low-dimensional nonlinear deter-
help of embedding method4], Takens’ theorenj2,3], and  ministic systems and stochastic systefh], even though
some facts concerning Rgi dimensions that we prove, one the properties of the two kinds of system are different.
can succeed in the case of chaotic systems. Moreover, one Methods based on entropy measures represent one viable
can quantify the common part of the dynamics, which weapproach for detecting nonlinear relations between the activ-
call the dynamics of interaction. ity of different neural assemblig®]. Recently another ap-

It happens sometimes, especially in simple systems likproach based on nonlinear mutual prediction has been pro-
electronic circuits or coupled mechanical oscillators, that ongposed and used in an experiment. Pecora, Carroll, and Heagy
knows whether the systems under investigation are coupleld 1] developed a statistics to study the topological nature of
or not, and the direction and sometimes strength of the coudunctional relationships between coupled systems. Schiff
pling. However, there are many complex phenomena in naet al. [12] used it as a basis of their method. The idea is as
ture where one is unable to verify directly the existence offollows. If there exists a functional relationship between two
coupling between parts of the system in which the phenomsystems, it is possible to predict the state of one system from
enon takes place. Especially in complex spatiotemporal syshe known states of the other. This happens if the coupling
tems, like fluid systems, brain, neuronal tissue, social sysbetween two systems is strong enough so that generalized
tems, etc., one often faces the problems of characterization sfynchronization occurgl1,13,14. The average normalized
the interdependence of parts of the system of interest and @futual prediction error is used to quantify the strength and
quantifying the strength of interactions between the parts. directionality of the coupling12].

Recent research in neurology, for example, has shown The method we introduce in the present paper does not
that temporal coordination between different, often distanassume generalized synchrony. We introduce the notion of
neural assemblies plays a critical role in the neurophysiologithe dimension of interactionwhich measures the size of the
cal underpinnings of such cognitive phenomena as the intedynamics responsible for the coupling between the two sys-
gration of features in object representati@h [4] for a re- tems. More precisely, it is the dimension of the part of the
view) and the conscious experience of stim{fil. The attractor of the whole system that is acted on by the dynam-
critical empirical question, therefore, is which of the neuralics of both subsystems. We also show how to obtain infor-
assemblies synchronize their activity. Since coordinatiormation concerning the strength and directionality of the cou-
may take many forms, including complex nonlinear rela-pling.
tions, simple correlational methods may not be sufficient to The idea is, in fact, very simple. Given two time series
detect it. The detection of nonlinear forms of coordination isfrom subsystems of interest we construct another one that
also critically important for issues in cognitive scier{&s, probes the whole system, for instance, by adding the two
developmental psycholody], and social psycholog}8,9]. series. If the subsystems do not interact, the dimension of the

The method traditionally used for this purpose is correla-whole system is the sum of the dimensions of the two sub-
tion analysis. Given two time series one studies their autosystems, all of which can be estimated from data. On the
correlation functions and cross correlations. Large cross comlther hand, if the subsystems have some common degrees of
relations are usually attributed to large interdependencé&eedom, the dimension of the whole system will be smaller
between the parts. Small cross correlations are considered #gn the sum of the dimensions of the two subsystems.
the signature of independence of the variables. Our method can also be used to find if two response sys-

1063-651X/2001/6()/03622115)/$15.00 63 036221-1 ©2001 The American Physical Society



DANIEL WéJCIK, ANDRZEJ NOWAK, AND MAREK KUS PHYSICAL REVIEW E 63 036221

tems have a common driver. We discuss this application in
Sec. IIl. pi=u(ith celh= [ — du(x),

The structure of the paper is as follows. In Sec. Il we tth cell
recall the definition of the Reyi dimensions and formulate nq the sum is taken over all cells with#0.
three theorems that form the basis of our method. The rather ¢ particular importance ai,, the box-counting dimen-
straightforward proofs have been relegated to Appendix Agjon usually equal to the Hausdorff dimensifi,33,34,
since they are not crucial for understanding the method itselbly the information dimension or the dimension of the mea-
and can be omitted by readers whose main interest is ig ;e [19,35,36,24,3] which describes how the entropy
applications. We formulate our method in Sec. Ill. Classifi-_zipi In p, increases with the change of scale, @ the
cation of all the possible interaction schemes is given in SeG.grelation dimensiofi22,23,38, which can be most easily
IV. A simple way of verifying the kind and direction of the gyiracted from data, and is usually treated as a lower esti-
coupling is provided. Results from simulations of coupledmate ofD, sincqulquz for g,>,.

logistic and Heon maps are collected in Sec. V. Final com- . . . ,
9 P Generalized dimensions are defined for all rgahow-

ments and outlook are given in the last section. . : .
ever, in our proofs we shall restrict our attention to the case
g=1. We are particularly interested q=1 and 2.
Il. THEORETICAL CONSIDERATIONS

. . B. Noninteracting systems
Our method presented in Sec. Ill is based on three theo- 9y

rems relating dimensions of subsystems to the dimension of Consider two noninteracting dynamical systems

the whole system. The first one states the intuitively obviougU1,¢1,11),(U2,¢2,12), where U;CR" is the phase

fact that the dimension of a system consisting of two noninspace,¢; is a flow or a map orlJ;, and u; is an ergodic

teracting parts is the sum of the dimensions of the subgj-invariant natural measure dd .

systems. The less trivial Theorems 2 and 3 establish interde- Below we shall concentrate on the case of continuous

pendencies among the dimensions of the system and i8ystems. Changes needed for the discrete time case are

interacting parts. Before we state our theorems we shall renostly notational.

call the definition of the Reyi dimensions. By natural measur@ we mean the measure defined as the
average over a trajectory

.
S(x— @i(Xp))dt, (2

A. Renyi dimensions 1 f
0

; : M= py = lim —=
It is at present generally accepted that many objects, both 0 1T

in real physical space and in phase space, are multifractals
[15-18. This means they can be described(btatistically if it converges(in the weak sengdor u almost every, and
self-similar probability measures. This usually implies thatis independent of the trajectorfpf the starting pointxg).
they can be decomposed into @nfinite) number of objects That is, Eq.(2) is the natural measure if the limit
of different Hausdorff dimensions, or, equivalently, they 1t
have nontrivial multifractal spectra of dimensions. T _

The Reyi dimensions19] have drawn the attention of f fd’uXO'_ fim T fo O e Xo)T(x)dt
physicists and mathematicians since publication of the pa-

T—oo

pers by Grassberger, Hentschel and Procd@fia23. For a 1T
probability measurg:. on ad-dimensional space one takes :TITOO? fo fei(xo))dt
a partition ofU into small cells of equal linear size(equal
volume e”). One defines the Rgi dimensions as exists for every continuous functidrand is the same fou
1 In3,pd almost everyx, [all x, except for the se such .thaw(A)
im—— — for geR\1} =0]._ In other words, the average bhalong a_typlcal trajec-
eod—1 Ine tory is independent of the trajectory; thus time averages are
Dy(p):= S ol , (1) equal to ensemble averages. One usually thinks of some
m =iPiINpi for g=1 physical measure, like the Sinai-Ruelle-Bowen meak2@g
o Ine for which the set ofx, such that,u=,ux0 is of nonzero Le-

besgue measure.
The composite noninteracting system has a product struc-

where X -
ture (Ui XUy, 01X s, 1 X o). Its dynamics can be writ-
ten as

IAn equivalent description of multifractal measures is thespec- Uy (t)=@41(uy(0),1),

trum[24-26. A thorough discussion of the propertiesidf andf,

spectra falls beyond the scope of this paper. Some good reviews of U,(1) = ¢2(Uy(0),1).

these with discussion of the abundant literature on multifractals can

be found, e.g., if16-18,27—32 Mathematically precise defini- Theorem 1 SupposeDg(u1), Dg(m1), and Dg(u,

tions of multifractal spectra can be found[ih7,18. X uo) exist. Then
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Dy 41X 142) =Dy 1) + Dyl 22). 3 TABLE I. Notation.
This means, as should be intuitively obvious, that the dimenSYStem Variables Evolution Measure
sions of noninteracting subsystems add up to the dimension ,, (x) %=f(x) (%)
of the whole system. The proof is given in Appendix A. =1()
This is in fact one of the long-standing problems in di- Ui (X,y1) 1= g (x.yy) Ha(X,y1)
mension theory, namely, finding the conditions under which Xlzf(;) e
the equality holds for various dimensions for arbitrary mea- U, (X,Y2) /= Ga(X.Y) 2a(X,Yo)
sures. Some results for Olsen’s version of multifractal for- Y2=021%Ye
malism with a discussion of previous results can be found in ).(_f(x)
[40]. u (X,Y1,¥2) )_’1:91(X,Y1) Hu(X,Y1,Y2)
Y2=02(X,Y2)

C. Interacting systems

mon driverx. We relegate further discussion to Appendix A,
where we make this condition precise and show where it is
needed.

b If we think of dimensions as estimates of the number of
3egrees of freedom, Theorem 2 means intuitively that, if the
system can be considered as composed of interacting parts,
some of the degrees of freedom—perhaps even all—are
common for both parts. Therefore, the dimension of the
whole system is equal to the sum of the number of the com-
mon degrees of freedom, those degrees of freedom which
belong toU,; and do not belong tdJ,, and the other way
?\round. Thus if we add the dimensions of the subsystéms
and U,, we count the common degrees of freedom twice.
We must therefore subtract them if we want to get the di-
x=f(x), mension of the whole systetu.

In the above theorem we show that this intuition can be
made precise in the case of the information dimendign
and with an additional assumption. The notions of the di-
. mension of interaction that we define in E&) and of the

Y2=92(X.Y2)- generalized dimensions of interaction defined below are cru-
i ) i i cial for our method.
Thus the dynamics of the interacting systethsandU, is In the special case when ofter both of U;=V (all the

formally equivalent to the dynamics of three systemX \iiaples ofU; couple with some of the variables of the other
(interaction pantdriving Y; andY,. We pursue this analogy subsystem say, U,=V, we may establish the following
deeper in the next section. An example where such a decongh

eorem.
position arises naturally is given in Appendix B. ;
Note that at this point we do not assume anything Speciﬁ%m'jl'gio:r(\a;”l_?hSe%pposqu(ul), Da(#2), andDq(sv) exist
about the dimensionality of the variablgsy,, andy,. In
particular, it may happen that the set 3¢ and/or one or Dq(ﬂv):diqnt::Dq(Ml)+Dq(MZ)_Dq(MU)- (6)
both of the sets of variableg, or y, can be empty. In this
case the problem reduces to a simple system in which on€he proof is obvious, for in this cad¢,=V andU,U. This
cannot specify an interesting subsystem or two noninteracalso means that the above intuitions in this case are precise
ing systems. All these cases are specific instances of ther arbitrary generalized dimensions and no further assump-
general scheme presented in Sec. IV. tions are needed. _

Let wy,pq, 0,4y be natural measures of the dynamical The generalized dimensions of interactidgit are esti-
systemdJ,U,,U,,V, respectively(the notation used in this mates of the number of effective degrees of freedom respon-
section is gathered in Tablé. | sible for the interaction between the parts of the system un-

Theorem 2 SupposeD;(ux1), Di(ms), Di(my), and
D(uy) exist. Then

Take two interacting subsysterbly andU, of systemU.
It may happen that all the variables i, couple with all
those inU, but this is not necessary. For many-dimensional
systems the structure of the equations of dynamics can
very complicated.

Consider the following decomposition of variablesigf.
Let y; be the largest set of variables W, satisfying the
condition that if their state is changed whatsoever it will not
influence the future evolution dfJ,. Similarly definey,.
Put all the remaining variables &f,,U, in vectorx. They
form a dynamical systeriv—the part of the whole system
that is responsible for the interaction. Then the dynamics o
the whole systentd can be written as

Y1=01(X,Y1), (4)

20ne would like to establish a similar inequality in the case of
D1(pv) <dini=D1(p1) + D1(p2) = Dalpy)- ®)  other Raeyi dimensions; however, in general, even wiygrandy,
) ) ) ) ) are asymptotically independentDq(uy)+Dg(py) —Dg(u1)
(We shall Ca"dim the dimension of |nteraCt|0hThe equallty — Dq(MZ) can have arbitrary sigftcf. Appendix A). Nevertheless,
holds wheny, andy, are asymptotically independent. we expect this difference for typical physical systems to be small in
Asymptotic independence means essentially a lack oéomparison with the dimensions involved, and typically(y)
generalized synchronization between the and their com- $di(;“=Dq(,u,l)+Dq(,u2)—Dq(,uU).
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der study. Of most interest acﬂftzdint, which has the best
analytical properties, andy", which can be most reliably
estimated from data.

Note that
max{dic?t,Dq(Mv)}gmin{Dq(Ml),Dq(Mz)} Uy Us
<
maX{Dq(,ul),Dq(,u.z)} FIG. 1. Simple interaction.
<Dy(p0)- © .
If N>2Dg(u4), for all reasonable delays, for infinite not-
Furthermore, folg=1 one can show that too-sparsely-probed time series, the Takens thedi23|
int guarantees that;(n) is an embedding of the original invari-
0<D;(uy)<dj". : , . o
1ty 1 ant set inU,. To calculate dimensions it is even enough to

take N>Dg(u) [41,42. It is generally believed that for
finite but not too short and not too noisy time series also the
above construction occasionally gives a reasonable estimate
of the original dynamics. For a detailed discussion of these
IIl. METHOD issues the reader should consult the relevant literature, e.g.,
$h10,43—46. We disregard the practical problems until Sec.

Suppose we are given two time series measured in su G wh h ical lts. For the time b
systemsU; andU, of systemU whose structure and inter- V' WNeré we show some numerical resufts. For the ime be-
pg we discuss clean infinite time series.

dependence we do not know, e.g., signals gathered on tw . . :
electrodes placed in not too distant portions of the brain, or Havmg rec_onstru_cted the attractors we can est_lmate_thelr
measurements of velocity or temperature in various parts of g_enerallz_ed d|m_enS|0ns and calculate the generalized dimen-
moderately turbulent fluid. We would like to know if the SIONS ©f interaction

We cqnjectured‘qmzo also forg>1. We also expect typi-
cally dg'=Dg(ny).

equations governing the dynamics of both of these variables int, _ I _
are coupled or not, how many degrees of freedom are com- dg =Da(#1) + Dyl r2) ~Dalmy)- ®
mon, and what is the direction of the coupling. It is also convenient to consider normalized dimensions of

Let X; be a function onU;, i.e., X;:U;—R. The time  jrteraction:
series we measure are;(n):=X;(uy(t,)) and x,(n)

:=X,(Uy(t,)). Let Y:R?2—R be a smooth function nontrivi- m‘jzzdg“/Dq(Ml),
ally depending on both variablésTherefore we exclude A int
functions for whichgY/ax,;=0 or dY/dx,=0. We construct mz:=dq /Dg(u2), 9

another time serieg(n) =Y (x1(n),X,(n)). ThusY(Xq,X,)
is a function onU.

Using the time delay methdd,2] we can reconstruct the
dynamics of the systemd; and U from x;(n) andy(n).
That is, for a giverdelay r andembedding dimension e
constructdelay vectors

Uy (n)=(x1(n),x1(N=17),... X1 (Nn=(N—1)7));

Mg :=dg"/Dg( py)-

From the values of{! we can infer the information we need.
All the possible cases are described in the next section. Note
that if m#0 they satisfy

1 1 1 1
R + —_— . —

_ - o m{ mg mj
the construction ofi, from x, andT from vy is similar.

From Eq.(7) we also have

O=mj<=mf{,mi<1,
3For finite noisy time series some functions are better than others.

One cannot promote one function over another. Our experiencghich provides us with a tool to check the consistency of
shows that linear combinations usually provide the most reliablggg|ts.
results. There were some cases, however, where other functions gafore we present the classification of all the possible

were preferred. This is natural if one realizes that the variableg pemeg of interaction let us discuss heuristically four simple
measured may have completely different physical meaning, such ae%(amples

temperature and pressure, say. In this case a sum is not the most (i) If U, and U, are uncoupled, the variables we see
l 2 )

natural combination of the two time series. In practice we used five[ -
hroughx,; andx, are different; thusuy=u1X u,. There-

different functions Y(x,y), namely, x+y, Xy, sinK)cosf), int .
xexply), and X—y, to calculate the dimension of the system fore, from Theorem 1dq =0, as it should be for any rea-

Dy(ny), and averaged the results. The variance of the five estiSonable definition of dimension of interaction for noninter-

mates obtained was usually small. These functions were not choséting systems.

for their particularly good numerical properties but rather to verify (i) Consider now a systettd consisting of three isolated
that the results obtained depend only weakly on the choice of theystemsV; (see Fig. 1, which we cannot observe separately,
function Y. but rather througtJ, andU,, e.g., by measurin,(v,,V,)
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and X,(v,,V3). Reconstructing the dynamics from time se- Now we choose two of them randomly and want to know if

ries of X; and X, we expect to obtain the systems they come from have a common driver. It is easy
to check that, if they have, thetrin'(;1t is approximately the
Dg(m1) =Dg(my,) +Dglmy,), dimension of the invariant measure of the driver system
Dq(1x)>0. If they have different drivers, theu"=0.
Dq(Mz)IDq(Mv2)+Dq(Mv3)- Summarizing, from measurements involving parts of the

given system and arbitrary nontrivial smooth functions of
With a typical functionY(x4,X5) we obtain a time series two variables we can reconstruct the dimensions of measures

y(n) from which we estimate M1, M2, anduy . From this we can obtain the dimension of
interaction d'(;“ [Eq. (8)]. Depending on the values of
Dq(#u)=Dqlpv,) +Dg(kv,) + Dl pv,)- Dq(1), Dg(2), Dg(mu), anddg‘t we can determine if the

. . . . . . systems are coupled or not, and what is the direction of cou-
Since the dynamics 0¥, is responsible for the interaction pling.

betweenU; andU,, we want to call the dimension qfy,
the dimension of interaction. According to the definiti@)

we have IV. CLASSIFICATION OF POSSIBLE INTERACTION

SCHEMES

o
dq =Dq(u1)+Dg(s2) ~Dgly) Let us thus assume that we have two subsystems and their

=D +D +D +D reconstructed dimensions ag,(x1) andDy(u). The di-
al#vy) + Dalavy) + Dol pv,) + Dolarvy) mension of the whole syste(uy) is obtained from time

—[Dq(pv,)+ Dol pay,) + Dyl y.)] seriesy(n) constructed through the procedure described in
! 2 3 the previous section. The dimension of interaction is calcu-
=Dq(pv,). lated from Eq.(8). The above discussion leads to the ques-

tion of what situations are possible. There are four non-

(iii) Consider now the general situation described in Secgquivalent cases, which are conveniently described by the
Il C. Reconstructing the dynamics from time series of typicalfollowing proposition.

variables from systemdl; andU,, say,x;(n) andx,(n), Proposition 4
we get (1) If dg'=0, thenuy= ;X u (the systemsJ; andU,
do not interadg .
Dg(p1)=Dqg(v), (2) If Dg(p1)=Dg(up)=dq", then wy=pui=pr=py
(the systemdJ; and U, are the same system or we have
Dg(m2)=Dg(py)- maximal coupling;

(3) If Dg(p1)>Dg(uz)=dg", then u,=uy and p,
=y, (all variables ofU, couple to some of the degrees of
freedom ofU,, or U, is the driver in the pair, which gives

From a typical functionY(x4,X,) we reconstruct the attrac-
tor of U and obtain

U,=U);
max D ,D 1 ' i .
XDq(11).Dy(m2)} (4) In all other case®q(u1),Dq(12)>dg", which means
<Dq(pu) interaction or double contrdtwo response systems driven
by a common driver
<Dq(pv) T[Dg(p1) =Dg(uv)] Note that this proposition is to some extent opposite to the
+[Dyg(p2)— Dyl )], theorems proposed in Sec. Il. It can be showndferl [47].

We verify it numerically for particular systems for=2 in
whereD y(u1) — Dg(uy) quantifies the number of degrees of the next section.

freedom inU; not coupled toU,. From this we conclude It is convenient sometimes to use],mJ,m{ [Eq. (9)].
that We can write the above classification in this case as follows.
_ (1) m{=mJ=m =0 (no interaction;

0<Dg(myv)<dg' (2) 1=mf=mi=mg (maximal coupling:u,= .= u);

_ _ (3) 1=mj>mj=m >0 (all the degrees of freedom of

Dal#1)+Daln2) = Doluu) U,=V couple to some variables &f,);

=min{Dq(x1),Dq( )}, (4) 1>mf{=mJ>m>0 (interaction or double contrpl
_ All four cases are presented symbolically in Fig. 2.

the difference betwee®q(u\) anddy" depending on the The examples considered in the previous section can eas-
strength of synchronization betweéh andU,. ily be identified as particular cases of this classification. Thus

(iv) As the last example we shall take a systérdriving  example(i) represents case 1, examfii¢ represents case 4,
two response systems; andY,. Suppose we also have a example(iii) can represent cases 2, 3, or 4, and the last
second copy of this setup, namely, we driX¢ with re-  example represents case 1 or 4 depending on whether the
sponse system¥; andY,. We collect simultaneously four signals analyzed come from systems coupled to the same
time series of some variable from all the response systemslriver or not.
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m int Dimensions of coupled Henon maps for B=0.1
O Iy i =0
25 T T T T " '
)| i = m = mfy = 0
(1) 2t 1
m M N
S ] D) = Dylw) = dr >0 S s -
[«
9 _ 0 d — d ]
@ o my =my=my =1 é 1k ]
a
(%) 2 Dy(p2) > Dq(p1) = dg* >0 05
3) G - I 1= mg > m'{ = qu >0 O 4 ) ) [ e e o
0 0.2 04 0.6 0.8 1
™ i (a) Coupling constant C
) S g Dy(1), Dylpz) > di > 0
(> e Normalized dimensions m?
— q q q i
(4) q 1>mi{>my>mgy >0 12

FIG. 2. Classification of possible interaction schemes. The first
column shows symbolically the relative position in abstract space of
the subsystems in which we measure the time sexiesdx,. An
arrow from one system to another means the future states of the
second system depend on the current states of both. The secon

column shows the values of normalized dimensio{s mJ, and

m{) in each case. The numbers refer to the cases in Proposition 4.

V. NUMERICAL RESULTS

Below we shall present some applications of our method
to analysis of numerical results for several paradigmatic sys- (b)

tems(coupled Haon maps and logistic maps
Throughout this section we will usty". The dimensions

presented in the pictures are alwdys calculated with the

help of the @& program from therisean packagd 48] with an

dzint/ Dz(ll)
o
o

04 0.6
Coupling constant C

FIG. 3. (a) DimensionsD (1), Da(u2), Do(uy), anddy® of
one-way coupled nonidentical ' Hen mapsEq. (10)] for B=0.1.
(b) Normalized dimensions?, m3, andm? for the same systems.

algorithm that is an extension of algorithms published previ-
ously [22,23,3§ and improves the speed of computationtroduced through the variable. We consider the case of

[48]. In every case we used A@oints with one exception
described in the text. The functionsused to calculate the
dimension of the whole systefaf. previous sectionswere
X+Yy, Xy, sin(x) cosf), x expfy), and Z—y. To estimate the
dimension we smoothed output froma @ith the help of the
Takens-Theiler estimatdrl0,48-5Q c2t and averages over
local dimension =d [10,48§.

A. Two Hénon maps
Consider a syster consisting of two Haon mapg51]
coupled as follow$12]:
K:Xi+1: 1.4- Xi2+ 03)/| )
Yit1=Xi,
(10
L{Ui+1+ 1.4_[CXi+(1_C)Ui]Ui+BUi ,
Vi+1= Uj.

Thus Heon systenK drives systeni. The coupling is in-

coupled identical system®¢& 0.3) and nonidentical coupled
systems B=0.1). The parametef measures the strength of
interaction.

Suppose the variables accessible experimentallyxare
andu,. What can be said in this case about the interaction
between systemi§ andL?

Certainly, forC=0 the system& andL do not interact
(case 1 in our classificatigntherefore Dq(uy)=Dq(uk)
+Dg(m0) anddg“z 0. On the other hand, for positiv@ the
influence ofx should be reflected in the behaviorwfFrom
Theorem 3 we exped])g“= Dy(uk) (case 3. One can also
expect that forC slightly above 0,Dy(uy) will not change
much, whileD y(x) should jump from its value at O to the
value ofDg(uy) atC=0.

This behavior can indeed be seen in Fi@)3or noniden-
tical Henon systemsB=0.1) and in Fig. 4a) for identical
systems B=0.3). The synchronization of andu [52,53
visible for C=0.7 (case 2 can be discovered much more
simply: if one plots several consecutive valuesxgf-u,
versus coupling, for these particular values all the points fall
on 0 (Fig. 5; see also Fig. 7 dfl2]). Looking at the normal-
ized dimension$Figs. 3b) and 4b)] we easily identify lack
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Dimensions of coupled Henon maps for B=0.1
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; ; int
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(a) Coupling constant C (a) Coupling G
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1.2 T T T T T T
1 B -
08 |
2
S 06 f
S04t ]
0.2 |
0r |
0 0.2 0.4 0.6 0.8 1 -5 L L . L L L . . L
(b) Goupling constant G 0 01 02 03 04 05 06 07 08 09 1
. (b) Coupling C
FIG. 4. (a) DimensionsD,(u1), Do), Dy(uy), anddy® of .
one-way coupled identical Hen mapsEqg. (10)] for B=0.3. (b) FIG. 5. Differences between the, and u, va!ues of two
Normalized dimensionm?, m3, andm? for the same systems. coupled Heon systemsEq. (10)] for 100 consecutive value®)

for the case of nonidentical systen=0.1) and(b) for the case of
identical systemsg=0.3).

of coupling forC=0 (m;=m,=m3;=0), case 4maximal

coupling for B=0.3 andC=0.7 (m;=m,=my=1), and

case 3 in all the other cases. Wi+1=1.4=[CoXi+ (1= Co)wi]wi + Bz,
The decrease of the dimension at 0.7 for identical systems Zit1=Wj.

is connected with the full synchronization of the systems.

Equations(10) admit solutions symmetric ix and u (X,  Thys Henon systenK drives systems andM. The coupling
—U,=0), which in this region become stable and the wholeig inroduced through variablesandw. Parameter€, and
probability measure is localized on a Iower-d|men3|onalc2 measure the strength of interaction.
manifold. For more details, s¢@2]. Suppose the measurements(&n L, M) yield variablesu
andw. What can be said in this case about the interaction
between the systenisand M?

For C,=C,=0 neither systerh nor M feels the influence
Consider now the systerd consisting of three H®n  of K. They also do not intera¢tase 1. When one of thec;

B. Three Henon maps

maps[51] coupled as follow$12]: grows, the influence ok is immediately mirrored in the rise
of the dimension ofu, or wy, . For bothC,>0 the systems
Xir1=1.4— Xi2+0-3Yi , L andM interact(case 2, and the part responsible for inter-
Vii1=X action isK. Thus the dimension of the common part is con-

stant and equal to 1.22 in our case.
We show this behavior in Fig.(6) for nonidentical sys-
tems(B;=0.3,B,=0.1) and 7a) for identical system$B;
Ui+1=1.4—[Cyx+(1—Cy)ui]Ju;+Byv;, =0.3,B,=0.3). In both case<;=0.5 andC, is varied. In
L _ (11 , g . ;
Vit1=U;, both figures one can clearly see the jump of the dimension of
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Dimensions of coupled Henon maps for B,=0.3, C;=0.5, B;=0.1 Dimensions of coupled Henon maps for B4=0.3, C,=0.5, B,=0.3
35 : . . . : : 35 —s . . . . .
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o1 . . . L M e | or . . L ™ ke ]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
@ Coupling constant C, (@) Coupling constant C,
. . . 2
Normalized dimensions m?, Normalized dimensions m*;
1.2 : : : : . . 12 - - ' - . -
1 b v v en sune arenges v oo [ cnsioss e o o
1r 1' .
ii
08 | 08 4
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X 06 S 06 . )
_ L E 0.4 4 T e |
.E'é\' 0.4 Y i i
021 0.2
0r 0
0.2 . . ) . ) . -0.2 . . . .
' 0 0.2 04 06 0.8 1 0 0.2 04 06 08 1
(b) Coup"ng constant 02 (b) COUp"ng constant 02
FIG. 6. () DimensionsD (1), D(k2), Da(uy), andds" of FIG. 7. () DimensionsD (1), Do(#2), Do(y), anddy" of

two-way coupled Heon maps[Eq. (11)] with different response tWo-way coupled Heon maps[Eq. (11)] with identical response
systems(C,=0.5, B;=0.3, B,=0.1). Additional line at 1.2 in the systems(C;=0.5,B;=0.3, B,=0.3). Additional line at 1.2 in the
upper figure is a guide for the eye and stands for the dimension dfPPer figure is alguide for the eye and stands for the dimension of
the attractor of Fieon systenK. (b) Normalized dimensionsnf, thze attractzor of Heon systenK. (b) Normalized dimensionmf,

m3, andm?, for the same systems. m3, andmy for the same systems.

interaction from O to values equal to or greater than 1.22, the i i
dimension of the attractor df. Xn+l:fai(xn)'

Typical behavior of the local dimensiahin C(e)/dIn € as
a function of resolutiore is shown in Fig. 8.

Figure 7 is particularly interesting, since one can apparwhere «;=3.7, a,=3.8, a3=3.9, anda,=4. Suppose the
ently identify all four cases of our classification. FB§=0  only variables available experimentally &reY'i(n)
we have noninteracting systems; f65<[0.2,0.4 andC,  =F"i(x, X)), i<j. Given two randomly chosen time series
=0.6 we have case 2. Fa,=0.5 the two Heon system&  yii(n) Yk!(n) we want to know if they share some degrees
andM become identical. Since at this value of coupling con-of freedom or notif they “interact” or not). If i orj is equal
stant they are in general synchrony with the driver, whichyg i or |, there are only three active degrees of freedom in the
means their asymptotic states are independent of their i”iti%ompound system. Otherwise there are four.
states, and depend only on the present state of the driver, it ggtimated correlation dimensions for several cases are

follows thatu,=wy, . For C;=0.7 the systenM fully syn-  .,acted in Table II. In every case we used time serie€s 10

chronizes withK, which leads to the collapse of the prob- points long except for the last one, for which®Iints were

a.b'“ty measure K, M Space on th? diagonatompare the used. The estimation error was roughly 2% except for the
discussion in the previous subsection

C. Logistic maps

Let f(x):=ax(1—x). Consider a system consisting of “The coupling function"/ were chosen randomly from+y,
four uncoupled logistic maps Xy, sinx) cosf), x expfy), and X—y, and fixed.

036221-8



DIMENSION OF INTERACTION DYNAMICS PHYSICAL REVIEW E63 036221

Local dimension of U, Local dimension of U; Y(x4,Xp)=X{+X5
8 8
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(a) Resolution ¢ (©) Resolution &
Local dimension of U, Local dimension of U; Y(x4,x5)=8in(x)c08(x,)
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7 L
& 8 °
5 55
2 2
5 )
= 53
o 8 i
3 = 2
1 - <
0 1 1 Il 0 L 1 I
0.001 0.01 0.1 1 10 0.01 0.1 1
(b) Resolution & (d) Resolution &

FIG. 8. Local correlation dimensiothIn C(e)/d In € as a function of resolutiom smoothed out with the Takens estimator. Data shown
come from two different Fieon systems driven by the thif@Eqg. (11) with parameters,;=0.3,C,=0.5,B,=0.1, C,=0.6]. Correlation
dimension of subsystemsd,; andU, estimated from(a) and (b) is 1.95 for both. Dimension of the whole system is estimated to be 2.4 on
the basis of five plots for which different coupling functions were used, two of which are shoignand(d). Dimension of interactiomliz’“
in this case is 1.951.95-2.4=1.5>1.22, which suggests partial synchronization of the two response systems with the driver.

last case for which it was about 5—-10%%. Estimated correlation dimensions for several values of the
Consider now two symmetrically coupled logistic maps coupling constant are shown in Fig. 9. One can see the
jump in the dimension of interaction from 0 a0 to the

% .1=f (%) whereX :Xn+CYn v_alue e_quz_:tl to the dimens_ion of the Wh_ole_system for posi-
n+1m talsn " 14c tive c, indicating case 4 in our classification. For=0.2
(12) asymptotic dynamics settles on a period-2 periodic orbit
_ . Yntex, leading to all the dimensions being equal to 0. Numerically
Yn+1=Tp(Vn),  wherey,==——, obtained approximations to asymptotic measures for the cou-

pling constantc=0, 0.1, 0.2, 0.3, 0.4, 0.5 are shown in Fig.
and the parametere[0,1] measures the coupling. Similar 10. Note the increasing synchronization betweendy.
couplings have been discussed previously in the literature It is of interest to compare the values of dimensions for
(e.g.,[54,53). The maps are uncoupled fo=0. Forc=1  ¢=0 and 1, because in both cadeg(u,)~D1(uy) =1, but
(the strongest couplingf we setz,:=%,=V,,, we havex, the dimension of the whole system estimated friix, ,y,,)
=[2al(a+B)]z,, Yo=[2B/(a+pB)]z,, and z,., is equal to 2 in the first case and 1 in the second, implying
=f 0+ p)2(Z). Therefore the dynamics is one dimensionaI.Dg‘tZO and 1 in these cases, respectively. Thus the first mea-
Casec>1 is equivalent tac’ =1/c. sure has a product structure, while the other is concentrated

on the diagonak=y.

The last case considered is that of double control:

*We believe there are two reasons for this. One is the higher Xns+1= T o(Xn),
dimensionality of the system in the last cdfsur uncoupled logis-
tic mapg; the other is worse ergodicity in the phase space because fB(yn) +C1Xp
the maps are uncoupled. Note that our procedure consists of two y”H:T’ (13
parts: first we make the embedding, then we calculate the dimen- 1
sions. Each of the two can introduce errors. The number expected in f(20)+ CoX
the last case is the sum of the first four numbers, namely, 3.87 7 __rm 27n
+0.6. n+1 1+c, )
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TABLE II. Estimated correlation dimension for uncoupled lo- Symmetric coupling: 0.=3.9, f=4.
gistic maps. The estimation error is roughly 2% except for the last 2 o . . . . .
number for which it is about 5-10 %. }
Seriesx(n) D (x(n)) 151 ]
N
X, 0.96 F
Xo 0.95 2 1 y
[
X3 0.97 £
[m]
X4 0.99 05 |
Y2 1.88
Y3 1.94 ol
v 1.95 o 0'2 0|4 ole ols 1
2,3 ' y ' y
Y 1.89 (a) Coupling constant C,
Y24 1.94
y34 1.93 Normalized dimensions m2i
f(YL2ytd 2.88 ;
f(Y12 Y34 3.8
08 .
where «=4.0, 8=3.8, y=3.9, andc,,c,<[0,1]. Let the 2 o6l ]
observed systenid; andU, be the sets of all pair&,y) and e
(x,2, respectively. Then we have essentially case 2J{f E,04F 1
and U, are the sets of all points and pairs(x,2 then we ©
have case 3. 02 r
Figures 11 and 12 show the estimated correlation dimen-
sion in these cases. Again, one can clearly see the differenct L

between the coupledc(>0) and uncoupledq;=0) sys-
tems, because the interaction dimensions jumps from 0 to 1
or more, in agreement with our expectations from Theorems
2 and 3, since the dimension of the common part i1 FIG. 9. () DimensionsD (1), Da(uz), Do(uy), anddit of
evolves according to the Ulam mam=4.0). Figure 13 symmetrically coupled logistic map&q. (12)]. (b) Normalized di-
shows projections of the attractor of H33) on the(x,2 and  mensionsmZ, m3, andmy for the same systems.

(y,2 planes forc;=0.1 andc,=0.2.

0 0.2 0.4 0.6 08 1
Coupling constant C,

(D) They may take one, two, or three distinct valugs If
VI. CONCLUSIONS AND OUTLOOK all of them are 0, the systems do not interazse 1. (b) If
... all of them are greater than 0 and less than 1, this is a generic
_V\Le_ rl[ave tpres]fanted a _mtethoii. that a:lows orr:e t(t)' dISt'néase of interacting systentsase 4. (c) If one of them is 1
ﬁu's flnverr:i:lcbllng rcfm:hnopvlvn eractlnr% sysremlslvx EIn w;erze— nd the others are smaller, all the degrees of freedom of one
€s of variables ot the o systems are avaliable. Fartia ystem couple to some degrees of freedom of the dqtzese

p_rk?lof_of Its \t/alldltthas provided. Clafséf'ciﬂon of alll posf— P or we have the previous cagmase 4 but the variables of
sIble Interaction schemes was presented with examples o e of the systems that are not coupled to the other synchro-

theTcases. Severzatlh3|:jnple 'metr.igmg ?.y sktjegnst;/vere analyzegl, e 1o the system comprising the common part of the dy-
0 use our method In practiderom field data we sug- namics. (d) If they are all equal to 1, all the degrees of

gest the following procedure. freedom of one system couple to all the degrees of freedom
(A)imCaIcuIate the dimensiori8y(s1), Dq(#2), Do(sv).  of the other(caseyz, or we hpave the two pregvious casSs
andd, _ [Eq. (8)] (We_ suggesy=1 or_2; it is also good_ 0 and 9 but the variables of the two systems that are not
normalize the data if they are of different ordert this . pled synchronize to the system comprising the common
respect one might wish to use a coupling function of the typ«?)art of the dynamics.
Nothing has been said so far about the influence of noise
v X—(x) y—<y)) on our method. Put simply, the larger the noise, the more
o oy ) difficult it is to apply. However, noise leads to some inter-
esting phenomena that deserve a longer discussion. This will
(B) Repeat the calculation for several different couplingbe provided in our forthcoming paper in which we success-
functions Y and average the resuldinear combination fully apply our method to distinguish between interacting

seems to be the best chojce and noninteracting Chua systems in an experini&sf We
(C) If they are different from 0, calculate the normalized hope our method will prove a useful tool in the analysis of
dimensionsm! [Eq. (9)]. other complex systems.
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0 1
1 0 0.5 1
X X

FIG. 10. Attractors of symmetrically coupled logistic mdjsy. (12)] for c=0,0.1,0.2,0.3,0.4,0.5 in thi,y) plane.

Note added in proofldeas similar to some of those pre- ACKNOWLEDGMENTS
sented in this paper were considered 6] and[57]. They Discussions with several people enriched our understand-
were used, e.g., to distinguish temporal from spatiotemporahg of the problem. In particular we want to thank Lou
chaos in magnetic systerf88]. We thank Dr. Jan Zebrowski Pecora, Piotr Szymczak, and Karoyakowski for illumi-
for pointing out these references and providing us with themnating comments. This work was supported by the Polish
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Asymmetric coupling: x and z, 0=4.0, y=3.9
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FIG. 11. (a) DimensionsD (1), Dy(u2), D2(uy), anddi" of
asymmetrically coupled logistic mapgqg. (13)] whenx andz are
the observed variableg) Normalized dimensions?, m3, andm?
for the same systems.
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APPENDIX A: THE PROOFS
Let w1, be the invariant measures of systelig, U,
as defined in Sec. II B.

Theorem 1 SupposeDg(u1), Dg(mz), and Dg(uq
X uo) exist. Then

Dq(:“lx Mo) = Dq(Ml) + Dq(MZ)-

Proof. Takeg+# 1. For everye>0 consider partitions of
R into cells of volumee". This gives a partition iiR"1* "2
into boxes of volume"1* "2, Let

p;=pu1(jth cell from the cover ofU,),
r=uo(kth cell from the cover ofU,).

Then

PHYSICAL REVIEW E 63 036221

Asymmetric coupling: y and z, 0=4.0, B=3.8, 1=3.9, ¢4=0.1
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FIG. 12. (a) DimensionsD (1), Da(u2), Da(uy), anddit of
asymmetrically coupled logistic mapgqg. (13)] wheny andz are
the observed variable&) Normalized dimensions?, m3, andm?
for the same systems.

In Ek'jpi“r?

D X =Ilim——-
q(Ml M“2) Ine

e~>0q_ 1

1 In(EKpiq)(Eerq

:einoq—l Ine
im 1 InEka> _ ( q Inz;rd
..000-1 Ine c.01g-1 Ine

But the last two limits exist and are equal By,(x1) and
Dqy(m2), respectively.

The case ofg=1 is straightforward and left to the
reader. O

For the next proof we need the following lemma.

Lemma 1 Let lZCiJZO, Zijcijzl, ai:Z]-Cij, and bl
:Eicij . Then

Z [cij Inci; —a;bj In(a;b;)]=0. (A1)
h

Proof. Every convex functiori satisfies Jensen’s inequal-

ity
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C1 =0.1 ’ 02=0.2

PHYSICAL REVIEW E63 036221

C1 =01 3’ C2=0-2

FIG. 13. Projections of the
attractor of asymmetrically
coupled logistic map§Eq. (13)]
for ¢;=0.1 andc,=0.2 on the
(x,y) and(y,2 planes.

(A2)

f(E pixi><2 pif (),

whereX;p;=1. Sincef(x)=xInXx is convex, one has
{1 ¢ |=> ab;f C")
i . /i,j alb]
f(1) <E abj— - (IncIJ Ina;—Inb;)

0=<2 cjjlnc;— > cjlna;— >, c;Inb
[ 1) 1)

0=> ¢

iInc;— Z ajlna,— E b; Inb;
i

OSZI_ [cij Incij —aibj In(a;b;) ],

where we used Eq.(A2) with pj;
:Cij/(aibj). O

Let wq, mo, pmy, anduy be the invariant measures de-
fined in Sec. Il C.

Theorem 2 SupposeDi(u41), D1(x2), Dq(uy), and
D(uy) exist. Then

=aibj and Xij

Di(my)<djn;:=D1(u1) +D1(u2) —D1(my).

The equality holds wheg, andy, are asymptotically inde-
pendent.
Proof. Let n; be the number of variableg, (Sec. 11Q

(i,j,k)thcell=A; X B;*x Cy, whereA, B, andC aree cells of
dimension, respectivelyn, n,, andn, in spaces spanned by
X, Y1, andys.

Since the dynamics ofx(y,) is independent of/,, the
invariant measurgc,(A; X B;) can be written as

pa(AXBj) = uy(A) piy, 10 (Bl A) =pir i

where M(yl\x)(Bj|Ai) are the conditional probabilities of
finding they, in B; under the conditiox being inA; . Simi-
larly,

Ba(AX Cr) = (A f(y, o (Cil Al = PiSki
and
Ks(AXBjX C) = (A Ky, 1% (Bj s Cul A =Pitji -
It iy, (BjlA) and u(y,1(CilA) are independent, then

H(y, y,%(Bj ,Ck|Ai):M(yl\x)(Bj|Ai)M<y2|x)(Ck|Ai);
(A3)

otherwise the only thing we know is that the left-hand side
measure is the coupling of the right-hand side measures,
namely,

; My, ,y2|x)( Bj aCk|Ai) = M(y1|x)( Bj |Ai)y

Ef“(yl yz\X) CulA) = M(yz\x) (CW A,

or

with the property that any change in their present state does

not influence the future states of systéim. Let n, be the
number of variabley, of the symmetric property. Let be
the number of all the other variablé€s). Variablesx form

the partV of the compound system that is responsible for the
in

interaction. Thus the system can be embedded
RM*"2*tM Consider a partition oR"1" "2 into cells of sizes

Ek Gki=Tji

; tiki = Ski -

consistent with the structure of equations of dynamics, i.e.QOf course,
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Ek Ski:; rji:% tpi=1

if p;#0. Otherwise we tak¥ j,k:t;;=0.
Taking this into consideration, inequali{$) follows:

D1(m1) +D1(p2) =D1(py) —Di(py)

ZiZpirjiIn(piri) o ZiZpiski In(pisi) . Zipiln(pi) i kPitjki IN(Pitji)
= + —lim Ine lim Ine

e—0 Ine e—0 Ine e—0 e—0

Zipi In(P) (Zrji + Z4Ski— 1= 2 wltjii) +lim ZiPiZj kL riSki INCrjiSii) = i IN(tj) ] =0

e—0 |n € e—0 In €
|
where in the last line we used Lemma 1 fort, a=r, and APPENDIX B: AN EXAMPLE OF PARTIALLY
b=s and the fact that la<0. COUPLED SYSTEMS

Note that the equality holds if and only if We present here a simple although abstract example of

interacting systems for which one can introduce the natural
ki =1 i Ski - (A4)  decomposition(4).
Consider two systemb;,U, interacting through a thin

This is what we call asymptotical independence of variables(,:omamt layerV' (Fig. 14. Denote variables i, as uy

y, andy,. In particular, wheny; are in generalized syn =(v1,wy), variables inJ, asu,=(v,,w5), and variables of
1 2 ’ i - i _
chrony withx, this means that their asymptotic behavior j lne contact layew as (v1,v,). The dynamics of such a con

. S figuration can ri
independent of their initial states and depends only on thegu ation can be described as
initial state ofx; therefore their probability distributions can-

not be independent, since they depend on the same number Wy =TFa(vy, W),
x(0). However, we think this is not the only case where the
equality is violated; this is why we use another name for the Wy =fo(Vy,Wy),

above condition. [J
One would like to establish a similar inequality in the case R CARVARI
of other Reyi dimensions; however, in general, even when 17 01{V1.V2, W),
Eqg. (A4) is satisfied,
Vo=0a(Vy,V2,Wp).
Dq(ps)#Dqlp1) +Dglp2) = Dolp). If we can average the influence wf ,w, on the dynamics of
Vi1,Vs, €.9., when the time scales involved in the dynamics of
Indeed, v; andw; are different, we obtain

Wy =f1(vy,Wy),
D (1) + Dl 2) — Dyl pe) — Dyl ) oRT

1 (Zi kP (2);pis})
=lim —1In g RG]
(Zip))(Zij kPi'sjiTki)

Wo=fo(Va,Wp), (B1)

Ine

e—0

Sz kPiPRrg—rin(sit—si)
2 kipipisir

. 1
=lim — In| 1+

Ine

e—0

(A5)

This may have arbitrary sign and need not vanish in the
limit.
Although Eq.(A5) must go to 0 in the limig— 1, one can A ,
perhaps construct examples of measures for which the slope V
can be arbitrarily large. On the other hand, we believe such
measures will not be typically observed in physical systems. FIG. 14. Interacting systems.
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V1=01(V1,V2,N1), part of the dynamics is responsible for the interaction. Note
that this scheme can also be considered as a double control
Vo=T>(V1,Va,\5), configuration of three systems, wheng (v,) controlw,; and
W,.
where\ 1 ,\, measure the average influencevaf,w, onV. If we setx:=(vq,Vs), y;=w;, then Eqgs.(B1) reduce to

Thus equations fov,,v, comprise a closed systexh This  Eqgs.(4).
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