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Dimension of interaction dynamics
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A method allowing one to distinguish interacting from noninteracting systems based on available time series
is proposed and investigated. Some facts concerning generalized Re´nyi dimensions that form the basis of our
method are proved. We show that one can find the dimension of the part of the attractor of the system
connected with interaction between its parts. We use our method to distinguish interacting from noninteracting
systems on the examples of logistic and He´non maps. A classification of all possible interaction schemes is
given.
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I. INTRODUCTION

Given two time series can one tell if they originated fro
interacting or noninteracting systems? We show that with
help of embedding methods@1#, Takens’ theorem@2,3#, and
some facts concerning Re´nyi dimensions that we prove, on
can succeed in the case of chaotic systems. Moreover,
can quantify the common part of the dynamics, which
call the dynamics of interaction.

It happens sometimes, especially in simple systems
electronic circuits or coupled mechanical oscillators, that o
knows whether the systems under investigation are cou
or not, and the direction and sometimes strength of the c
pling. However, there are many complex phenomena in
ture where one is unable to verify directly the existence
coupling between parts of the system in which the pheno
enon takes place. Especially in complex spatiotemporal
tems, like fluid systems, brain, neuronal tissue, social s
tems, etc., one often faces the problems of characterizatio
the interdependence of parts of the system of interest an
quantifying the strength of interactions between the parts

Recent research in neurology, for example, has sho
that temporal coordination between different, often dist
neural assemblies plays a critical role in the neurophysiolo
cal underpinnings of such cognitive phenomena as the i
gration of features in object representation~cf. @4# for a re-
view! and the conscious experience of stimuli@5#. The
critical empirical question, therefore, is which of the neu
assemblies synchronize their activity. Since coordinat
may take many forms, including complex nonlinear re
tions, simple correlational methods may not be sufficien
detect it. The detection of nonlinear forms of coordination
also critically important for issues in cognitive science@6#,
developmental psychology@7#, and social psychology@8,9#.

The method traditionally used for this purpose is corre
tion analysis. Given two time series one studies their au
correlation functions and cross correlations. Large cross
relations are usually attributed to large interdepende
between the parts. Small cross correlations are considere
the signature of independence of the variables.
1063-651X/2001/63~3!/036221~15!/$15.00 63 0362
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Unfortunately, linear time series analysis gives meani
ful results only in the case of linear systems or stocha
time series. It is well known that spectral analysis alone c
not discriminate between low-dimensional nonlinear det
ministic systems and stochastic systems@10#, even though
the properties of the two kinds of system are different.

Methods based on entropy measures represent one v
approach for detecting nonlinear relations between the ac
ity of different neural assemblies@5#. Recently another ap
proach based on nonlinear mutual prediction has been
posed and used in an experiment. Pecora, Carroll, and He
@11# developed a statistics to study the topological nature
functional relationships between coupled systems. Sc
et al. @12# used it as a basis of their method. The idea is
follows. If there exists a functional relationship between tw
systems, it is possible to predict the state of one system f
the known states of the other. This happens if the coup
between two systems is strong enough so that genera
synchronization occurs@11,13,14#. The average normalized
mutual prediction error is used to quantify the strength a
directionality of the coupling@12#.

The method we introduce in the present paper does
assume generalized synchrony. We introduce the notion
the dimension of interaction, which measures the size of th
dynamics responsible for the coupling between the two s
tems. More precisely, it is the dimension of the part of t
attractor of the whole system that is acted on by the dyna
ics of both subsystems. We also show how to obtain inf
mation concerning the strength and directionality of the c
pling.

The idea is, in fact, very simple. Given two time seri
from subsystems of interest we construct another one
probes the whole system, for instance, by adding the
series. If the subsystems do not interact, the dimension of
whole system is the sum of the dimensions of the two s
systems, all of which can be estimated from data. On
other hand, if the subsystems have some common degre
freedom, the dimension of the whole system will be sma
than the sum of the dimensions of the two subsystems.

Our method can also be used to find if two response s
©2001 The American Physical Society21-1
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tems have a common driver. We discuss this application
Sec. III.

The structure of the paper is as follows. In Sec. II w
recall the definition of the Re´nyi dimensions and formulate
three theorems that form the basis of our method. The ra
straightforward proofs have been relegated to Appendix
since they are not crucial for understanding the method it
and can be omitted by readers whose main interest i
applications. We formulate our method in Sec. III. Class
cation of all the possible interaction schemes is given in S
IV. A simple way of verifying the kind and direction of th
coupling is provided. Results from simulations of coupl
logistic and He´non maps are collected in Sec. V. Final com
ments and outlook are given in the last section.

II. THEORETICAL CONSIDERATIONS

Our method presented in Sec. III is based on three th
rems relating dimensions of subsystems to the dimensio
the whole system. The first one states the intuitively obvio
fact that the dimension of a system consisting of two non
teracting parts is the sum of the dimensions of the s
systems. The less trivial Theorems 2 and 3 establish inte
pendencies among the dimensions of the system and
interacting parts. Before we state our theorems we shal
call the definition of the Re´nyi dimensions.

A. Rényi dimensions

It is at present generally accepted that many objects, b
in real physical space and in phase space, are multifrac
@15–18#. This means they can be described by~statistically!
self-similar probability measures. This usually implies th
they can be decomposed into an~infinite! number of objects
of different Hausdorff dimensions, or, equivalently, th
have nontrivial multifractal spectra of dimensions.

The Rényi dimensions@19# have drawn the attention o
physicists and mathematicians since publication of the
pers by Grassberger, Hentschel and Procaccia@20–23#. For a
probability measurem on ad-dimensional spaceU one takes
a partition ofU into small cells of equal linear sizee ~equal
volumeed!. One defines the Re´nyi dimensions1 as

Dq~m!ª5 lim
e→0

1

q21

ln( i pi
q

ln e
for qPR\$1%

lim
e→0

( i pi ln pi

ln e
for q51

, ~1!

where

1An equivalent description of multifractal measures is thef a spec-
trum @24–26#. A thorough discussion of the properties ofDq and f a

spectra falls beyond the scope of this paper. Some good review
these with discussion of the abundant literature on multifractals
be found, e.g., in@16–18,27–32#. Mathematically precise defini
tions of multifractal spectra can be found in@17,18#.
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pi5m~ i th cell!5E
i th cell

dm~x!,

and the sum is taken over all cells withpiÞ0.
Of particular importance areD0 , the box-counting dimen-

sion, usually equal to the Hausdorff dimension@15,33,34#,
D1 , the information dimension or the dimension of the me
sure @19,35,36,24,37#, which describes how the entrop
2S i pi ln pi increases with the change of scale, andD2 , the
correlation dimension@22,23,38#, which can be most easily
extracted from data, and is usually treated as a lower e
mate ofD1 sinceDq1

<Dq2
for q1.q2 .

Generalized dimensions are defined for all realq; how-
ever, in our proofs we shall restrict our attention to the ca
q>1. We are particularly interested inq51 and 2.

B. Noninteracting systems

Consider two noninteracting dynamical system
(U1 ,w1 ,m1),(U2 ,w2 ,m2), where Ui,Rni is the phase
space,w i is a flow or a map onUi , and m i is an ergodic
w i-invariant natural measure onUi .

Below we shall concentrate on the case of continuo
systems. Changes needed for the discrete time case
mostly notational.

By natural measurem we mean the measure defined as t
average over a trajectory

m5mx0
ª lim

T→`

1

T E
0

T

d„x2w t~x0!…dt, ~2!

if it converges~in the weak sense! for m almost everyx0 and
is independent of the trajectory~of the starting pointx0!.
That is, Eq.~2! is the natural measure if the limit

E f dmx0
ª lim

T→`

1

T E
0

T

d„x2w t~x0!…f ~x!dt

5 lim
T→`

1

T E
0

T

f „w t~x0!…dt

exists for every continuous functionf and is the same form
almost everyx0 @all x0 except for the setA such thatm(A)
50#. In other words, the average off along a typical trajec-
tory is independent of the trajectory; thus time averages
equal to ensemble averages. One usually thinks of so
physical measure, like the Sinai-Ruelle-Bowen measure@39#,
for which the set ofx0 such thatm5mx0

is of nonzero Le-
besgue measure.

The composite noninteracting system has a product st
ture (U13U2 ,w13w2 ,m13m2). Its dynamics can be writ-
ten as

u1~ t !5w1„u1~0!,t…,

u2~ t !5w2„u2~0!,t….

Theorem 1. Suppose Dq(m1), Dq(m1), and Dq(m1
3m2) exist. Then

of
n
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DIMENSION OF INTERACTION DYNAMICS PHYSICAL REVIEW E63 036221
Dq~m13m2!5Dq~m1!1Dq~m2!. ~3!

This means, as should be intuitively obvious, that the dim
sions of noninteracting subsystems add up to the dimen
of the whole system. The proof is given in Appendix A.

This is in fact one of the long-standing problems in d
mension theory, namely, finding the conditions under wh
the equality holds for various dimensions for arbitrary me
sures. Some results for Olsen’s version of multifractal f
malism with a discussion of previous results can be found
@40#.

C. Interacting systems

Take two interacting subsystemsU1 andU2 of systemU.
It may happen that all the variables inU1 couple with all
those inU2 but this is not necessary. For many-dimensio
systems the structure of the equations of dynamics can
very complicated.

Consider the following decomposition of variables ofUi .
Let y1 be the largest set of variables inU1 satisfying the
condition that if their state is changed whatsoever it will n
influence the future evolution ofU2 . Similarly definey2 .
Put all the remaining variables ofU1 ,U2 in vectorx. They
form a dynamical systemV—the part of the whole system
that is responsible for the interaction. Then the dynamics
the whole systemU can be written as

ẋ5 f ~x!,

ẏ15g1~x,y1!, ~4!

ẏ25g2~x,y2!.

Thus the dynamics of the interacting systemsU1 andU2 is
formally equivalent to the dynamics of three systems:X
~interaction part! driving Y1 andY2 . We pursue this analogy
deeper in the next section. An example where such a dec
position arises naturally is given in Appendix B.

Note that at this point we do not assume anything spec
about the dimensionality of the variablesx, y1 , andy2 . In
particular, it may happen that the set ofx’s and/or one or
both of the sets of variablesy1 or y2 can be empty. In this
case the problem reduces to a simple system in which
cannot specify an interesting subsystem or two noninter
ing systems. All these cases are specific instances of
general scheme presented in Sec. IV.

Let mU ,m1 ,m2 ,mV be natural measures of the dynamic
systemsU,U1 ,U2 ,V, respectively~the notation used in this
section is gathered in Table I!.

Theorem 2. SupposeD1(m1), D1(m2), D1(mV), and
D1(mU) exist. Then

D1~mV!<dintªD1~m1!1D1~m2!2D1~mU!. ~5!

~We shall calldint the dimension of interaction.! The equality
holds wheny1 andy2 are asymptotically independent.

Asymptotic independence means essentially a lack
generalized synchronization between they’s and their com-
03622
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mon driverx. We relegate further discussion to Appendix
where we make this condition precise and show where i
needed.2

If we think of dimensions as estimates of the number
degrees of freedom, Theorem 2 means intuitively that, if
system can be considered as composed of interacting p
some of the degrees of freedom—perhaps even all—
common for both parts. Therefore, the dimension of
whole system is equal to the sum of the number of the co
mon degrees of freedom, those degrees of freedom w
belong toU1 and do not belong toU2 , and the other way
around. Thus if we add the dimensions of the subsystemsU1
and U2 , we count the common degrees of freedom twi
We must therefore subtract them if we want to get the
mension of the whole systemU.

In the above theorem we show that this intuition can
made precise in the case of the information dimensionD1
and with an additional assumption. The notions of the
mension of interaction that we define in Eq.~5! and of the
generalized dimensions of interaction defined below are c
cial for our method.

In the special case when one~or both! of Ui5V ~all the
variables ofUi couple with some of the variables of the oth
subsystem!, say, U25V, we may establish the following
theorem.

Theorem 3. SupposeDq(m1), Dq(m2), andDq(mV) exist
andU25V. Then

Dq~mV!5dq
int
ªDq~m1!1Dq~m2!2Dq~mU!. ~6!

The proof is obvious, for in this caseU2[V andU1U. This
also means that the above intuitions in this case are pre
for arbitrary generalized dimensions and no further assu
tions are needed.

The generalized dimensions of interactiondq
int are esti-

mates of the number of effective degrees of freedom resp
sible for the interaction between the parts of the system

2One would like to establish a similar inequality in the case
other Rényi dimensions; however, in general, even wheny1 andy2

are asymptotically independent,Dq(mV)1Dq(mU)2Dq(m1)
2Dq(m2) can have arbitrary sign~cf. Appendix A!. Nevertheless,
we expect this difference for typical physical systems to be sma
comparison with the dimensions involved, and typicallyDq(mV)
<dq

int5Dq(m1)1Dq(m2)2Dq(mU).

TABLE I. Notation.

System Variables Evolution Measure

V ~x! ẋ5 f (x) mV(x)

U1 (x,y1)
ẋ5 f (x)

m1(x,y1)
ẏ15g1(x,y1)

U2 (x,y2)
ẋ5 f (x)

m2(x,y2)
ẏ25g2(x,y2)
ẋ5 f (x)

U (x,y1 ,y2) ẏ15g1(x,y1) mU(x,y1 ,y2)
ẏ25g2(x,y2)
1-3
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der study. Of most interest ared1
int[dint , which has the bes

analytical properties, andd2
int , which can be most reliably

estimated from data.
Note that

max$dq
int ,Dq~mV!%<min$Dq~m1!,Dq~m2!%

<max$Dq~m1!,Dq~m2!%

<Dq~mU!. ~7!

Furthermore, forq51 one can show that

0<D1~mV!<d1
int .

We conjecturedq
int>0 also forq.1. We also expect typi-

cally dq
int>Dq(mV).

III. METHOD

Suppose we are given two time series measured in
systemsU1 andU2 of systemU whose structure and inter
dependence we do not know, e.g., signals gathered on
electrodes placed in not too distant portions of the brain
measurements of velocity or temperature in various parts
moderately turbulent fluid. We would like to know if th
equations governing the dynamics of both of these varia
are coupled or not, how many degrees of freedom are c
mon, and what is the direction of the coupling.

Let Xi be a function onUi , i.e., Xi :Ui→R. The time
series we measure arex1(n)ªX1„u1(tn)… and x2(n)
ªX2„u2(tn)…. Let Y:R2→R be a smooth function nontrivi
ally depending on both variables.3 Therefore we exclude
functions for which]Y/]x150 or ]Y/]x250. We construct
another time seriesy(n)5Y„x1(n),x2(n)…. ThusY(X1 ,X2)
is a function onU.

Using the time delay method@1,2# we can reconstruct the
dynamics of the systemsUi and U from xi(n) and y(n).
That is, for a givendelayt andembedding dimension Nwe
constructdelay vectors

ũ1~n!5~x1~n!,x1~n2t!,...,x1„n2~N21!t…!;

the construction ofũ2 from x2 and ũ from y is similar.

3For finite noisy time series some functions are better than oth
One cannot promote one function over another. Our experie
shows that linear combinations usually provide the most relia
results. There were some cases, however, where other func
were preferred. This is natural if one realizes that the variab
measured may have completely different physical meaning, suc
temperature and pressure, say. In this case a sum is not the
natural combination of the two time series. In practice we used
different functions Y(x,y), namely, x1y, xy, sin(x)cos(y),
x exp(y), and 2x2y, to calculate the dimension of the syste
Dq(mU), and averaged the results. The variance of the five e
mates obtained was usually small. These functions were not ch
for their particularly good numerical properties but rather to ver
that the results obtained depend only weakly on the choice of
function Y.
03622
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If N.2D0(m1), for all reasonable delays, for infinite no
too-sparsely-probed time series, the Takens theorem@2,3#
guarantees thatũ1(n) is an embedding of the original invari
ant set inU1 . To calculate dimensions it is even enough
take N.D0(m1) @41,42#. It is generally believed that for
finite but not too short and not too noisy time series also
above construction occasionally gives a reasonable estim
of the original dynamics. For a detailed discussion of the
issues the reader should consult the relevant literature,
@10,43–46#. We disregard the practical problems until Se
V, where we show some numerical results. For the time
ing we discuss clean infinite time series.

Having reconstructed the attractors we can estimate t
generalized dimensions and calculate the generalized dim
sions of interaction

dq
int
ªDq~m1!1Dq~m2!2Dq~mU!. ~8!

It is also convenient to consider normalized dimensions
interaction:

m1
q
ªdq

int/Dq~m1!,

m2
q
ªdq

int/Dq~m2!, ~9!

mU
q
ªdq

int/Dq~mU!.

From the values ofmi
q we can infer the information we need

All the possible cases are described in the next section. N
that if mi

qÞ0 they satisfy

1

m1
q 1

1

m2
q2

1

mU
q 51.

From Eq.~7! we also have

0<mU
q <m1

q ,m2
q<1,

which provides us with a tool to check the consistency
results.

Before we present the classification of all the possi
schemes of interaction let us discuss heuristically four sim
examples.

~i! If U1 and U2 are uncoupled, the variables we s
throughx1 and x2 are different; thusmU5m13m2 . There-
fore, from Theorem 1,dq

int50, as it should be for any rea
sonable definition of dimension of interaction for noninte
acting systems.

~ii ! Consider now a systemU consisting of three isolated
systemsVi ~see Fig. 1!, which we cannot observe separate
but rather throughU1 andU2 , e.g., by measuringX1(v1 ,v2)

s.
ce
le
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s
as
ost
e

ti-
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e

FIG. 1. Simple interaction.
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DIMENSION OF INTERACTION DYNAMICS PHYSICAL REVIEW E63 036221
and X2(v2 ,v3). Reconstructing the dynamics from time s
ries of X1 andX2 we expect to obtain

Dq~m1!5Dq~mV1
!1Dq~mV2

!,

Dq~m2!5Dq~mV2
!1Dq~mV3

!.

With a typical functionY(x1 ,x2) we obtain a time series
y(n) from which we estimate

Dq~mU!5Dq~mV1
!1Dq~mV2

!1Dq~mV3
!.

Since the dynamics ofV2 is responsible for the interactio
betweenU1 andU2 , we want to call the dimension ofmV2

the dimension of interaction. According to the definition~8!
we have

dq
int5Dq~m1!1Dq~m2!2Dq~mU!

5Dq~mV1
!1Dq~mV2

!1Dq~mV2
!1Dq~mV3

!

2@Dq~mV1
!1Dq~mV2

!1Dq~mV3
!#

5Dq~mV2
!.

~iii ! Consider now the general situation described in S
II C. Reconstructing the dynamics from time series of typi
variables from systemsU1 and U2 , say,x1(n) and x2(n),
we get

Dq~m1!>Dq~mV!,

Dq~m2!>Dq~mV!.

From a typical functionY(x1 ,x2) we reconstruct the attrac
tor of U and obtain

max$Dq~m1!,Dq~m2!%

<Dq~mU!

<Dq~mV!1@Dq~m1!2Dq~mV!#

1@Dq~m2!2Dq~mV!#,

whereDq(m1)2Dq(mV) quantifies the number of degrees
freedom inU1 not coupled toU2 . From this we conclude
that

0,Dq~mV!<dq
int

5Dq~m1!1Dq~m2!2Dq~mU!

<min$Dq~m1!,Dq~m2!%,

the difference betweenDq(mV) and dq
int depending on the

strength of synchronization betweenU1 andU2 .
~iv! As the last example we shall take a systemX driving

two response systemsY1 and Y2 . Suppose we also have
second copy of this setup, namely, we driveX8 with re-
sponse systemsY18 andY28 . We collect simultaneously fou
time series of some variable from all the response syste
03622
c.
l

s.

Now we choose two of them randomly and want to know
the systems they come from have a common driver. It is e
to check that, if they have, thendq

int is approximately the
dimension of the invariant measure of the driver syst
Dq(mX).0. If they have different drivers, thendq

int50.
Summarizing, from measurements involving parts of t

given system and arbitrary nontrivial smooth functions
two variables we can reconstruct the dimensions of meas
m1 , m2 , andmU . From this we can obtain the dimension
interaction dq

int @Eq. ~8!#. Depending on the values o
Dq(m1), Dq(m2), Dq(mU), anddq

int we can determine if the
systems are coupled or not, and what is the direction of c
pling.

IV. CLASSIFICATION OF POSSIBLE INTERACTION
SCHEMES

Let us thus assume that we have two subsystems and
reconstructed dimensions areDq(m1) and Dq(m2). The di-
mension of the whole systemDq(mU) is obtained from time
seriesy(n) constructed through the procedure described
the previous section. The dimension of interaction is cal
lated from Eq.~8!. The above discussion leads to the que
tion of what situations are possible. There are four no
equivalent cases, which are conveniently described by
following proposition.

Proposition 4.
~1! If dq

int50, thenmU5m13m2 ~the systemsU1 andU2

do not interact!;
~2! If Dq(m1)5Dq(m2)5dq

int , then mU5m1[m2[mV

~the systemsU1 and U2 are the same system or we ha
maximal coupling!;

~3! If Dq(m1).Dq(m2)5dq
int , then m25mV and m1

[mU ~all variables ofU2 couple to some of the degrees
freedom ofU1 , or U2 is the driver in the pair, which gives
U1[U!;

~4! In all other casesDq(m1),Dq(m2).dq
int , which means

interaction or double control~two response systems drive
by a common driver!.

Note that this proposition is to some extent opposite to
theorems proposed in Sec. II. It can be shown forq51 @47#.
We verify it numerically for particular systems forq52 in
the next section.

It is convenient sometimes to usem1
q ,m2

q ,mU
q @Eq. ~9!#.

We can write the above classification in this case as follo
~1! m1

q5m2
q5mU

q 50 ~no interaction!;
~2! 15m1

q5m2
q5mU

q ~maximal coupling:m1[m2[mV!;
~3! 15m1

q.m2
q5mU

q .0 ~all the degrees of freedom o
U2[V couple to some variables ofU1!;

~4! 1.m1
q>m2

q.mU
q .0 ~interaction or double control!.

All four cases are presented symbolically in Fig. 2.
The examples considered in the previous section can

ily be identified as particular cases of this classification. Th
example~i! represents case 1, example~ii ! represents case 4
example ~iii ! can represent cases 2, 3, or 4, and the
example represents case 1 or 4 depending on whethe
signals analyzed come from systems coupled to the s
driver or not.
1-5
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V. NUMERICAL RESULTS

Below we shall present some applications of our meth
to analysis of numerical results for several paradigmatic s
tems~coupled He´non maps and logistic maps!.

Throughout this section we will used2
int . The dimensions

presented in the pictures are alwaysD2 calculated with the
help of the d2 program from theTISEAN package@48# with an
algorithm that is an extension of algorithms published pre
ously @22,23,38# and improves the speed of computati
@48#. In every case we used 105 points with one exception
described in the text. The functionsY used to calculate the
dimension of the whole system~cf. previous sections! were
x1y, xy, sin(x) cos(y), x exp(y), and 2x2y. To estimate the
dimension we smoothed output from d2 with the help of the
Takens-Theiler estimator@10,48–50# c2t and averages ove
local dimension c2d @10,48#.

A. Two Hénon maps

Consider a systemU consisting of two He´non maps@51#
coupled as follows@12#:

K H xi 1151.42xi
210.3yi ,

yi 115xi ,
~10!

L Hui 1111.42@Cxi1~12C!ui #ui1Bv i ,
v i 115ui .

Thus Hénon systemK drives systemL. The coupling is in-

FIG. 2. Classification of possible interaction schemes. The
column shows symbolically the relative position in abstract spac
the subsystems in which we measure the time seriesx1 andx2 . An
arrow from one system to another means the future states o
second system depend on the current states of both. The se
column shows the values of normalized dimensionsm1

q , m2
q , and

mU
q in each case. The numbers refer to the cases in Propositio
03622
d
s-

i-
troduced through the variableu. We consider the case o
coupled identical systems (B50.3) and nonidentical coupled
systems (B50.1). The parameterC measures the strength o
interaction.

Suppose the variables accessible experimentally arexn

andun . What can be said in this case about the interact
between systemsK andL?

Certainly, forC50 the systemsK and L do not interact
~case 1 in our classification!; thereforeDq(mU)5Dq(mK)
1Dq(mL) anddq

int50. On the other hand, for positiveC the
influence ofx should be reflected in the behavior ofu. From
Theorem 3 we expectDq

int5Dq(mK) ~case 3!. One can also
expect that forC slightly above 0,Dq(mU) will not change
much, whileDq(mL) should jump from its value at 0 to th
value ofDq(mU) at C50.

This behavior can indeed be seen in Fig. 3~a! for noniden-
tical Hénon systems (B50.1) and in Fig. 4~a! for identical
systems (B50.3). The synchronization ofx and u @52,53#
visible for C>0.7 ~case 2! can be discovered much mor
simply: if one plots several consecutive values ofxn2un
versus coupling, for these particular values all the points
on 0 ~Fig. 5; see also Fig. 7 of@12#!. Looking at the normal-
ized dimensions@Figs. 3~b! and 4~b!# we easily identify lack

t
of

he
nd

4.

FIG. 3. ~a! DimensionsD2(m1), D2(m2), D2(mU), andd2
int of

one-way coupled nonidentical He´non maps@Eq. ~10!# for B50.1.
~b! Normalized dimensionsm1

2, m2
2, andmU

2 for the same systems
1-6
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of coupling for C50 (m15m25m350), case 4~maximal
coupling! for B50.3 andC>0.7 (m15m25m351), and
case 3 in all the other cases.

The decrease of the dimension at 0.7 for identical syste
is connected with the full synchronization of the system
Equations~10! admit solutions symmetric inx and u (xn
2un50), which in this region become stable and the wh
probability measure is localized on a lower-dimensio
manifold. For more details, see@12#.

B. Three Hénon maps

Consider now the systemU consisting of three He´non
maps@51# coupled as follows@12#:

K H xi 1151.42xi
210.3yi ,

yi 115xi ,

L Hui 1151.42@C1xi1~12C1!ui #ui1B1v i ,
v i 115ui , ~11!

FIG. 4. ~a! DimensionsD2(m1), D2(m2), D2(mU), andd2
int of

one-way coupled identical He´non maps@Eq. ~10!# for B50.3. ~b!
Normalized dimensionsm1

2, m2
2, andmU

2 for the same systems.
03622
s
.

e
l

M Hwi 1151.42@C2xi1~12C2!wi #wi1B2zi ,
zi 115wi .

Thus Hénon systemK drives systemsL andM. The coupling
is introduced through variablesu andw. ParametersC1 and
C2 measure the strength of interaction.

Suppose the measurements on~K, L, M! yield variablesu
and w. What can be said in this case about the interact
between the systemsL andM?

ForC15C250 neither systemL norM feels the influence
of K. They also do not interact~case 1!. When one of theCi
grows, the influence ofK is immediately mirrored in the rise
of the dimension ofmL or mM . For bothCi.0 the systems
L andM interact~case 2!, and the part responsible for inte
action isK. Thus the dimension of the common part is co
stant and equal to 1.22 in our case.

We show this behavior in Fig. 6~a! for nonidentical sys-
tems~B150.3, B250.1! and 7~a! for identical systems~B1
50.3, B250.3!. In both casesC150.5 andC2 is varied. In
both figures one can clearly see the jump of the dimensio

FIG. 5. Differences between thexn and un values of two
coupled He´non systems@Eq. ~10!# for 100 consecutive values~a!
for the case of nonidentical systems (B50.1) and~b! for the case of
identical systems (B50.3).
1-7
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interaction from 0 to values equal to or greater than 1.22,
dimension of the attractor ofK.

Typical behavior of the local dimensiond ln C(e)/d ln e as
a function of resolutione is shown in Fig. 8.

Figure 7 is particularly interesting, since one can app
ently identify all four cases of our classification. ForC250
we have noninteracting systems; forC2P@0.2,0.4# and C2
50.6 we have case 2. ForC250.5 the two He´non systemsL
andM become identical. Since at this value of coupling co
stant they are in general synchrony with the driver, wh
means their asymptotic states are independent of their in
states, and depend only on the present state of the driv
follows that un5wn . For C2>0.7 the systemM fully syn-
chronizes withK, which leads to the collapse of the pro
ability measure inK,M space on the diagonal~compare the
discussion in the previous subsection!.

C. Logistic maps

Let f a(x)ªax(12x). Consider a system consisting o
four uncoupled logistic maps

FIG. 6. ~a! DimensionsD2(m1), D2(m2), D2(mU), andd2
int of

two-way coupled He´non maps@Eq. ~11!# with different response
systems~C150.5, B150.3, B250.1!. Additional line at 1.2 in the
upper figure is a guide for the eye and stands for the dimensio
the attractor of He´non systemK. ~b! Normalized dimensionsm1

2,
m2

2, andmU
2 for the same systems.
03622
e
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xn11
i 5 f a i

~xn
i !,

wherea153.7, a253.8, a353.9, anda454. Suppose the
only variables available experimentally are4 Yi , j (n)
5Fi,j(xn

i ,xn
j ), i , j . Given two randomly chosen time serie

Yi , j (n),Yk,l(n) we want to know if they share some degre
of freedom or not~if they ‘‘interact’’ or not!. If i or j is equal
to k or l, there are only three active degrees of freedom in
compound system. Otherwise there are four.

Estimated correlation dimensions for several cases
collected in Table II. In every case we used time series5

points long except for the last one, for which 106 points were
used. The estimation error was roughly 2% except for

4The coupling functionsFi , j were chosen randomly fromx1y,
xy, sin(x) cos(y), x exp(y), and 2x2y, and fixed.

of

FIG. 7. ~a! DimensionsD2(m1), D2(m2), D2(mU), andd2
int of

two-way coupled He´non maps@Eq. ~11!# with identical response
systems~C150.5, B150.3, B250.3!. Additional line at 1.2 in the
upper figure is a guide for the eye and stands for the dimensio
the attractor of He´non systemK. ~b! Normalized dimensionsm1

2,
m2

2, andmU
2 for the same systems.
1-8
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FIG. 8. Local correlation dimensiond ln C(e)/d ln e as a function of resolutione smoothed out with the Takens estimator. Data sho
come from two different He´non systems driven by the third@Eq. ~11! with parametersB150.3, C150.5, B250.1, C250.6#. Correlation
dimension of subsystemsU1 andU2 estimated from~a! and~b! is 1.95 for both. Dimension of the whole system is estimated to be 2.4
the basis of five plots for which different coupling functions were used, two of which are shown in~c! and~d!. Dimension of interactiond2

int

in this case is 1.9511.9522.451.5.1.22, which suggests partial synchronization of the two response systems with the driver.
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last case for which it was about 5–10 %.5

Consider now two symmetrically coupled logistic map

xn115 f a~ x̃n! where x̃n5
xn1cyn

11c
,

~12!

yn115 f b~ ỹn!, where ỹn5
yn1cxn

11c
,

and the parametercP@0,1# measures the coupling. Simila
couplings have been discussed previously in the litera
~e.g., @54,53#!. The maps are uncoupled forc50. For c51
~the strongest coupling! if we set znª x̃n5 ỹn , we havexn
5@2a/(a1b)#zn , yn5@2b/(a1b)#zn , and zn11
5 f (a1b)/2(zn). Therefore the dynamics is one dimension
Casec.1 is equivalent toc851/c.

5We believe there are two reasons for this. One is the hig
dimensionality of the system in the last case~four uncoupled logis-
tic maps!; the other is worse ergodicity in the phase space beca
the maps are uncoupled. Note that our procedure consists of
parts: first we make the embedding, then we calculate the dim
sions. Each of the two can introduce errors. The number expecte
the last case is the sum of the first four numbers, namely, 3
60.6.
03622
re

.

Estimated correlation dimensions for several values of
coupling constantc are shown in Fig. 9. One can see th
jump in the dimension of interaction from 0 atc50 to the
value equal to the dimension of the whole system for po
tive c, indicating case 4 in our classification. Forc50.2
asymptotic dynamics settles on a period-2 periodic o
leading to all the dimensions being equal to 0. Numerica
obtained approximations to asymptotic measures for the c
pling constantc50, 0.1, 0.2, 0.3, 0.4, 0.5 are shown in Fi
10. Note the increasing synchronization betweenx andy.

It is of interest to compare the values of dimensions
c50 and 1, because in both casesD1(mx)'D1(my)51, but
the dimension of the whole system estimated fromf (xn ,yn)
is equal to 2 in the first case and 1 in the second, imply
Dq

int50 and 1 in these cases, respectively. Thus the first m
sure has a product structure, while the other is concentr
on the diagonalx5y.

The last case considered is that of double control:

xn115 f a~xn!,

yn115
f b~yn!1c1xn

11c1
, ~13!

zn115
f g~zn!1c2xn

11c2
,

r

se
o

n-
in
7
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where a54.0, b53.8, g53.9, andc1 ,c2P@0,1#. Let the
observed systemsU1 andU2 be the sets of all pairs~x,y! and
~x,z!, respectively. Then we have essentially case 2. IfU1
and U2 are the sets of all pointsx and pairs~x,z! then we
have case 3.

Figures 11 and 12 show the estimated correlation dim
sion in these cases. Again, one can clearly see the differ
between the coupled (ci.0) and uncoupled (ci50) sys-
tems, because the interaction dimensions jumps from 0
or more, in agreement with our expectations from Theore
2 and 3, since the dimension of the common part is 1~xn
evolves according to the Ulam map:a54.0!. Figure 13
shows projections of the attractor of Eq.~13! on the~x,z! and
~y,z! planes forc150.1 andc250.2.

VI. CONCLUSIONS AND OUTLOOK

We have presented a method that allows one to dis
guish interacting from noninteracting systems when time
ries of variables of the two systems are available. Par
proof of its validity was provided. Classification of all po
sible interaction schemes was presented with examples o
the cases. Several simple interacting systems were analy

To use our method in practice~from field data! we sug-
gest the following procedure.

~A! Calculate the dimensionsDq(m1), Dq(m2), Dq(mU),
and dq

int @Eq. ~8!# ~we suggestq51 or 2; it is also good to
normalize the data if they are of different orders!. In this
respect one might wish to use a coupling function of the ty

YS x2^x&
sx

,
y2^y&

sy
D .

~B! Repeat the calculation for several different coupli
functions Y and average the results~linear combination
seems to be the best choice!.

~C! If they are different from 0, calculate the normalize
dimensionsmi

q @Eq. ~9!#.

TABLE II. Estimated correlation dimension for uncoupled l
gistic maps. The estimation error is roughly 2% except for the
number for which it is about 5–10 %.

Seriesx(n) D„mx(n)…

x1 0.96

x2 0.95

x3 0.97

x4 0.99

Y1,2 1.88

Y1,3 1.94

Y1,4 1.95

Y2,3 1.89

Y2,4 1.94

Y3,4 1.93

f (Y1,2,Y1,3) 2.88

f (Y1,2,Y3,4) 3.8
03622
n-
ce

1
s

-
-

al

all
ed.

e

~D! They may take one, two, or three distinct values.~a! If
all of them are 0, the systems do not interact~case 1!. ~b! If
all of them are greater than 0 and less than 1, this is a gen
case of interacting systems~case 4!. ~c! If one of them is 1
and the others are smaller, all the degrees of freedom of
system couple to some degrees of freedom of the other~case
3!, or we have the previous case~case 4! but the variables of
one of the systems that are not coupled to the other sync
nize to the system comprising the common part of the
namics. ~d! If they are all equal to 1, all the degrees
freedom of one system couple to all the degrees of freed
of the other~case 2!, or we have the two previous cases~3
and 4! but the variables of the two systems that are n
coupled synchronize to the system comprising the comm
part of the dynamics.

Nothing has been said so far about the influence of no
on our method. Put simply, the larger the noise, the m
difficult it is to apply. However, noise leads to some inte
esting phenomena that deserve a longer discussion. This
be provided in our forthcoming paper in which we succe
fully apply our method to distinguish between interacti
and noninteracting Chua systems in an experiment@55#. We
hope our method will prove a useful tool in the analysis
other complex systems.

FIG. 9. ~a! DimensionsD2(m1), D2(m2), D2(mU), andd2
int of

symmetrically coupled logistic maps@Eq. ~12!#. ~b! Normalized di-
mensionsm1

2, m2
2, andmU

2 for the same systems.

t
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FIG. 10. Attractors of symmetrically coupled logistic maps@Eq. ~12!# for c50,0.1,0.2,0.3,0.4,0.5 in the~x,y! plane.
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Note added in proof.Ideas similar to some of those pre
sented in this paper were considered in@56# and @57#. They
were used, e.g., to distinguish temporal from spatiotemp
chaos in magnetic systems@58#. We thank Dr. Jan Zebrowsk
for pointing out these references and providing us with the
03622
al
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APPENDIX A: THE PROOFS

Let m1 ,m2 be the invariant measures of systemsU1 ,U2
as defined in Sec. II B.

Theorem 1. Suppose Dq(m1), Dq(m2), and Dq(m1
3m2) exist. Then

Dq~m13m2!5Dq~m1!1Dq~m2!.

Proof. TakeqÞ1. For everye.0 consider partitions of
Rni into cells of volumeeni. This gives a partition inRn11n2

into boxes of volumeen11n2. Let

pj5m1~ j th cell from the cover ofU1!,

r k5m2~kth cell from the cover ofU2!.

Then

FIG. 11. ~a! DimensionsD2(m1), D2(m2), D2(mU), andd2
int of

asymmetrically coupled logistic maps@Eq. ~13!# whenx andz are
the observed variables.~b! Normalized dimensionsm1

2, m2
2, andmU

2

for the same systems.
03622
B
Dq~m13m2!5 lim

e→0

1

q21

ln (k, j pi
qr j

q

ln e

5 lim
e→0

1

q21

ln~(kpi
q!~( j r j

q!

ln e

5 lim
e→0

S 1

q21

ln (kpk
q

ln e D 1 lim
e→0

S q

q21

ln ( j r j
q

ln e D .

But the last two limits exist and are equal toDq(m1) and
Dq(m2), respectively.

The case ofq51 is straightforward and left to the
reader. h

For the next proof we need the following lemma.
Lemma 1. Let 1>ci j >0, ( i j ci j 51, ai5( j ci j , and bj

5( ici j . Then

(
i , j

@ci j ln ci j 2aibj ln~aibj !#>0. ~A1!

Proof. Every convex functionf satisfies Jensen’s inequa
ity

FIG. 12. ~a! DimensionsD2(m1), D2(m2), D2(mU), andd2
int of

asymmetrically coupled logistic maps@Eq. ~13!# wheny andz are
the observed variables.~b! Normalized dimensionsm1

2, m2
2, andmU

2

for the same systems.
1-12
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FIG. 13. Projections of the
attractor of asymmetrically
coupled logistic maps@Eq. ~13!#
for c150.1 andc250.2 on the
~x,y! and ~y,z! planes.
e-

o

th

i.e

y

f

de
res,
f S (
i

pixi D<(
i

pi f ~xi !, ~A2!

where( i pi51. Sincef (x)5x ln x is convex, one has

f S (
i , j

ci j D>(
i , j

aibj f S ci j

aibj
D ,

f ~1!<(
i , j

aibj

ci j

aibj
~ ln ci j 2 ln ai2 ln bj !

0<(
i , j

ci j ln ci j 2(
i , j

ci j ln ai2(
i , j

ci j ln bj

0<(
i , j

ci j ln ci j 2(
i

ai ln ai2(
j

bj ln bj

0<(
i , j

@ci j ln ci j 2aibj ln~aibj !#,

where we used Eq. ~A2! with pi j 5aibj and xi j
5ci j /(aibj ). h

Let m1 , m2 , mV , andmU be the invariant measures d
fined in Sec. II C.

Theorem 2. SupposeD1(m1), D1(m2), D1(mV), and
D1(mU) exist. Then

D1~mV!<dintªD1~m1!1D1~m2!2D1~mU!.

The equality holds wheny1 andy2 are asymptotically inde-
pendent.

Proof. Let n1 be the number of variablesy1 ~Sec. II C!
with the property that any change in their present state d
not influence the future states of systemU2 . Let n2 be the
number of variablesy2 of the symmetric property. Letm be
the number of all the other variables~x!. Variablesx form
the partV of the compound system that is responsible for
interaction. Thus the system can be embedded
Rn11n21m.Consider a partition ofRn11n2 into cells of size«
consistent with the structure of equations of dynamics,
03622
es

e
in

.,

( i , j ,k)th cell5Ai3Bj3Ck , whereA, B, andC are« cells of
dimension, respectively,m, n1 , andn2 in spaces spanned b
x, y1 , andy2 .

Since the dynamics of (x,y1) is independent ofy2 , the
invariant measurem1(Ai3Bj ) can be written as

m1~Ai3Bj !5mV~Ai !m~y1ux!~Bj uAi !5..pir j i ,

where m (y1ux)(Bj uAi) are the conditional probabilities o

finding they1 in Bj under the conditionx being inAi . Simi-
larly,

m2~Ai3Ck!5mV~Ai !m~y2ux!~CkuAi !5..piski

and

mS~Ai3Bj3Ck!5mV~Ai !m~y1 ,y2ux!~Bj ,CkuAi !5..pi t jki .

If m (y1ux)(Bj uAi) andm (y2ux)(CkuAi) are independent, then

m~y1 ,y2ux!~Bj ,CkuAi !5m~y1ux!~Bj uAi !m~y2ux!~CkuAi !;
~A3!

otherwise the only thing we know is that the left-hand si
measure is the coupling of the right-hand side measu
namely,

(
k

m~y1 ,y2ux!~Bj ,CkuAi !5m~y1ux!~Bj uAi !,

(
j

m~y1 ,y2ux!~Bj ,CkuAi !5m~y2ux!~CkuAi !,

or

(
k

t jki5r j i ,

(
j

t jki5ski .

Of course,
1-13



DANIEL WÓJCIK, ANDRZEJ NOWAK, AND MAREK KUŚ PHYSICAL REVIEW E 63 036221
(
k

ski5(
j

r j i 5(
jk

t jki51

if piÞ0. Otherwise we take; j ,k:t jki50.
Taking this into consideration, inequality~5! follows:

D1~m1!1D1~m2!2D1~mV!2D1~mU!

5 lim
e→0

( i( j pi r j i ln~pir j i !

ln e
1 lim

e→0

( i(kpiski ln~piski!

ln e
2 lim

e→0

( i pi ln~pi !

ln e
2 lim

e→0

( i , j ,kpi t jki ln~pi t jki !

ln e

5 lim
e→0

( i pi ln~pi !~( j r j i 1(kski212( j ,kt jki !

ln e
1 lim

e→0

( i pi( j ,k@r j i ski ln~r j i ski!2t jki ln~ t jki !#

ln e
>0
le
-
is
th
-

m
he
th

se
en

th

lo
uc
m
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ral

-

of
where in the last line we used Lemma 1 forc5t, a5r , and
b5s and the fact that lne,0.

Note that the equality holds if and only if

t jki5r j i ski . ~A4!

This is what we call asymptotical independence of variab
y1 and y2 . In particular, whenyi are in generalized syn
chrony with x, this means that their asymptotic behavior
independent of their initial states and depends only on
initial state ofx; therefore their probability distributions can
not be independent, since they depend on the same nu
x(0). However, we think this is not the only case where t
equality is violated; this is why we use another name for
above condition. h

One would like to establish a similar inequality in the ca
of other Rényi dimensions; however, in general, even wh
Eq. ~A4! is satisfied,

Dq~mS!ÞDq~m1!1Dq~m2!2Dq~mx!.

Indeed,

Dq~m1!1Dq~m2!2Dq~mx!2Dq~mS!

5 lim
e→0

1

ln e
lnF ~( i ,kpi

qr ki
q !~( l , j pl

qsjl
q !

~( l pl
q!~( i , j ,kpi

qsji
q r ki

q !G
5 lim

e→0

1

ln e
lnF11

( i , i , j ,kpi
qpl

q~r ki
q 2r kl

q !~sji
q 2sjl

q !

( i , j ,k,l pi
qpl

qsji
q r ki

q G .
~A5!

This may have arbitrary sign and need not vanish in
limit.

Although Eq.~A5! must go to 0 in the limitq→1, one can
perhaps construct examples of measures for which the s
can be arbitrarily large. On the other hand, we believe s
measures will not be typically observed in physical syste
03622
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APPENDIX B: AN EXAMPLE OF PARTIALLY
COUPLED SYSTEMS

We present here a simple although abstract example
interacting systems for which one can introduce the natu
decomposition~4!.

Consider two systemsU1 ,U2 interacting through a thin
contact layerV ~Fig. 14!. Denote variables inU1 as u1
5(v1 ,w1), variables inU2 asu25(v2 ,w2), and variables of
the contact layerV as (v1 ,v2). The dynamics of such a con
figuration can be described as

ẇ15 f 1~v1 ,w1!,

ẇ25 f 2~v2 ,w2!,

v̇15g1~v1 ,v2 ,w1!,

v̇25g2~v1 ,v2 ,w2!.

If we can average the influence ofw1 ,w2 on the dynamics of
v1 ,v2 , e.g., when the time scales involved in the dynamics
vi andwi are different, we obtain

ẇ15 f 1~v1 ,w1!,

ẇ25 f 2~v2 ,w2!, ~B1!

FIG. 14. Interacting systems.
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v̇15g̃1~v1 ,v2 ,l1!,

v̇25g̃2~v1 ,v2 ,l2!,

wherel1 ,l2 measure the average influence ofw1 ,w2 on V.
Thus equations forv1 ,v2 comprise a closed systemV. This
aw

ick

to

s

I.

n-
,

n

03622
part of the dynamics is responsible for the interaction. N
that this scheme can also be considered as a double co
configuration of three systems, where (v1 ,v2) controlw1 and
w2 .

If we set xª(v1 ,v2), yi5wi , then Eqs.~B1! reduce to
Eqs.~4!.
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