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We introduce a family of models for quantum mechanical, one-dimensional random walks, called quantum
multibaker mapgQMB). These are Weyl quantizations of the classical multibaker models previously consid-
ered by Gaspard, Tasaki, and others. Depending on the properties of the phase’s parametrizing the quantization,
we consider only two classes of the QMB maps: uniform and random. Uniform QMB maps are characterized
by phases that are the same in every unit cell of the multibaker chain. Random QMB maps have phases that
vary randomly from unit cell to unit cell. The eigenstates in the former case are extended while in the latter
they are localized. In the uniform case and for lafgeanalytic solutions can be obtained for the time-
dependent quantum states for periodic chains and for open chains with absorbing boundary conditions. Steady
state solutions and the properties of the relaxation to a steady state for a uniform QMB chain in contact with
“particle” reservoirs can also be described analytically. The analytical results are consistent with, and con-
firmed by, results obtained from numerical methods. We report here results for the deep quantuntlaegéme
#) of the uniform QMB, as well as some results for the random QMB. We leave the moderate and: small
results as well as further consideration of the other versions of the QMB for further publications.
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[. INTRODUCTION square. In the multibaker chain, each of the two horizontal
rectangles are sent to adjacent cells, one to the right and the
The quantum mechanics of classically chaotic systemsgther to the left(Fig. 1). Modified multibaker chains have
often called quantum chaos, is by now a highly developedlso been studied where there may be more strips and/or a
subject with an enormous literature, including monographgnore complicated dynamics including both area preserving
by Gutzwiller [1], Stackmann[2], and Haake[3], among and area nonpreserving dynamics. These classical models
others. The subject has been greatly advanced, as is usual, B§pvide simple, deterministic models of one-dimensional
detailed analyses of simple model systems such as kicke@ndom-walk processes with both diffusive transport and
rotors, quantum flows on surfaces of constant negative cughaotic dynamics. They have been used to study connections
vature, Harper models, and so on. Some of the central proetween transport properties such as transport coefficients,
lems that have been studied using these models include thod8d irreversible entropy production, and the chaotic proper-
of (1) finding explanations for the efficacy of random matrix ties of the model$4-18§].
theories,(2) understanding the differences between quantum Quantum versions of baker maps are well known and
and classical transport, especially when Anderson localizaStudied in some detail for a range of values of Planck’s con-
tion plays a role in the quantum systeg3) studying the stant. Here we add a mechanism for transport of probability
properties of quantum systems in the semiclassical limit, an@Mmplitudes along a one-dimensional chain of quantum baker
(4) determining the role of decoherence in producing classimaps. This quantum version of the multibaker niQMB)
cally chaotic behavior of a quantum system as Planck’s conProvides one realization of a quantum random walk process.
stant tends to zero. In this paper we will concentrate on the “most quantum”
The present paper treats the quantum versions of simpléersion of the QMB, obtained by using the largest possible
model systems, multibaker maps, that have been used ¥glue of Planck’s constarit=1/2, in the Weyl quantization
study transport phenomena in classically chaotic systems. Af the ordinary baker mafl9,20. Our goal here will be to
multibaker map consists of a chain of two-dimensional baker
maps that are interconnected by means of a simple change in
the baker dynamics. In the usual baker map on a unit square ”‘m
or torus, two vertical strips are stretch@dy a factor of 2 in
the horizontal direction, contracté€dy a factor of 2 in the
vertical direction, and the resulting horizontal strips are
placed one above the other, in order to reconstruct the unit

n+1
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explore the transport properties of the QMB for this value ofQMB for smaller values ofh including the semiclassical

h, and for two different versions of the model, obtained bylimit, and looking for traces, if any, of the chaotic classical
taking advantage of some phase-related arbitrariness in tHeehavior in the quantum version. The present paper is de-
quantization of the map. Later papers will explore furthersigned to identify important quantum phenomena that differ
properties of QMB’s including the semiclassical case, noffrom those of the classical multibaker at largebut which

considered herg21]. are expected to approach the classical results as the Planck’s
Area-preserving maps on torus admit a two-parametefonstanth=1/N, tends to zero. _
family of Weyl quantization§20,22,23, where the two pa- The plan of the paper is as follows: In Sec. Il we will

rameters can be chosen to be phases. One can think of tfgfine the classical version of the model and study the evo-
two phases as offsets of lattice points that define the Spatiéllltlon of piecewise constant probability densities. In Sec. llI

and momentum coordinates of the map. If we choose th¥/€ quantize the multibaker map using Weyl quantization.
same phases in each unit cell of the chain, we have a “unil héré we will define the uniform and random QMB'’s and

form” QMB. If we choose random phases from cell to cell, Ptain expressions for the time-dependent propagator appear-
we obtain a “random” QMB. The different versions have N9 in the discrete time version of Sclilinger’s equation. In

quite different properties, as one might expect. The unifornp€C: [V we describe the behavior of the uniform QMB for

QMB has many features in common with those of continu-N=1/2. We find the eigenstates for both cI_osed and open
ous one-dimensional systems with periodic potential, includSYStems, as well as the steady state solutions for systems

ing extended eigenstates, and ballistic transport, while th&ith particle reservoirs at their boundaries. We then consider
random case exhibits the usual phenomena associated withe transport properties of particles in these chains. Of par-
localization. Nevertheless, there are some interesting suficular interest in this connection is in our finding that for

prises, as we shall see in further sections, associated wifP€n chains of uniform multibakers, and with absorbing
transport in open systems. boundary conditions, the escape of particles from the chain is

There are a number of formulations of quantum randonsubdiffusivedespite the ballistic transport of particles from
walks already in the literature. We mention, in particular the interior of the chain to its boundaries. We then turn to a

work of Aharonovet al. [24], work of Godoyet al. [25,26], brief discussion of the properties of random multibakers and

and work of Barra and Gaspaf@7]. The papers of Godoy show that the assumption of random phases leads to local-
and co-authors as well as that of Barra and Gaspard hayéed wave functions with very different properties from the

interesting parallels with ours. These authors consider thiniform case. Our results are summarized and discussed in

motion of a quantum particle along a one-dimensional, periS€c- V1.

odic chain of scattering sites. The scattering sites are charac-

terized by transmission and reflection amplitudes, which for Il. THE CLASSICAL MULTIBAKER MAP
a periodic system, are takep to be the same for each S'.te' The classical multibaker map provides a reversible, deter-
Godoy and cp-workers 99n5|der thg wave fpnctlons for thGIrministic realization of a one-dimensional random walk. It is

systems at discrete positions and discrete times, and propo. simplest area-preserving, deterministic model for diffu-
a set of equations similar to the ones considered here. The§?0 y

. : i : n of a particle on a one-dimensional lattice, whereby the
equations are then solved using stationary phase approxmsérticle makes steps either to the right or left at equally

tions, and the gonnechons with La“da“efs formglq are dIS's aced time intervals. The multibaker map can be adjusted
cussed, for various parameters and particle statistics. Barré)

. e r any set of step probabilitiesp,q=1—p,0<p,q=<1,
and Gaspard also consider a model similar to ours, and th%herep is the probability of making a step to the right. The

analyzelz the scattfering gsonances ;or akf)inite, open SyStelE'I‘assical multibaker map is based upon the usual baker’s
By applying transfer an® matrices, they obtain expressions : < :
for the widths of resonances and the Wigner time delay, as QapB on the unit square, (8x,y<1), defined by

function of the system size. Their equations are in fact quite r(x/p,py% for 0<x<p,
similar to ours, and a number of results differ in the two B(x,y)= (1)
cases only because of the differences in the details of the (x=p)/a,p+ay), forp<x<Ll.

model studied. Their model has two channels per (&ir-
ticles moving to the left or rightbut the particles can have a

wide range of energies, and in some instances the hig =0,...L—1, such that any point on the chain is labeled by
energy limit is considered. The similarities with the work of the’thre,e qua'ntities x,y with 0=x,y<1. Then the action
Godoyet al. occur because the version of the quantum multi- ¢ map,M on a,ng/ point is ot,)taine.d by combining a

bake_r model_ considered in _the present paper Is the S|mple bker's map with translation of each rectangle to the right or
possible, while more complicated versions, to be considere ft, as given by

in further papers, have no direct counterparts in their work.

The multibaker map is constructed by taking a linear chain
of L adjacent unit squares, labeled by the index

Despite the similarities between our work and that of n(n x,y)=(n+1x/p,py), for 0<x<p, )
other authors, the focus of the work mentioned above gener-
ally differs from ours. We are particularly interested in com- =(n—1,(x—p)/q,p+qy), for p<x<1.

paring and contrasting quantum and classical multibaker
maps, and in generalizing the QMB in a number of direc-This arrangement has the property that there is a probability
tions. These include an examination of the behavior of thg of choosing a point that moves one square to the right, and
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probability q of choosing a point that moves one square to 1

the left. To complete the specification of the map, one must re(n=regr(nN)=zle(n=1)+er(n+1)]. (5
append boundary conditions to the transformation given by

Eq. (2). Such conditions may include periodic, or absorbinglt follows that eitherA=0 or ¢, (n)=pg(n). Clearly, theL
boundary conditions, or one might specify that the ends of/ectors of the form

the chain are connected to reservoirs that maintain a constant

density of points at the boundaries. As a chaotic system, the euk=1)=—er(k+1)#0,
multibaker map iS a measure preserving map with positive o (n#k—1)=0or(n#k+1)=0,

and negative Lyapunov exponents, given by.=

+[pIn(l/p)+qIn(l/g)]. This map has been used to study belong to the kernelh=0, of the classical discrete multi-
the properties of deterministic diffusion in a chaotic systempaker. For the case wheke#0 we look for solutions of the
studies of the connection between diffusion coefficients andorm ¢, r(n)=A€"” and Eq.(4) leads tox=cosd. The
Lyapunov exponents for an open chain, a study of entropg@eneral solution is, theng, r(n)=A;cos@n)+Agsin(in),
production in the relaxation to a uniform equilibrium state, Where periodic boundary conditions leadde=2k=/L, and

and has been extended to provide simple models for viscod§€ normalized eigenstates can readily be determined. For
and heat flows as wel4—18|. oddL=2M +1 we have thd. following solutions.

The classical version of the quantum multibaker consid-
ered here was discussed in RE8]. We consider here a
simple form of this classical model constructed to be a clas
sical version of thenh=1/2 quantum system. We will study . o .
the evolution of probability densities integrated along the)‘_gos(Z(W/L)l’kt._l’ C ’(L:i\);\z'—l'k—o
stable directior(y) and piecewise constant on two halves of (3) one solutiong, g(n)=A.A=1k=0.
every multibaker cell(along the unstable directionThis  For evenL=2M we have the following solutions.
space of densities ard_2dimensional. Therefore, the evolu- _ :
tion operator _for this class of probabi_lity densities has the_ A(\lgos(zl\(/lm/{),)\:Sgloustl(c;]:/l_);g1' -tr.u.a,uzfgrlng oLr(M
same dimension as the quantum multibaker propagator con- 2 M-1 solutions of the form g g(n)

sidered in Sec. III. = Asin(Zm/L) \=cos(Xm/L):k=1, . .. L/2—1;
(3) one solutiong| g(n)=AN=1;k=0, and,
A. Closed, periodic case (4) one solutiong g(n)=(—1)"AN=—-1k=M=L/2.

We consider the classical evolution of phase-space densie see that in the odd case there is an approach to equilib-
ties under the dynamics given by H&) with p=1/2. Since rium: all the eigenvalues have absolute value strictly less
the quantum version will describe probability amplitudes inthan 1, apart from the one corresponding to the uniform dis-
either space or momentum, the classical counterparts are ofjibution. The even case is sensitive to the “even-odd” oscil-
tained by projecting the classical densities alongxter y  lations of the location of a point along the chain. These os-
axes, respectively. We restrict our attention to probabilityCillations can be removed by combining two successive
densities projected onto the unstakldirection and we take Steps.
them to be constant on intervalssk<1/2,1/2<x<1,n
=const, to mimic theh=1/2 quantum case. Then the pro-

(1) M solutions of the formg gr(n)=A cos(Xmm/L),
A=cos(Xn/L)k=1,...,L—1)/2;
(2) M solutions of the formg, g(n)=A sin(Xmm/L),

B. Open case(absorbing boundary conditiong

jected distribution is For the open chain with absorbing boundary conditions,
L the dynamics inside is the same as in the closed case and is
Q(n,x,t)::f o(n,x,y,H)dy given by Eq.(4), therefore the general solution is also given
0 by @ r(n)=A;cos@n)+Assin(dn). Absorbing boundary

conditionsgg  (—1)=@gr(L)=0 lead to
[ o (nt), for 0<x<1/2,

1 .
or(n), for 1/2<x<1, () A =2 [A10080 +Agsind], (6)

and it satisfies a Frobenius-Perron equation given by MAsco(L—1) 3 +Azsin(L—1) 9]
1

1 =§[A1cos(L—2)ﬁ+Azsin(L—2)1‘}], !

QL,R(n1t+1)= E[QL(n_lyt)+QR(n+1!t)]a (4)

where\ = cosd. They have nontrivial solutions if and only if

sinL+1)9=0, leading to % =kw/(L+1), where k=

with  periodic ~ boundary conditions ¢ r(n+L,t)  —L .. —11,...L, and\(—d)=\(9). Thus finallyk
=@ r(N,t). Since this equation is linear we may suppose=1, ... L, which gives the_ states of the form

thato, r(n,t) represent the deviations from a uniform equi-

librium state, and may take both positive and negative val- k(n+1)m

oL r(N)=Asi (8)

ues. An eigenstate of the right-hand side of E4.satisfies L+1
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1 " " " " " " I1l. QUANTUM MULTIBAKER MAP: THE GENERAL
08 | MODEL
0.6 | | In order to quantize the multibaker map, we start with the
s 7 guantum baker map, as described by Balazs and [d'@s
< 04t 1 and Saracenf20], and then produce a quantum multibaker
map by forming a chain of unit squares, applying the quan-
02} !
tum baker map to each square, but transferring the new quan-
tum states to the adjacent squares according to the procedure
0 20 40 60 80 100 used in the classical case.

n The method for constructing a quantum version of the

FIG. 2. Linear profile of the classical discrete multibaker map Ofregular baker map is as follows. We consider xfuirection

length L=101 with reservoirs ¢,=0.10,=0.9). The horizontal t,O be the “spatjal“ direCtionn Of_ the,SyStem’ and thedirec-
axis range i —5,105). tion to be the “momentum” direction. Then the number of

guantum statesN in the unit square should satisfiX

The remainingL states are in the kernel:—2 are of the —~Q/27h, whereQ=1 is the spatial extent of the unit
form given by Eq(6) with n=1, . .. L —2. Two other states Sduare, andP=1 is the range of momenta. Th!s leads to the
corresponding toA=0 are o (L—1)=10 (k#L—1) simple formula,#=1/(27N), where N is an integer. We

= 0r(K)=0, andor(0)="1,0r(k#0)=p, (k)=0. Thus we usually, but not always, takid to be an even integer, so that

easily obtain a spectral decomposition for the simple operaﬁgﬁ inLgfutrTif Séjjz?rgmoiteatt?\z :ignbsirsifsogztgt?dgg? each

tor treated here, with absorbing boundary conditions. N - . o .
The probability of flndlng the particle in the system de- sition” states for a unit square, with position elgenvaquas

cays with the escape rate =27h(j+¢q)=(i+¢g)/N,j=0,... N-1 and a set oN
“momentum” states with momentum eigenvalug@,
InP(t) =2mh(k+¢p)=(k+¢@p)/Nk=0,... N=1. We require
yi=—Ilim , (9) that O<¢4,<1. The position and momentum states are re-
t—o lated to each other by means of a simple Fourier representa-

tion, with N terms, given by
whereP(t):=2,0(n,t), given by the largest eigenvalue

1 . .
’ (Gn)i=(pylaj)= T=e 2mlrenlted™ (14

T
y=-In =52 (10 JN

m
L1

for largeL. We include subscripts op,q in the notation for the Dirac
matrix element to identify the integers that are attached to
the p and g representations. The phases,,¢,, are as yet
unspecified. In the literature on the quantum baker map,
Next we connect particle reservoirs to a finite chain andthese phases are often taken to kgh@ simplesf19]) or 1/2
look for steady state solutions. These are time invariant sofmost symmetric map20]). Here we will take advantage of

C. The open, discrete multibaker with reservoirs

lutions to Eq.(4), with the boundary conditions the possibility to choose these phases so as to represent dif-
1 ferent situations that may have some relevance to physical

0)=0a(0)= =0+ 1. 11 phenomena.
2.(0)=¢r(0) 2[91 er(L)] 1) The time dependence of the quantum baker map is deter-

mined by constructing a propagator for the change in the

1 quantum states over one time step. This propagator consists
oulll=D=egr(L=D)=5[e(L=1)+ez], (12  of two parts: First one transforms the “left” part of the Hil-
bert spacéin the position representatipmto “bottom” sub-
space(in momentum representatiprand the “right (posi-
tion) part” into the “top (momentum part.” Then one uses
the Fourier relation between position and momentum states,
Eq. (14), to change the basis from momentum back to posi-
tion representation. The first transformation consists of two
Fourier transforms oveN/2-dimensional space, the other is

0,+Lo (0,—01) the inverse Fourier transform over the whdledimensional
_ 8271 e~ & space
e(n)= ) + 1 (13

wherep,,0, are the incoming densities of the left and right
reservoirs, respectively. A solution is found immediately by
observing that in the steady stage(n)=gr(n)=p(n) and
that Eq.(4) leads tog(n+1)=2¢(n)—e@(n—1). A solution
satisfying the boundary conditions is therefore

This linear profile expected from Fick’s 1a}@,8,4] is shown B=[G\] [ (15)

Gne O }
in Fig. 2.

0 Gnpl
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The action ofB on a position-space wave function is under-

E PHYSICAL REVIEW E66, 036110 (2002

¥y (n,t+1) =[Gy (M1 p- Gna(N—1)- ¥ (n—1})

stood as follows. We represent the position-space function as

a column vector withN elements, the topN/2 elements re-
ferring to the quantum states with number$
=0,1,...,(N/2)—1, which we denote as the “left” states.
The bottom N/2 elements having quantum numbejs
=N/2N/2+1,... N—1, are called the “right” states. The
block diagonal matrix, with block$y,, appearing on the
right-hand side of Eq(15) transfers the left and right spatial
states to the “bottom” and “top” momentum states, respec-
tively, according to
Pp(t+1) [ [ }
(16)

T (t+1)

0
G @q,Pp)

v (t)
W, (1)

G g Pp)
0

+[GNH M1 Gua(n+1)- W, (n+11),
(20)

V. (n,t+1)=[Gy*(N)]; b Gnp(n—1)- ¥ (n—1})

+[GN MM Grip(n+1)- W, (n+11).
(21)

Here, in an obvious notation, the matric[a@,gl]a,ﬁ are
N/2X N/2 block submatrices that compri@,gl. The gen-

eral case can be treated numerically, of course, once the
phases are specified. It is of interest to consider the special
caseN =2, since much of the work can be done using simple
analytical methods, and since this case corresponds to the

This operation defines the quantum baker map. However, wirgest possible value for Planck’s constant, namély,
are left with a quantum state in the momentum representa= 1/2. This is the case we study here.
tion. We now change the momentum state representation into The local dynamics are characterized by the two phases,

a spatial state by means of the matﬂq@l, as in Eq.(14).
Finally we can construct guantum multibakemap by

®q,®p, Which parametrize the Weyl quantizations of the
baker map. If we take the same pair of phases at each site we

considering a chain of unit squares, each taken to be an ifotain theuniformmodel. If we choose them randomly from
dividual quantum system, but which exchange quantun$Ome d|str|b_ut|on at each of the sites, we get tardom
states according to the rules of the quantum baker with af10del. In this paper, when we treat the random model we
interlacing process formed in analogy with the classicalVill assume that the phases are chosen according to a uni-

multibaker map Eq(2). That is, the position space functions

form distribution on the unit circl¢28].

at siten are transformed to momentum space functions at A complete specification of the model is obtained by add-

sitesnx1, according to the rule

|

Here we can allow for the phases ,(n) to vary from one
cell, denoted byn, to the next, and we incorporate them in
the transformation operatoiGy(n)=Gy(¢q(n),¢p(n)) at

that site. After this transformation is carried out, we chan

P(n+1t+1)
P(n—1t+1)

0
GnpAN)

Gnja(n)
0

W, (n,t)
¥ (n,t)

|

17

baker map, that is,

|

Thus in the position representation the quantum multibake
map is given by

¥,(n,t+1)
V. (n,t+1)

Wo(n,t+1)
P, (n,t+1)

—_-1
=Gy (n)-

. (18

\I’|(n,t+1)
T, (nt+1)
P Gn(n—1) 0 {‘Iﬁ(n—l,t)
=Gni(m-| Gup(n+ 1) | | ¥, (n+1)|
(19

Explicitly, we have

gé's, they are the same

from the momentum to the position representation at eacdenerating the map,
site according to the same rule as in an ordinary quantuntf

ing the boundary conditions to the above equations. In this
work we restrict our attention to the closed casgéth peri-
odic boundary conditions and open case@vith either ab-
sorbing boundary conditions or with “particle” reservoirs at
the ends of the chajn

IV. UNIFORM QUANTUM MULTIBAKER

The uniform quantum multibaker is characterized by a set
of phasespy , ¢, that are independent of the site index, that
for each of the transformation matrices
as described in EtP). This makes
ansport in the uniform multibaker chain similar in many
respects to transport in a one-dimensional periodic solid.
Here we solve this model for time-dependent and stationary
quantum states with appropriate boundary conditions: the
closed, periodic chain; the open chain with absorbing bound-
ary conditions; and the open chain attached to leads at each
end, producing a stationary, non-equilibrium state. We begin
P/vith the periodic chain.

A. Closed, periodic case

We consider the periodic, uniform multibaker chain, with
L sites andN=2. The equation connecting the quantum
states at timé+ 1 to those at time is

W (n,t+1)="fu(goe¥(N— 1) + g,V (n+11)),
W (nt+1)=fo(goVi(n— 1) + g1, ¥ (n+11)),

with (0<¢q,¢,<1), andfy,gy given by

036110-5
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fo=(Gi(@q.@p)oo=e 27%a%, (22

- 1 .
9= (GZ l( Pq ,(Pp))klzﬁelv(k*— eq)(I+¢p).

Since the system is periodic, Bloch’s theorem guarantees the

existence of eigenstates of the form
\Pr,l(n):Ar,IXn:Ar,lemﬁ- (23

Periodic boundary conditiongl (L) =V (0), imply that ¥

=2kw/L,k=0, ... L—1. Clearly,\ is an eigenvalue of the

guantum multibaker propagator if and only if

Joofoe "P=N  goifee'?
e —i9 g ci)a =0. (24
giofoe " guifee'"—A
Using the notation
a=(1+¢qt e, 72, (25

B=(1+@gqt @p—2¢0qpp) 2= a—meqe,,
we find that

i
A= %[cos{iﬂr a)*iJ1+sif(9+a)]. (26)

Note that Eq.24) can also be written as
) ) 1 )
NeP+ePIn= ?[e'(“”)Jre*'(“*"’],
2

101
vH—=—
v

V2

where u= ye'*,v=\/e'?. Since 9 is real it follows that
IN?=1, son=€'” and y— B[ w/4,37/4|U[57/4,77l4].
Therefore the “quasienergiesy lie in two bands of length

1
u+—
u

: (27)

/2 symmetric with respect to the center of the unit circle.

The exact location depends upon the phagsgsp, . Making

use of the boundary conditions we obtain the eigenvalues

the closed multibaker map

e
At,k:_Z[COE(OZ"‘ 2k7/L)xi1+sirf(a+2km/L)],

%
(28)

with @ and B given by Eq. (25. The corresponding
eigenstates are given by Ed23) with the constants
connected byA,=A\[sin(a+2km/L)F 1+ sinf(a+2ka/L)]
dlmlep—eq2—2klL]

When « is an integer multiple ofr/L the spectrum is

PHYSICAL REVIEW E66, 036110(2002
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FIG. 3. Eigenspectrum of the closed uniform quantum multi-
baker for the chain of length=101 cells with periodic boundary
conditions. Phases atg,= ¢,=1/2, a=m, f=37/4.

B. Open case: Absorbing boundary conditions

Next we consider the uniform quantum multibaker, still
for N=2, but with open boundaries. In the classical case,
open boundaries are important for the application of the
escape-rate formalism of Gaspard and NicR8] which
relates the rate of decay of the initial number of particles on
a large, open chain to the diffusion coefficient, and then to
the Lyapunov exponents and the Kolmogorov-Sinai entropy
of trajectories on a fractal repeller, i.e., the set of initial
points for trajectories that never leave the chaif8Q]. It is
of some interest, then, to contrast the classical and quantum
cases.

We take the multibaker dynamics given by Ef9) in the
cellsn=1,2,...L—2. At the boundary cells we allow the
probability density to escape from the right half cell for
=0, and from the left half cell fon=L—1, and nothing
enters the system from the outside. The latter condition re-
quires

¥L(0t)=0, (29

v.(L-1t)=0. (30

Due to the escape of probability density, the eigenvalues
that determine the time dependence of the probability density
in each cell move to the interior of the unit circle. A simple
proof of this fact is given in Appendix A. We show there also

otpat the kernel is two dimensional.

To determine the nonzero eigenvalues |@|<1 of the
open chain, we first write the eigenvalue equation in the
momentum representation. Then every eigenstatatisfies
the equation

[\be(m—l)
¥i(n—-1)

fo/A 0
10 fo/n

‘T’b(n)]

}'Gzl((quQDp)' T
t

(31)

Viewed in terms of the “top” and “bottom” states, we see
that the solution of Eq(31) can be neatly formulated as a

doubly degenerate. This nongeneric case happens, for ifcatiering problenisee Fig. 4, where the incoming waves
stance, for the most of the common choices of phaggs ( are Wp(n) and ¥(n), and the outgoing waves argy(n
=¢,=0 or 1/2). The quasienergy spectrum of the closed+ 1) and¥(n— 1) with a one-cell scatterin§ matrix, and a

uniform multibaker for the phases,= ¢,=1/2 is shown in
Fig. 3.

one-cell transfell matrix. Those are defined, respectively, by
the relations
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TN

0= W @b(L_l)l 3
=[—010 (M fg)]- ‘T’I(L—Z) . (37)

/TN
W Using EqQ. (32) and (36), we easily find that\be(l)
=(foUo1/N)¥(0). Thus the equation that determines the

decay rates is
\/ incoming outgoing \\/

fodo1
FIG. 4. Scattering from one cell. 0=[— fogloh]-TLz-[ Nt (38
\Tft(n— 1) \leb(n) where a scalar product of matrices is to be taken as indicated.
T (n+1) = ()’ B2 7o get a useful form for this equation we need to find the
b t eigenvalues of the transfer matiix We denote the eigenval-
and ues of T by y, ,x_, which are obtained as solutions of the
quadratic equation
Ty(n+1) . { Ty (n) 1 - o -
< == : g+ ——=2[N/eP+ePIN], 39
B (n) T(n—1) X g V2L ] (39)
Explicitly, the S matrix, for the uniform multibaker, is wherea, 8 are given by Eq(25). Using, as before, the no-
tationu= ye'® v =\/e'? we obtain the same formal relation
iei ronl= g, ieiw(lwquwq%)/)\ betweenu andv as in the periodic case, EQ7), i.e.,
S= T P (40)
' vt —=—|u+—|.
ie_i"T(Pq‘Pp/}\ ieiﬂ"/’q(l_ﬁup)/)\ 1% \/E u
V2 V2
(34) The two solutionsu, ,u_ satisfyu,u_=1, andu,+u_
=\2[v+1l]. Sincelv|=|\|<1, it follows thatu, ,u_ do
and theT matrix is not lie on the unit circle. In particular, they must be different
, _ and so the matrixT is nondegenerate. We taKe . |>1
J2e " imeao/ ) —e ' >|u_| to define them uniquely, and use = y.e'*. If we
T= e i7eq J2e i1+ eqtep—eqep)) | (35 setu.=e™'%, and then solve for we obtain
We find it convenient to use the transfer operators _ 1 : :
o . . . =—[cosk*i1+sirfk]. 41
carry out the determination of the eigenvaluegoverning v \/E[ “ «] 41

the rate of decay for an open system. To do this we first use
the transfer operators to relate the quantum states at one ehueresting solutions are those wherés not purely real, that
of the chain to the states at the other end, and then use tlig « € C\R. We next use a simple identity for tiheh power
open, absorbing boundary conditions to obtain an expliciof nondegenerate matrik, given by

equation for\. First, the states at the two ends of the chain

are related by _I_L:Xi—)(E T X X5~ X+ X- |
= ~ X+~ X- X+~ X-
Py(L-1 Y1
~b( ) =TL-2. ~b( ) . (36) g ia(l-1)
Y(L—-2) v.(0) :W[sin(Lx)T—sin{(L—l)K}l],

To use the boundary conditions, we first look at dett 1.

i ’ ~ to write Eq.(38) in the form
We note that in the open multibakea¥,(L—1)=0. Then

using Eq.(31), we obtain 1 1
202+ 2+ —|sin(L—2)k=| 20 + = sin(L—3)«,
V(L=2)=(fo/M[910¥p(L—1)+ g1, ¥ (L—1)] v v (42)
and wherev is one ofv . . With the help of Eqs(40) and(41) we

_ _ ~ can reduce Eq42) to
Wi(L=1)=[(Mfo)¥(L—=2)—g10¥p(L—1)]/911.
sinLk+sinkcogL—1)k+is1+sirfksin(L—1)x=0,
Thus (43
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101 F ' ' i - orden and the numerical solutions far= 101 sorted accord-
ing to the increasing amplitude. The first few coefficients in
1.005 the expansion ofi are
3 1
v a1= - b/L,
0.995
a,=—iab/L?,
0.99 .
0 50 1z° 150 200 as;=b%6L+b(2—3b?)/2L3,
FIG. 5. The first- and the fifth-order approximate solutions and a,=i[2ab%3L?—ab(8b*-3)/3L*],

the numerical solutions of Eq46) for L=101. We took heres
=1. The numerical solution is the middle curve. The fifth-order Where
approximate solution is the one closer to the numerical solution.
a=cogkm/L), b=sin(kx/L). (48)
which can be further reduced to

Numerical studies show rapid convergence of amplitudes

ut—1-2 sinK[sinK—s\/lJrsi?K]:O. (44) and slower convergence of phases.
Next we calculate the approximate eigenvalues of the

In the above equations=*1 corresponds to the sign in EQ. open quantum multibaker. Using=e'#v, keeping|v|<1
(41). Clearly, we can get all the possible solutions multiply- solutions, to second order i we obtain
ing Eq. (44) for two different signs. This leads to a very

simple equation, elB b2
A=-—(a+iey1+bdexp — ——
SirPL k + sirfk=0. (45) Ji( ¢ ) Ly1+b?
The only real solutions of this equation ake=k,keZ, icab?(2b%+3)
but, as mentioned above, they must be discarded. If we write XD S e | (49
Eq. (45) as ( )
sinLx=idsink, (46)  wherea,b are given by Eq(48), while e==1 enumerates

the solutions. The nonexponential factor on the right-hand
where 6= =1, we can treat it as a “perturbation” i@ of  side is the unperturbed solution. Figurd@¥shows the abso-
equation sir.k=0 [31]. Thus we can obtain the solutions of lute value ofv (in the fourth-order approximation
interest by expanding in powers ofé about the valuex The general result and the numerical studies suggest that
=kwm/L,k=1,...L—1, [32] and then at the end, setting the value ofv that is the nearest to the unit circle occurs
8==1. This approach gives results that quickly convergewhen k takes on one of the four valuege{1,L—-1.L
numerically, for all allowed values df To apply this proce- +1,2 —1}. To get the leading term in the large-size limit
dure it is convenient to rewrite Eq46) in a polynomial we find it convenient to use an alternative expansion of Eq.
representation, (46), in powers ofL 1. While this leads to an asymptotic
oL . solution forv which quickly diverges for modk, it gives us
us-—1-diu-(u—1u)=0. (47 the correct leading-order behavior foL. Then the expan-
sion of the solution of Eq(46) in powers of 1L, as ky

Then, by takingu=exgi(km/L+ da;+ &a,+---)], one can kL + b, /L2+ by /L3+ - - for smallk yields

determine the coefficients , and check the convergence of
the series numerically. Figures 5 and 6 show the absolute K=k (LL+i8/L2— 13— i 8(1+ K2m2I3)IL4+ - - -),

values of the approximate solutiorig the first and fifth (50)
11 % ' ! Si ' ! which gives the asymptotic formula for(k)
0.999 | § ; :
o8 | & 1 i 1 o
= 0997 | H v(k)= E[COSKkiI\/l'l'Slnz(Kk)] (51)
0.996 | U U
0.995 | . K22 K2
0.994 ] ~expg *i Z+ > | |exp—F—. (52
3 2 14 0 1 2 3 2L L

t (A
argument () The escape of probability density from an open system as-

FIG. 6. The amplitude versus argumentyofn the fourth order ~ ymptotically is dominated by the eigenvalue closest to the
of approximation for the chain of length=101. unit circle. Therefore, the escape rate
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InP(t)
t

yi=—lim (53

t—oo

of the uniform quantum multibaker map is obtained from the

eigenvalue corresponding to=1,
2

2
- 2. 2"
y=—Infu(1)] L3 (54) FIG. 7. Scattering from a quantum multibaker.
This result means that even though the mofiwgide the C]fb(n,t):(:ei(wt*kn), (58)
quantum multibaker idaster (ballistic) than in the corre-
sponding classical systefdiffusive), the effusion(decay of T (n,t)=Del(et+kn (59)
probability density is slowerthan that for the corresponding R '
classical system [4]; see also Sec. Il B HereA,D are the amplitudes of the incoming waves, while
5 B,C are the amplitudes of the outgoing waves. Due to the
Yelae K (55) dynamics on the multibaker, we can match the incoming
class S, o

212 wave functions in the leads to the proper momentum space
functions for the unit cells at 0 and ht-1. This matching
It is interesting to compare this result with those obtained bycondition is simply
Barra and Gaspar{27] in their study of scattering reso-

nances for an open, periodic chain of scatterers. In the high P, (0t)=Ae*t, (60)
energy limit they found that the logarithms of the magnitudes
of the eigenvalues can be bounded above and below by func- P (L—1t)=De“te!L-k (61)

tions that scale as 1/ They expect that the lower bound,
given by the eigenvalues in the middle of the band, shouldVe will use a scattering approach to find the outgoing am-
hold also for lower energief33]. On the other hand, the plitudesB,C for the steady state solution, as well as to solve
upper bound, which gives the escape rate, is given by thehe problem of the relaxation of some initial state to a steady
resonances near the edges of the bands which are hardergiate(Fig. 7). First we consider the steady state solution for
estimate at low energies. Therefore, this bound is more difthe baker chain with conducting leads.
ficult to control. The steady state solution is defined by the condition that
This reasoning is consistent with our findings. In our casethe time dependence of the wave function can be incorpo-
the eigenvalues of the smallest magnitude are those famated in a time-dependent phase factor. Since the dynamics
\'ll'vrr:iCht;O k~* Ll?t (hhe middble oftf[he tbilnfd; 55{2’% 4(?3_])- takes place at discrete times, there iswa such that
us their magnitude can be estimated from setting _iw C
a=0b=1 and therefore their logarithms scale ak.10n \Pt*f’étn’Hl)_e \P"b(n’t,) which |'mpI|es that (n, 1)
the other hand, the eigenvalues of largest magnitude, which €. Wi p(n,0). In partlcula~r, using Eq.(60), :I’b(o,t)
give the escape rate, lie at the edges of the band. =e'“'¥(0,0), so that w=w. Writing Wy(n,t)
The discrepancy between our results is not surprising foe eiwtﬁrb(n), etc., we obtain the steady state equation
the high-energy limit corresponds to semiclassical limit for

our system, and in the present work we consider the extreme Ffb(nJr 1) foe i@ 0

0 feel®

guantum case. = . (62

[‘Iﬁ(”)
W, (n)

P(n—1)
C. Steady state solution The transmission and reflection coefficients for the chain
Suppose now that the multibaker of lendtlis connected can be expressed in terms of the scatteBmgatrix, given by
at both ends to infinitely conducting leads. We suppose that

there can be traveling waves in the leads moving to the right [ﬁrt(_ 1) ¥, (0) 1
and to the left. These waves are most conveniently described - =So-1| ~ , (63
in terms of the momentum space representation of the wave Wy(L) Y(L—-1)
functions, and we recall that the “bottom” states come from .
the left and the “top” states come from the right. Thus to the Where the elements & matrix are
left of the chain,n<0, we take the traveling waves to be ,
Fror-1 tor—1
qu(n’t):Aei(wtikn)’ (56) So'Lil_ tor-1 r(,),L—1:| (4
Py(n,t)=Be/(trkn (57)  Here the unprimed coefficients refer to waves incident on the
left end of the chain, while the primed quantities refer to the
and to the right of the chaim>L -1, the waves are waves incident on the right side of the chain. The transmis-
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sion and reflection coefficient$, T',R,R’, respectively, are and «,8 are given by Eq(25). Depending on the sign of
then obtained from the elements by CO0S 2(3+w) there are two types of solutions: if the frequency

of the incident wave falls in one of the quasienergy bands

T=lto 1% R=[ro-4/% (65
CosSAB—w)<0=w— Belml4,37lA|U[57/4,7m/4],

and similarly for the primed quantities. Unitarity 8fimplies (75
T=T',R=R’. In order to calculate th& matrix, Sy, _,, for ] ) ] )
the chain, we proceed as for the absorbing case, by lookiny€ hav_e the oscillatory case with some interesting structure.
at the transfer and scattering matrices for one cell, and build@therwise, when the frequency of the incident wave falls in
ing up the matrices for the chain by iteration, cell by cell. the gap, we observe almost total reflection of particles com-

Consider the cell labeled by the indexThe Smatrix for the ~ Ind from the leads to the chain, becoming totalas = (the

nth cell is given by exponential cage . o
(1) If cos 2(B— w)<0 (oscillatory casg the characteristic
q;t(n_ 1) q,b(n) - roots are
Tp(n+1) Tyn) |’ X+=€"[\2co$ B~ w)*i\-cosAB~w)], (76)

and the transfeT matrix is thus|y.|?=1. Sety.=e '*e*'*. Then the scattering ma-
trix for the chain becomes,

¥o(n+1)
{Pt(n)

_ (67) 1 [—sinLke'(@~7¢9 sinke'ot

SO,Lfl:Z

[ Vp(n)
=T.| _
¥(n—1)

sinke fet —sinLke'(@=7ep) |°

(77

Each of the matrices can be given in terms of the other, thus,
To simplify the formulas we introduce

rot’ t—r't’ " rrt?
S o777 coy gt €8) z =T €'n:=\2sinnke ™ (B=*) —sink(n—1)
a vy -op st =coskN sink—ie sinnk 1+ sirfk,
T= —S= o L (69)
B9 a=yd "B v wheree = * is the sign of sinB—w). Then the transmission

The SandT matrices can easily be obtained by transform-‘r’lnd reflection coefficients are

ing the dynamical equation$2) to momentum representa-

tion (18), so that = SirPL = ! ' (79
N N Sinfk -+ sirfL k 1 sirfk
Wy(n+1) _¢ eiw[%o 901} Wp(n) (70 i SirfL «
P(n—1) 910 Gu1)| Ty(n) |’
_ _ B sirfk B 1 79
from which theS matrix follows as SirPr+ SirPL Sl r’
e—iw eiW‘Pp(l_‘Pq) ei77(1+‘Pq+‘Pp_(Pq‘Pp) 1+ S|nzK
Sn: —imToqe iToq(1—¢p) :| (71)
V2l e e e P Some interesting special cases occur when
The T matrix is then given by (@) k=ka+ /2, L odd: T=1/2;
o N (b) k=km+m/2,L even:T=1;
B J2e " iwgTimeqep —e ' (©) k=km: T=1/(1+L2);
n— e—iﬂ'(pq \/Eeiwe—iw(l+<pq+zpp—(pq<pp) ) (d) k=km/L: T=1.
(72 We will refer to the cases wheh=1 as transmission reso-

nances. They occur when gir=0. On the other hand, one
can see from Eq(77) that theS matrix has poles when Eq.
(45) is satisfied. Hence the poles of tBamatrix determine
the eigenstates of open system.

The scattering matrix for the whole multibak8, _, can
easily be derived frorig _q:=T _4----- T4 Tg. Its unitar-
ity can also be verified. For the uniform system

L_ L L_ L (2) In the exponential case, when co@2(w)>0, we
TO,L_1=TL=X+_X’T— X’X*_X”(’, (73 have|y-|>=1, andy,x* =1, so that/y_|=1/x.|. Then
X+ 7 X- X+ 7 X- the transmission and reflection coefficients are
where y. are roots of characteristic polynomial of (x|t = x—|b)2
. R= — (80
x-=e [ 2co¢B—w)*JcosAB—w)], (74 (I l"= =192+ (Ux+ = Ix-D?
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%1—|X_|2(L_l)% 1' (81) 2000 |
(Ix+1=Ix-1? 1500
- L L)2 2 (82) =
(I 5= De=1D2+ x| =x-D = 1000
~|x_[*t"V=o0. (83) 500 |
. . S : 0 i ' ' —
D. Density profile in the steady state—violation of Fick’s law 0 20 40 60 80 100
As mentioned above, the oscillatory case provides some n
interesting structures, illustrating the interference between 140
waves traveling to the right and left along the chain. The 120 |
algebra is tedious but straightforward, and we do not repro- 100 |
duce it here, merely stating the final results. 8!
The wave function in the steady state is £ e |
e*ian ' . 40 | !
Wp(n)= 2 [ZL—n\Pb(O)_elaLel(a_mpp) 20 | : \ f ‘\.‘,‘ p
0 ¥ kT B ) ',:', g
xsinnkW(L—1)], 0 20 40 60 80 100
n
eia(n+1-L)
Py (n)=———[e 'tel@ medsink(n+1—L) FIG. 8. Profile of the probability density in the steady state for
7 the smallest and the fourth resonangesk /L with k=1,4. Open
boxes show the approximate solution, stars stand for the full solu-
XW(0)+ 2y Wi(L—1)]. o

tion. Also shown is the probability density of the bottoffull

We introduce the probability densitieg, andeg, from the bo’fg gand_ (;he'rhtgrﬁlo?iféif;?x?s f{';rfles[s_\’\ée 18?;" e=01,
left and right leads, respectively, in terms of the correspond—QR_ = 7= 9 Bl

T?/_Wai"ne fuhnctionsé by writing\llfb.(O)=r;/Q_,\Ilf)t(L—l) Hcnedligible (Fig. 8. We can easily estimate the behavior of
=Vege”’, where 7 denotes a relative phase between they,, probability density profile in this case. For lalgeand
wave functions at the two ends. Then, introducing the anglesma” k we have

p=m(¢q— ¢p)/2+aL + 7, we obtain the total probability

density at celln, 1—coskw/L  km(2n+1)

ek(n)%<1+ 272 SO L (eLter),
oL (85

_sif(L—n—1)k+sin’(L—n)k+sir’x

|2,|?

e(n)

SiPxn -+ SiPx(n+ 1) + ik which for k=1 can also be approximated as

2P °F 2w
e(m={ 1+ —sinr(n+2) |(eL+ r)-
- '|QL|QZR{sin<L—1—n>x[zn+1ei¢—z:+1e“ﬂ
ZL

Figure 8 shows the approximate solutiterossep and the
full solution (diamonds as well as the probability density of
the bottom stateboxes and the top stategircles. For the
At th —k=/L) it takes the f sme_lllest resonance k€l) the probablhty. Q|str|but|o_n

e resonancex=k/L) it takes the form achieves the maximum aroumd=L/2 where it is approxi-
mately 2.2/ 72,

—sinnk[zf_ e°—z _.e ¢}

sifkn+sirfk(n+1)

o(n)=| 1+ (oL +0R) These results are clearly connected to the slow probability
Sirfk escapex1/L3. To understand them consider a plane wave
\/W coming from the left with a resonant frequency going
LER . . .
) e Fors 1SIN(@+ @ 1) (84) through the open quantum multibaker. Thus at every time

step we inject the same density inside. The wave travels
ballistically inside and when it reaches the end is mostly
Let us concentrate on this last expression, for simplicityreflected, partially transmitted. Due to the fast motion inside
Since |zy|*=sirx+sinnk, then if we write ¢(n)  and the slow decay, the density accumulates in the multi-
=p01(n)(e +0or)+202(N) Vo ok then 0<(|g,//e1) baker and reaches the steady state when the escape on the
X (2o erloL+or)<1, which implies, in particular, posi- right balanced the injection on the left. The probability den-
tivity of . For smallk it turns out that the second term is sity of the resulting standing wave is given by Eg4).
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This result is very striking in comparison with the classi- 1
cal case: in the classical multibaker one obtains Fick’s be-
havior[4,8,9—there is a linear profile of probability density.
This is also what happens for partially integrated classical
dynamics that we considered in Sec. Il C. In particular, the
probability density at any point inside the multibaker is be-
tween the densities of the reservoirs.

We defer the complete discussion of the steady state so- ~
lutions to a further work where it will be considered together 0 02 04 06 08 1
with the semiclassical case in the context of transpati. K/200
Here let us only mention that the approach to the steady state
can be conveniently studied as a spectral problem: The evo- FIG. 9. Spectrum of a quantum multibaker map for101
lution equations for the quantum multibaker with two wavescells.
scattering from left and right can be written as

argument (A(k))/r
o

phasesg , defining the map vary randomly from cell to

cell. As expected, the random case differs considerably from

- ot ~ . . the uniform case, since the randomness of the phases acts as

whereW (t):=e "W (t),M_ is the matrix representation of 5 gisordering mechanism producing a localization of the

the open multibaker propagator following from the equationsyaye function. Unlike the uniform case, there is little that
- can be done analytically for the random case, other than

Wi(n,t) making use of some known results for the properties of prod-

¥, (n,t) ucts of random X2 matrices[34], which in this case are

(87) only of limited utility. For this reason we limit ourselves to a

presentation of the results of numerical studies.

and @, denotes the steady state boundary conditions: The random quantum multibaker map is, for the chise

Do=[Dp(0), ®(0), ..., Pp(L—1), D(L-1)]", ®(0) =2, defined by the equations

=A, ®(L-1)=De "D &, t(n)=0 otherwise. The so-

lution to this simple affine problem is

T(t)=M_ P (t—1)+ Dy, (86)

foe '@ 0
0 feele

W (n—1t)
=G L

2 A~

P, (n+1;)

Lot Wi (n,t+1)=ggo(n)fo(n—1)¥(n—1t)
1_)\::|(Pk><‘Pk|CDO>+ )\2 Mo (e ¥ (0)), +doa(n)fo(n+ )W (n+14),
k
(88)

[P (t)=2>
Ak

where \, are thew-dependent eigenvalues &f, and the Pe(n, D) =gsmfo(n=1)¥(n=11)

|_gpk> are the corresponding eigenvectors. In particular, if at +gu(n)fo(n+1)W, (n+1}),
time 0 the system is empty (0)=0, then the solution is

-\ where the phases in each of the cells are drawn randomly

1_)\k|¢k><¢k|®0>- 89 from some distribution. Here we use a uniform distribution
of phases in the unit interval.

The steady state is the time invariant part of the above solu- The numerically obtained quasienergy spectrum is illus-

tion, trated in Fig. 9 and can be compared with that for the uni-

form case. The quasienergies associated with the eigenstates

|®<t)>=§

T "P(t):[qf|(o)1\1,r(o)v e 1\P|(L_1)1’\I}I’(L_l)]! are de-
|q’>=% 1_)\k|¢k><"’k|q)0>' ©0  termined by the solution of the following eigenvalue equa-
tion:

The approach to the steady state is given by the eigenvalues
of the open multibake(49), thus it is as slow as the escape

of probability density, which is consistent with the accumu- Wy(n) _ Joo(N)  Gox(n) || Fo(n—=1)W¥ (n—1)
lation of large probability density in the system. Note that the W.(n)| [gi(n) gu(n)]|fo(n+1)¥ (n+1)[
distribution of the absolute values of the eigenvalue¥iof (93)
is  independent, yet the steady state solution does depend

on w.

which determines the eigenvalue It is interesting to note
that this equation can be put into a form that is reminiscent
of the Anderson model for localizatior(see Appen-
dix B). If we define ¥(k) by ¥,(k):=fo(k)¥,(k), ¥, (k)

In this section we extend our discussion of the quantum=fy(k)W¥,(k), we can obtain a set of equations that define a
multibaker map foN=2 by considering the case where the generalized Anderson model:

V. THE CLOSED RANDOM QUANTUM MULTIBAKER
FOR N=2
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0.6 06 35
” > :
= 03 = 03 25
0.2 0.2 < 2
0.1 0.1 o 15
0 0 1
0 50 100 150 200 0 50 100 150 200
n n 0.5
06 06 0
05 05 0 02 04 06 08 1
0.4 0.4 A
= 03 = 03 o . - -
Y 02 FIG. 11. Distribution of the ratiod :=|In(]¥,(n+1)|/[\¥,(n)|)| for
0.1 0.1 a set of 2402 eigenstates of a realization of a quantum random
0 0 multibaker of length 1201.
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eral times as many cells. In longer chains the exponential
FIG. 10. Four examples out of 202 eigenstates of a realization oflecay of the eigenfunctions is more pronounced. The expo-
the quantum random multibaker of length=101 with periodic  nential decay of the wave function far from its peak is usu-

boundary conditions. Absolute values ¥f(n), ¥ (n) are shown.  ally characterized by the inverse localization length
Notice that|¥,(n)|=|¥(n+1)|, which results in particular in the

twin peak structures discussed in text. ||

& L= lim |n|q,—|. (95)
AgI(N+1)  fo(n+1)gein) ¥ Inl== e
fo(n) A o A simple estimate can be obtained as follows: From (88)
= god(Mg¥(n+ 1) (n—1) we get|¥(n+1)|= |2\/Ee‘(‘Pl*‘fZ)sin(<p3)\if|(n)+\ii|(n—1)|.
A Thus, on the average we hayel,(n+1)|?)=4(|¥,(n)|?)
—0oo(N+1)goy(NWi(n+1). (920 +(]¥,(n—1)|?). Therefore, starting from almost every ini-

. tial conditions, on the average we should observe growth of
A similar equatio_n holds for¥,(n+1). We re_vvrite this 19,(n)[2 given by [¥,(n+1)|/[¥,(n)|~ 2+ V5~2.06.
equation so that it takes the form of a dynamical problemsperefore the inverse localization length is approximately
where the cell index plays the role of the time step. Thatis, 5 72 of course, rather than calculate the logarithm of the
¥ (n+1)=2\2€'“1sin(ps)¥|(n)—€92W)(n—1), or, using average we should calculate the average of the logarithm but

transfer matrices, the obtained value is not far off the numerically obtained
R ) ) ~ average, which is 0.51 for a chain of 301 cells, and 0.56 for
Win+1)| [22€'9sin(pz) —e'?2]| Wy(n) a chain of 1201 cells. Figure 11 shows the distribution of the
@,(n) - 1 0 || ¥mn-1) number's1ln(|\1fn|/|\1fn+l|l)| over the range of the wave function
(93) vv_here it was appr_emably d_|ﬁe_rent from 0, over all of the
eigenstates for a given realization of disorder.
where the transfer matrix can be written as This distribution reflects the generally broad distributions
. associated with the properties of localized states. The differ-
et 0 2\/§sir( p3) —1((1 O ence between the estimated value of the rate of growth with
0o 1 1 ollo e (94) the average obtained from the numerical distribution is due
to the contributions from regions where the variation in am-
The phases are given by pIitud%)from cell to cell is not exponentidtompare with
Fig. 10.
01=(m2)[ =1+ @g(n)¢,(N) — @g(N+1)pp(n+1) Next, we mention an interesting phenomenon. We first

note that the equations connectifiig(n) with ¥,(n—1) and

—@u(N)—@y(n+1)], N i
@l ¥r ] V¥, (n+ 1) involve the same phases and are of the same form

@2=— 7 @q(N)+ @p(n+1)+1], as the equation connecting’,(n+1) with ¥,(n) and
\ffr(n+2). When the transfer matrices are given in the form
¢3=k+(m/2)[¢q(N) @p(N)+ @g(n+1)pp(n+1) of Eq. (94) one can show that the two cases differ only in

two random phases; , ¢,. However, since the equations for

W¥,(n) and¥,(n+1) separate and have different boundary
It can be seen that the eigenstates are localized but thmonditions, there ig priori no connection implied between
localization does not seem to be purely exponential for finitehe solutions to the above sets of equations. Indeed, after

L, as illustrated in Fig. 10, where some states are localizedolving the equations numerically for smallwe find that
over some tens of cells, while others are localized over sewhere is no connection between them. Thus it may come as a

_(;Dq(n)_‘Pp(n+1)]-
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0.7 07 and momentum representations, or as the effects of Bohm-
5 gg 5 gg Aharonov current loops on the wave functions in each unit
= 04 E o4 cell. For largeh and for the uniform QMB, we have been
% g: % gz able to proceed with analytical calculations for the quasi-
o1 ¥ o1 energies, and for the quantum states for different boundary
O T e e 0 pe po e condlthps. The;e calculr?ltlc_)ns showeq ballistic transport of
n n probability amplitudes within the chain, due to the Bloch
07 07 wave structure of the eigenstates, as well as a slow decay of
— 06 _ 06 probability from an open, finite chain, due to the difficulty
05 05 that long-wavelength modes have in escaping through the
= o = o exit channels. The random phase case exhibits localization of
€ o2 g o2 wave functions and the appropriate equations were shown to
2 o JJ\/\j\/\ E o be close to the basic equations of the Anderson model of
%70 280 200 200 oo 210 220 280 240 250 localization. All of these results show that the behavior of the
n n QMB for N=2 is quite different from that of the classical

multibaker map, which exhibits normal, diffusive transport.
For largerN, smallerh, we should see behavior that more
uc:ﬁosely approximates the classical behavior, at least on the
logarithmic time scale.

There are quite a large number of directions for future
studies of the QMB. For the case lof= 1/2 we have studied

. - - . only the uniform and random phase cases. One can also con-

surprise that for large, [ (n)| =|¥(n+1)|. This ISanu= - sider models with periodic distribution of phases over sev-
me(lcal result t_hat accqunts for the double peaks in Fig. 10eral cells, models in which there is a well-defined, systematic
To illustrate this equality, we show several example frag- rogression of phases from one cell to the next, or where the
ments O.f eigens;at_es in Fig. 12. The equa_llifty illustrated her hases in the cells are incommensufateillating 'With irra-
IS Sat's.f'ed to within all the allowed precision fhr>_ 100, tional periods. The situation for largeN is such that there
and is mdepgndent of the_ sha_pe of the e|ggnfunct|on. areN quantum states in each cell, so that there will then be

The phyg!cal explanation is actually quite Simpies]. several transport channels in the QMB. It remains to be seen
The probab!llty c_urrent through the boungary between ge"S what the properties of these systems will be, both as a func-
and n+1 is given by Jnn1=[Wi(n)[*=[W (N+1)I o of N as well as a function of the phases of the wave
Therefore the difference betweét (n)| and [W.(n+1)|  functions in the cells. A$ approaches zero, one can study
implies nonvanishing current. While such currents can arisehe semiclassical limit and the approach to classical, chaotic
in principle one expects they should be negligible in disor-hehavior of the QMB. Clearly, we should obtain the diffusive
dered systems, which leads to the equality that we observigehavior independently of the distribution of phases, that is,

FIG. 12. The figures show plots dfoth |¥,(n)| and | ¥, (n
+1)| superimposed. Fragments of several eigenstates of vario
realizations of quantum random multibakers were chosen 101
in the first figure,L=2301 in the following figures; the parts not
shown are zero within the numerical precision

numerically. for the uniform (ballistic) case as well as for the random
(localized case. Such a study should reveal for this simple
VI. SUMMARY OF RESULTS AND DISCUSSION system whether the diffusive behavior arises directly through

the semiclassical limit, or whether one needs to assume an

With this paper we have begun our study of transportadditional mechanism—such as interaction with the environ-
properties for quantum multibaker maps. Our central motiment, or decoherence—to regain classical properties. The
vation for this Study iS, of course, to use a Simple, CIaSSica")QMB is Simp|e enough to consider the clasical limit for uni-
chaotic system with transport and entropy production and tgorm phase, random phase, and incommensurate phase mod-
explore the differences between the classical system, and it§s, among others. The investigation of these questions will
quantum counterpart. The multibaker map provides a convepe the subject of further papers in this series.
nient model for this study.

In order to set the stage for further work, we considered
here the extreme quantum limit of the QMB where each unit ACKNOWLEDGMENTS
cell contains just two quantum states, in either the position or
momentum representation. Further work will now be de- This work has been partially supported through the NSF
voted to the properties of the QMB for smaller valueshpf  Grant No. PHY-98-20824. Conversations with Robert Alicki,
including a study of the semiclassical regime where Planck’dean Bellissard, Mark Fannes, Shmuel Fishman, Pierre Gas-
constant is very small, and the transition is to the classicapard, Fritz Haake, Salman Habib, Ted Kirkpatrick, Shuichi
limit. Tasaki, Henk van Beijeren, dyen Vollmer, Wojciech #rek,

In order to explore a variety of versions of the QMB, we and Karol Z/czkowski were of particular help. We thank the
used the fact that the Weyl quantization procedure for mapsrganizers of the 38th Winter School of Theoretical Physics
on torus allows us some freedom in the choice of phases fdiDynamical Semigroups: Dissipation, Chaos, Quanta” in
the quantum states. This freedom can be thought of as laadek Zdrqg, Poland, for providing us with an opportunity to
freedom in the location of the quantum states in the positiopresent and discuss these results.
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QUANTUM MULTIBAKER MAPS: EXTREME QUANTUM REGIME

APPENDIX A: EIGENVALUES OF THE OPEN QUANTUM
MULTIBAKER LIE INSIDE THE UNIT CIRCLE

Due to the escape of probability density, the eigenvalue#hat
that determine the time dependence of the probability density- \ ~1f ¥ (1,0).
in each cell move to the interior of the unit circle. A simple =f,¥,(0,0)=0=\gy,¥,(1,0).

proof of this fact can be given as follows. L#t(t=0) be a

PHYSICAL REVIEW E66, 036110(2002

=v¥(L-1,00=0. Thus, from Eq. (18 and (29 0
=¥,(0,0)=go;¥(0,0=¥,(0,0)=¥,(0,0)=0. It follows
also V¥,(0,0=0. But W¥,(0,0=x"'¥,(0,1)
Thus W¥,(1,00=0. Also, ¥,(1,1)
Therefore ¥ (1,0)
=¥ ,(1,0)=0, and so on. Thus the assumptjaf?=1 leads

normalized eigenstate of the open quantum multibaker. Sincg the eigenstate being identically 0, which cannot be nor-

the multibaker dynamics requires th@b(n—l,t+1)
=fo¥,(n,t), ¥y (n+1t+1)=F,¥,(n,t), for n=1,...L
—2, it follows that

|Wp(n—1t+1)2+ | T (n+1t+1)]2

=|Wy(n,H)%+ W, (n,1)]2 (A1)

The probability of the system being in ceilis given by
e(n,t):=[W,(n, )2+, (n,t) 2= [W(n, )2+ [Pi(n,1)[?,

where we have used the unitarity of the transformaGgrt.

In the boundary cells we have

| W, (0t+1)|2+|Py(L—1t+1)|2=0,

[T L(1+1)[2=[W,(0)|?, (A2)

[T (L=2t+1)[2=|¥ (L- 1)

By adding up the equationéAl) for cells n=1,2,...L
—2 and(A2) we obtain
L-1 L-1
2 e(nt+1)= 2 o(n)= (¥, 0D+ ¥ (L-10[).
(A3)

But ¥ is a normalized eigenstate &t 0, therefore

L-1

2 e )=\P=1- (¥, 00+ |¥(L-1,0/).

This implies 1—|\|2=(|W¥,(0,0)|?+|¥,(L—1,0)|?)=0.
Thus 0<|\|?<1. Suppose now\|?=1. Then ¥,(0,0)

malized. Therefore all the eigenvalues lie inside the unit
circle 0<|\|2<1. It is easy to identify the kernel dfl,
since\ =0 implies|¥,(0,0)|>+ |¥,(L—1,0)?>=1. Thus the
kernel is spanned by vectors with O everywhere apart from
V¥, (0) and¥,(L—1).

We are thus led to the conclusion that of thie 8igen-
states exactly two span the kernel, and the eigenvalues cor-
responding to the remaining.2-2 satisfy 0<|\|<1. Note
that the above arguments are independent of the distribution
of phases and thus apply also to the open random quantum
multibaker. Generalization to arbitraly is obvious.

APPENDIX B: ANDERSON MODEL
Consider a one-dimensional ScHinger equation on a
lattice of lattice constara [36]:

o 12
iAW,=— m[q’n+l+ Y, 1—2V,]+V,V,. (Bl

A time-independent equation can be written as
(E-V)¥, =¥, +V¥,_;, where E=2-2maE/#?%V,
=2ma’V,,/%?. We can also write it using transfer matrices

Wit
v,

B2
1 o llw, . (B2)

E-V, —1H v, }

which has a form very similar to E¢93). A general discus-
sion of one-dimensional disordered models can be found in
Refs.[31,37
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