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Quantum multibaker maps: Extreme quantum regime
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We introduce a family of models for quantum mechanical, one-dimensional random walks, called quantum
multibaker maps~QMB!. These are Weyl quantizations of the classical multibaker models previously consid-
ered by Gaspard, Tasaki, and others. Depending on the properties of the phase’s parametrizing the quantization,
we consider only two classes of the QMB maps: uniform and random. Uniform QMB maps are characterized
by phases that are the same in every unit cell of the multibaker chain. Random QMB maps have phases that
vary randomly from unit cell to unit cell. The eigenstates in the former case are extended while in the latter
they are localized. In the uniform case and for large\, analytic solutions can be obtained for the time-
dependent quantum states for periodic chains and for open chains with absorbing boundary conditions. Steady
state solutions and the properties of the relaxation to a steady state for a uniform QMB chain in contact with
‘‘particle’’ reservoirs can also be described analytically. The analytical results are consistent with, and con-
firmed by, results obtained from numerical methods. We report here results for the deep quantum regime~large
\) of the uniform QMB, as well as some results for the random QMB. We leave the moderate and small\
results as well as further consideration of the other versions of the QMB for further publications.
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I. INTRODUCTION

The quantum mechanics of classically chaotic syste
often called quantum chaos, is by now a highly develop
subject with an enormous literature, including monograp
by Gutzwiller @1#, Stöckmann @2#, and Haake@3#, among
others. The subject has been greatly advanced, as is usu
detailed analyses of simple model systems such as kic
rotors, quantum flows on surfaces of constant negative
vature, Harper models, and so on. Some of the central p
lems that have been studied using these models include t
of ~1! finding explanations for the efficacy of random matr
theories,~2! understanding the differences between quant
and classical transport, especially when Anderson local
tion plays a role in the quantum system,~3! studying the
properties of quantum systems in the semiclassical limit,
~4! determining the role of decoherence in producing cla
cally chaotic behavior of a quantum system as Planck’s c
stant tends to zero.

The present paper treats the quantum versions of sim
model systems, multibaker maps, that have been use
study transport phenomena in classically chaotic system
multibaker map consists of a chain of two-dimensional ba
maps that are interconnected by means of a simple chan
the baker dynamics. In the usual baker map on a unit sq
or torus, two vertical strips are stretched~by a factor of 2! in
the horizontal direction, contracted~by a factor of 2! in the
vertical direction, and the resulting horizontal strips a
placed one above the other, in order to reconstruct the
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square. In the multibaker chain, each of the two horizon
rectangles are sent to adjacent cells, one to the right and
other to the left~Fig. 1!. Modified multibaker chains have
also been studied where there may be more strips and/
more complicated dynamics including both area preserv
and area nonpreserving dynamics. These classical mo
provide simple, deterministic models of one-dimension
random-walk processes with both diffusive transport a
chaotic dynamics. They have been used to study connect
between transport properties such as transport coefficie
and irreversible entropy production, and the chaotic prop
ties of the models@4–18#.

Quantum versions of baker maps are well known a
studied in some detail for a range of values of Planck’s c
stant. Here we add a mechanism for transport of probab
amplitudes along a one-dimensional chain of quantum ba
maps. This quantum version of the multibaker map~QMB!
provides one realization of a quantum random walk proce
In this paper we will concentrate on the ‘‘most quantum
version of the QMB, obtained by using the largest possi
value of Planck’s constanth51/2, in the Weyl quantization
of the ordinary baker map@19,20#. Our goal here will be to

FIG. 1. Classical multibaker model.
©2002 The American Physical Society10-1
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explore the transport properties of the QMB for this value
h, and for two different versions of the model, obtained
taking advantage of some phase-related arbitrariness in
quantization of the map. Later papers will explore furth
properties of QMB’s including the semiclassical case,
considered here@21#.

Area-preserving maps on torus admit a two-parame
family of Weyl quantizations@20,22,23#, where the two pa-
rameters can be chosen to be phases. One can think o
two phases as offsets of lattice points that define the sp
and momentum coordinates of the map. If we choose
same phases in each unit cell of the chain, we have a ‘‘u
form’’ QMB. If we choose random phases from cell to ce
we obtain a ‘‘random’’ QMB. The different versions hav
quite different properties, as one might expect. The unifo
QMB has many features in common with those of contin
ous one-dimensional systems with periodic potential, incl
ing extended eigenstates, and ballistic transport, while
random case exhibits the usual phenomena associated
localization. Nevertheless, there are some interesting
prises, as we shall see in further sections, associated
transport in open systems.

There are a number of formulations of quantum rand
walks already in the literature. We mention, in particul
work of Aharonovet al. @24#, work of Godoyet al. @25,26#,
and work of Barra and Gaspard@27#. The papers of Godoy
and co-authors as well as that of Barra and Gaspard h
interesting parallels with ours. These authors consider
motion of a quantum particle along a one-dimensional, p
odic chain of scattering sites. The scattering sites are cha
terized by transmission and reflection amplitudes, which
a periodic system, are taken to be the same for each
Godoy and co-workers consider the wave functions for th
systems at discrete positions and discrete times, and pro
a set of equations similar to the ones considered here. T
equations are then solved using stationary phase approx
tions, and the connections with Landauer’s formula are d
cussed, for various parameters and particle statistics. B
and Gaspard also consider a model similar to ours, and
analyze the scattering resonances for a finite, open sys
By applying transfer andSmatrices, they obtain expression
for the widths of resonances and the Wigner time delay, a
function of the system size. Their equations are in fact qu
similar to ours, and a number of results differ in the tw
cases only because of the differences in the details of
model studied. Their model has two channels per cell~par-
ticles moving to the left or right! but the particles can have
wide range of energies, and in some instances the h
energy limit is considered. The similarities with the work
Godoyet al.occur because the version of the quantum mu
baker model considered in the present paper is the simp
possible, while more complicated versions, to be conside
in further papers, have no direct counterparts in their wo

Despite the similarities between our work and that
other authors, the focus of the work mentioned above ge
ally differs from ours. We are particularly interested in com
paring and contrasting quantum and classical multiba
maps, and in generalizing the QMB in a number of dire
tions. These include an examination of the behavior of
03611
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QMB for smaller values ofh including the semiclassica
limit, and looking for traces, if any, of the chaotic classic
behavior in the quantum version. The present paper is
signed to identify important quantum phenomena that dif
from those of the classical multibaker at largeh, but which
are expected to approach the classical results as the Pla
constant,h51/N, tends to zero.

The plan of the paper is as follows: In Sec. II we w
define the classical version of the model and study the e
lution of piecewise constant probability densities. In Sec.
we quantize the multibaker map using Weyl quantizatio
There we will define the uniform and random QMB’s an
obtain expressions for the time-dependent propagator app
ing in the discrete time version of Schro¨dinger’s equation. In
Sec. IV we describe the behavior of the uniform QMB f
h51/2. We find the eigenstates for both closed and op
systems, as well as the steady state solutions for syst
with particle reservoirs at their boundaries. We then consi
the transport properties of particles in these chains. Of p
ticular interest in this connection is in our finding that f
open chains of uniform multibakers, and with absorbi
boundary conditions, the escape of particles from the cha
subdiffusivedespite the ballistic transport of particles fro
the interior of the chain to its boundaries. We then turn to
brief discussion of the properties of random multibakers a
show that the assumption of random phases leads to lo
ized wave functions with very different properties from th
uniform case. Our results are summarized and discusse
Sec. VI.

II. THE CLASSICAL MULTIBAKER MAP

The classical multibaker map provides a reversible, de
ministic realization of a one-dimensional random walk. It
the simplest area-preserving, deterministic model for dif
sion of a particle on a one-dimensional lattice, whereby
particle makes steps either to the right or left at equa
spaced time intervals. The multibaker map can be adjus
for any set of step probabilities,p,q512p,0<p,q<1,
wherep is the probability of making a step to the right. Th
classical multibaker map is based upon the usual bak
mapB on the unit square, (0<x,y,1), defined by

B~x,y!5H ~x/p,py!, for 0<x,p,

„~x2p!/q,p1qy…, for p<x,1.
~1!

The multibaker map is constructed by taking a linear ch
of L adjacent unit squares, labeled by the indexn,n
50, . . . ,L21, such that any point on the chain is labeled
the three quantitiesn,x,y with 0<x,y,1. Then the action
of the map,M on any point is obtained by combining
baker’s map with translation of each rectangle to the righ
left, as given by

M ~n,x,y!5~n11,x/p,py!, for 0<x,p, ~2!

5~n21,~x2p!/q,p1qy!, for p<x,1.

This arrangement has the property that there is a probab
p of choosing a point that moves one square to the right,
0-2
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probability q of choosing a point that moves one square
the left. To complete the specification of the map, one m
append boundary conditions to the transformation given
Eq. ~2!. Such conditions may include periodic, or absorbi
boundary conditions, or one might specify that the ends
the chain are connected to reservoirs that maintain a con
density of points at the boundaries. As a chaotic system,
multibaker map is a measure preserving map with posi
and negative Lyapunov exponents, given byl65
6@p ln(1/p)1q ln(1/q)#. This map has been used to stu
the properties of deterministic diffusion in a chaotic syste
studies of the connection between diffusion coefficients
Lyapunov exponents for an open chain, a study of entr
production in the relaxation to a uniform equilibrium sta
and has been extended to provide simple models for visc
and heat flows as well@4–18#.

The classical version of the quantum multibaker cons
ered here was discussed in Ref.@8#. We consider here a
simple form of this classical model constructed to be a c
sical version of theh51/2 quantum system. We will stud
the evolution of probability densities integrated along t
stable direction~y! and piecewise constant on two halves
every multibaker cell~along the unstable direction!. This
space of densities are 2L dimensional. Therefore, the evolu
tion operator for this class of probability densities has
same dimension as the quantum multibaker propagator
sidered in Sec. III.

A. Closed, periodic case

We consider the classical evolution of phase-space de
ties under the dynamics given by Eq.~2! with p51/2. Since
the quantum version will describe probability amplitudes
either space or momentum, the classical counterparts are
tained by projecting the classical densities along thex or y
axes, respectively. We restrict our attention to probabi
densities projected onto the unstablex direction and we take
them to be constant on intervals 0<x,1/2,1/2<x,1,n
5const, to mimic theh51/2 quantum case. Then the pr
jected distribution is

%~n,x,t !ªE
0

1

%~n,x,y,t !dy

5H %L~n,t !, for 0<x,1/2,

%R~n,t !, for 1/2<x,1,
~3!

and it satisfies a Frobenius-Perron equation given by

%L,R~n,t11!5
1

2
@%L~n21,t !1%R~n11,t !#, ~4!

with periodic boundary conditions %L,R(n1L,t)
5%L,R(n,t). Since this equation is linear we may suppo
that%L,R(n,t) represent the deviations from a uniform equ
librium state, and may take both positive and negative v
ues. An eigenstate of the right-hand side of Eq.~4! satisfies
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1

2
@%L~n21!1%R~n11!#. ~5!

It follows that eitherl50 or %L(n)5%R(n). Clearly, theL
vectors of the form

%L~k21!52%R~k11!Þ0,

%L~nÞk21!5%R~nÞk11!50,

belong to the kernel,l50, of the classical discrete multi
baker. For the case wherelÞ0 we look for solutions of the
form %L,R(n)5Aeinq and Eq. ~4! leads tol5cosq. The
general solution is, then,%L,R(n)5A1cos(qn)1A2sin(qn),
where periodic boundary conditions lead toq52kp/L, and
the normalized eigenstates can readily be determined.
odd L52M11 we have theL following solutions.

~1! M solutions of the form%L,R(n)5A cos(2kpn/L),
l5cos(2kp/L);k51, . . . ,(L21)/2;

~2! M solutions of the form%L,R(n)5A sin(2kpn/L),
l5cos(2kp/L);k51, . . . ,(L21)/2;

~3! one solution%L,R(n)5A,l51;k50.

For evenL52M we have theL following solutions.

~1! M21 solutions of the form %L,R(n)
5A cos(2kpn/L),l5cos(2kp/L);k51, . . . ,L/221;

~2! M21 solutions of the form %L,R(n)
5A sin(2kpn/L),l5cos(2kp/L);k51, . . . ,L/221;

~3! one solution%L,R(n)5A,l51;k50, and,
~4! one solution%L,R(n)5(21)nA,l521;k5M5L/2.

We see that in the odd case there is an approach to equ
rium: all the eigenvalues have absolute value strictly l
than 1, apart from the one corresponding to the uniform d
tribution. The even case is sensitive to the ‘‘even-odd’’ osc
lations of the location of a point along the chain. These
cillations can be removed by combining two success
steps.

B. Open case„absorbing boundary conditions…

For the open chain with absorbing boundary conditio
the dynamics inside is the same as in the closed case a
given by Eq.~4!, therefore the general solution is also give
by %L,R(n)5A1cos(qn)1A2sin(qn). Absorbing boundary
conditions%R,L(21)5%R,L(L)50 lead to

lA15
1

2
@A1cosq1A2sinq#, ~6!

l@A1cos~L21!q1A2sin~L21!q#

5
1

2
@A1cos~L22!q1A2sin~L22!q#, ~7!

wherel5cosq. They have nontrivial solutions if and only i
sin(L11)q50, leading to qk5kp/(L11), where k5
2L, . . . ,21,1, . . . ,L, and l(2q)5l(q). Thus finally k
51, . . . ,L, which gives theL states of the form

%L,R~n!5A sin
k~n11!p

L11
. ~8!
0-3
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The remainingL states are in the kernel:L22 are of the
form given by Eq.~6! with n51, . . . ,L22. Two other states
corresponding to l50 are %L(L21)51,%L(kÞL21)
5%R(k)50, and%R(0)51,%R(kÞ0)5%L(k)50. Thus we
easily obtain a spectral decomposition for the simple ope
tor treated here, with absorbing boundary conditions.

The probability of finding the particle in the system d
cays with the escape rate

gª2 lim
t→`

ln P~ t !

t
, ~9!

whereP(t)ª(n%(n,t), given by the largest eigenvalue

g52 lnUcos
p

L11U' p2

2L2
, ~10!

for largeL.

C. The open, discrete multibaker with reservoirs

Next we connect particle reservoirs to a finite chain a
look for steady state solutions. These are time invariant
lutions to Eq.~4!, with the boundary conditions

%L~0!5%R~0!5
1

2
@%11%R~1!#, ~11!

%L~L21!5%R~L21!5
1

2
@%L~L21!1%2#, ~12!

where%1 ,%2 are the incoming densities of the left and rig
reservoirs, respectively. A solution is found immediately
observing that in the steady state%L(n)5%R(n)[%(n) and
that Eq.~4! leads to%(n11)52%(n)2%(n21). A solution
satisfying the boundary conditions is therefore

%~n!5
%21L%1

L11
1

n~%22%1!

L11
. ~13!

This linear profile expected from Fick’s law@9,8,4# is shown
in Fig. 2.

FIG. 2. Linear profile of the classical discrete multibaker map
length L5101 with reservoirs (%150.1,%250.9). The horizontal
axis range is@25,105#.
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III. QUANTUM MULTIBAKER MAP: THE GENERAL
MODEL

In order to quantize the multibaker map, we start with t
quantum baker map, as described by Balazs and Voros@19#,
and Saraceno@20#, and then produce a quantum multibak
map by forming a chain of unit squares, applying the qu
tum baker map to each square, but transferring the new q
tum states to the adjacent squares according to the proce
used in the classical case.

The method for constructing a quantum version of t
regular baker map is as follows. We consider thex direction
to be the ‘‘spatial’’ direction of the system, and they direc-
tion to be the ‘‘momentum’’ direction. Then the number
quantum statesN in the unit square should satisfyN
5PQ/2p\, where Q51 is the spatial extent of the un
square, andP51 is the range of momenta. This leads to t
simple formula,\51/(2pN), where N is an integer. We
usually, but not always, takeN to be an even integer, so tha
one half of the quantum states can be associated with e
half of the unit square. One then constructs a set ofN ‘‘po-
sition’’ states for a unit square, with position eigenvaluesqj
52p\( j 1wq)5( j 1wq)/N, j 50, . . . ,N21 and a set ofN
‘‘momentum’’ states with momentum eigenvaluepk
52p\(k1wp)5(k1wp)/N,k50, . . . ,N21. We require
that 0<wq,p,1. The position and momentum states are
lated to each other by means of a simple Fourier represe
tion, with N terms, given by

~GN!k j[^pkuqj&5
1

AN
e22p i (k1wp)( j 1wq)/N. ~14!

We include subscripts onp,q in the notation for the Dirac
matrix element to identify the integers that are attached
the p and q representations. The phases,wq ,wp , are as yet
unspecified. In the literature on the quantum baker m
these phases are often taken to be 0~the simplest@19#! or 1/2
~most symmetric map@20#!. Here we will take advantage o
the possibility to choose these phases so as to represen
ferent situations that may have some relevance to phys
phenomena.

The time dependence of the quantum baker map is de
mined by constructing a propagator for the change in
quantum states over one time step. This propagator con
of two parts: First one transforms the ‘‘left’’ part of the Hil
bert space~in the position representation! into ‘‘bottom’’ sub-
space~in momentum representation! and the ‘‘right ~posi-
tion! part’’ into the ‘‘top ~momentum! part.’’ Then one uses
the Fourier relation between position and momentum sta
Eq. ~14!, to change the basis from momentum back to po
tion representation. The first transformation consists of t
Fourier transforms overN/2-dimensional space, the other
the inverse Fourier transform over the wholeN-dimensional
space

B5@GN
21#•FGN/2 0

0 GN/2
G . ~15!

f
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The action ofB on a position-space wave function is unde
stood as follows. We represent the position-space functio
a column vector withN elements, the topN/2 elements re-
ferring to the quantum states with numbersj
50,1, . . . ,(N/2)21, which we denote as the ‘‘left’’ states
The bottom N/2 elements having quantum numbersj
5N/2,N/211, . . . ,N21, are called the ‘‘right’’ states. The
block diagonal matrix, with blocksGN/2 appearing on the
right-hand side of Eq.~15! transfers the left and right spatia
states to the ‘‘bottom’’ and ‘‘top’’ momentum states, respe
tively, according to

F C̃b~ t11!

C̃ t~ t11!
G5FGN/2~wq ,wp! 0

0 GN/2~wq ,wp!
G•F C l~ t !

C r~ t !
G .
~16!

This operation defines the quantum baker map. However
are left with a quantum state in the momentum represe
tion. We now change the momentum state representation
a spatial state by means of the matrixGN

21 , as in Eq.~14!.
Finally we can construct aquantum multibakermap by

considering a chain of unit squares, each taken to be an
dividual quantum system, but which exchange quant
states according to the rules of the quantum baker with
interlacing process formed in analogy with the classi
multibaker map Eq.~2!. That is, the position space function
at site n are transformed to momentum space functions
sitesn61, according to the rule

F C̃b~n11,t11!

C̃ t~n21,t11!
G5FGN/2~n! 0

0 GN/2~n!
G•F C l~n,t !

C r~n,t !G .
~17!

Here we can allow for the phaseswq,p(n) to vary from one
cell, denoted byn, to the next, and we incorporate them
the transformation operatorsGN(n)[GN„wq(n),wp(n)… at
that site. After this transformation is carried out, we chan
from the momentum to the position representation at e
site according to the same rule as in an ordinary quan
baker map, that is,

F C l~n,t11!

C r~n,t11!
G5GN

21~n!•F C̃b~n,t11!

C̃ t~n,t11!
G . ~18!

Thus in the position representation the quantum multiba
map is given by

F C l~n,t11!

C r~n,t11!
G

5GN
21~n!•FGN/2~n21! 0

0 GN/2~n11!
G•F C l~n21,t !

C r~n11,t !G .
~19!

Explicitly, we have
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C l~n,t11!5@GN
21~n!# l ,b•GN/2~n21!•C l~n21,t !

1@GN
21~n!# l ,t•GN/2~n11!•C r~n11,t !,

~20!

C r~n,t11!5@GN
21~n!# r ,b•GN/2~n21!•C l~n21,t !

1@GN
21~n!# r ,t•GN/2~n11!•C r~n11,t !.

~21!

Here, in an obvious notation, the matrices@GN
21#a,b are

N/23N/2 block submatrices that compriseGN
21 . The gen-

eral case can be treated numerically, of course, once
phases are specified. It is of interest to consider the spe
caseN52, since much of the work can be done using sim
analytical methods, and since this case corresponds to
largest possible value for Planck’s constant, namely,h
51/2. This is the case we study here.

The local dynamics are characterized by the two pha
wq ,wp , which parametrize the Weyl quantizations of th
baker map. If we take the same pair of phases at each sit
obtain theuniformmodel. If we choose them randomly from
some distribution at each of the sites, we get therandom
model. In this paper, when we treat the random model
will assume that the phases are chosen according to a
form distribution on the unit circle@28#.

A complete specification of the model is obtained by ad
ing the boundary conditions to the above equations. In
work we restrict our attention to the closed case~with peri-
odic boundary conditions!, and open cases~with either ab-
sorbing boundary conditions or with ‘‘particle’’ reservoirs
the ends of the chain!.

IV. UNIFORM QUANTUM MULTIBAKER

The uniform quantum multibaker is characterized by a
of phaseswq ,wp that are independent of the site index, th
is, they are the same for each of the transformation matr
generating the map, as described in Eq.~19!. This makes
transport in the uniform multibaker chain similar in man
respects to transport in a one-dimensional periodic so
Here we solve this model for time-dependent and station
quantum states with appropriate boundary conditions:
closed, periodic chain; the open chain with absorbing bou
ary conditions; and the open chain attached to leads at e
end, producing a stationary, non-equilibrium state. We be
with the periodic chain.

A. Closed, periodic case

We consider the periodic, uniform multibaker chain, wi
L sites andN52. The equation connecting the quantu
states at timet11 to those at timet is

C l~n,t11!5 f 0„g00C l~n21,t !1g01C r~n11,t !…,

C r~n,t11!5 f 0„g10C l~n21,t !1g11C r~n11,t !…,

with (0<wq ,wp,1), and f 0 ,gkl given by
0-5
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f 05„G1~wq ,wp!…005e2 i2pwqwp, ~22!

gkl5„G2
21~wq ,wp!…kl5

1

A2
eip(k1wq)( l 1wp).

Since the system is periodic, Bloch’s theorem guarantees
existence of eigenstates of the form

C r ,l~n!5Ar ,lx
n5Ar ,le

inq. ~23!

Periodic boundary conditions,C(L)5C(0), imply that q
52kp/L,k50, . . . ,L21. Clearly,l is an eigenvalue of the
quantum multibaker propagator if and only if

Ug00f 0e2 iq2l g01f 0eiq

g10f 0e2 iq g11f 0eiq2l
U50. ~24!

Using the notation

a5~11wq1wp!p/2, ~25!

b5~11wq1wp22wqwp!p/25a2pwqwp ,

we find that

l5
eib

A2
@cos~q1a!6 iA11sin2~q1a!#. ~26!

Note that Eq.~24! can also be written as

l/eib1eib/l5
1

A2
@ei (a1q)1e2 i (a1q)#,

v1
1

v
5

1

A2
Fu1

1

uG , ~27!

where u5xeia,v5l/eib. Since q is real it follows that
ulu251, so l5eig and g2bP@p/4,3p/4#ø@5p/4,7p/4#.
Therefore the ‘‘quasienergies’’g lie in two bands of length
p/2 symmetric with respect to the center of the unit circ
The exact location depends upon the phaseswq ,wp . Making
use of the boundary conditions we obtain the eigenvalue
the closed multibaker map

l6,k5
eib

A2
@cos~a12kp/L !6 iA11sin2~a12kp/L !#,

~28!

with a and b given by Eq. ~25!. The corresponding
eigenstates are given by Eq.~23! with the constants
connected byAr5Al@sin(a12kp/L)7A11sin2(a12kp/L)#
ei[p(wp2wq)/222kp/L].

When a is an integer multiple ofp/L the spectrum is
doubly degenerate. This nongeneric case happens, fo
stance, for the most of the common choices of phaseswq
5wp50 or 1/2). The quasienergy spectrum of the clos
uniform multibaker for the phaseswq5wp51/2 is shown in
Fig. 3.
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B. Open case: Absorbing boundary conditions

Next we consider the uniform quantum multibaker, s
for N52, but with open boundaries. In the classical ca
open boundaries are important for the application of
escape-rate formalism of Gaspard and Nicolis@29# which
relates the rate of decay of the initial number of particles
a large, open chain to the diffusion coefficient, and then
the Lyapunov exponents and the Kolmogorov-Sinai entro
of trajectories on a fractal repeller, i.e., the set of init
points for trajectories that never leave the chain@4,30#. It is
of some interest, then, to contrast the classical and quan
cases.

We take the multibaker dynamics given by Eq.~19! in the
cells n51,2, . . . ,L22. At the boundary cells we allow the
probability density to escape from the right half cell forn
50, and from the left half cell forn5L21, and nothing
enters the system from the outside. The latter condition
quires

Cb~0,t !50, ~29!

C t~L21,t !50. ~30!

Due to the escape of probability density, the eigenval
that determine the time dependence of the probability den
in each cell move to the interior of the unit circle. A simp
proof of this fact is given in Appendix A. We show there als
that the kernel is two dimensional.

To determine the nonzero eigenvalues 0,ulu,1 of the
open chain, we first write the eigenvalue equation in
momentum representation. Then every eigenstateC satisfies
the equation

F C̃b~n11!

C̃ t~n21!
G5F f 0 /l 0

0 f 0 /lG•G2
21~wq ,wp!•F C̃b~n!

C̃ t~n!
G .

~31!

Viewed in terms of the ‘‘top’’ and ‘‘bottom’’ states, we se
that the solution of Eq.~31! can be neatly formulated as
scattering problem~see Fig. 4!, where the incoming waves
are C̃b(n) and C̃ t(n), and the outgoing waves areC̃b(n
11) andC̃ t(n21) with a one-cell scatteringSmatrix, and a
one-cell transferT matrix. Those are defined, respectively, b
the relations

FIG. 3. Eigenspectrum of the closed uniform quantum mu
baker for the chain of lengthL5101 cells with periodic boundary
conditions. Phases arewq5wp51/2, a5p, b53p/4.
0-6
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F C̃ t~n21!

C̃b~n11!
G5S•F C̃b~n!

C̃ t~n!
G , ~32!

and

F C̃b~n11!

C̃ t~n!
G5T•F C̃b~n!

C̃ t~n21!
G . ~33!

Explicitly, the S matrix, for the uniform multibaker, is

S5F 1

A2
eipwp(12wq)/l

1

A2
eip(11wq1wp2wqwp)/l

1

A2
e2 ipwqwp/l

1

A2
eipwq(12wp)/l

G ,

~34!

and theT matrix is

T5FA2e2 ipwqwp/l 2e2 ipwp

e2 ipwq A2e2 ip(11wq1wp2wqwp)l
G . ~35!

We find it convenient to use the transfer operatorsT to
carry out the determination of the eigenvaluesl governing
the rate of decay for an open system. To do this we first
the transfer operators to relate the quantum states at one
of the chain to the states at the other end, and then use
open, absorbing boundary conditions to obtain an exp
equation forl. First, the states at the two ends of the ch
are related by

F C̃b~L21!

C̃ t~L22!
G5TL22

•F C̃b~1!

C̃ t~0!
G . ~36!

To use the boundary conditions, we first look at cellL21.
We note that in the open multibakerC̃ t(L21)50. Then
using Eq.~31!, we obtain

C̃ t~L22!5~ f 0 /l!@g10C̃b~L21!1g11C̃ t~L21!#

and

C̃ t~L21!5@~l/ f 0!C̃ t~L22!2g10C̃b~L21!#/g11.

Thus

FIG. 4. Scattering from one cell.
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05@2g10 ~l/ f 0!#•F C̃b~L21!

C̃ t~L22!
G . ~37!

Using Eq. ~32! and ~36!, we easily find that C̃b(1)
5( f 0g01/l)C̃ t(0). Thus the equation that determines t
decay rates is

05@2 f 0g10l#•TL22
•F f 0g01

l
G , ~38!

where a scalar product of matrices is to be taken as indica
To get a useful form for this equation we need to find t
eigenvalues of the transfer matrixT. We denote the eigenval
ues ofT by x1 ,x2 , which are obtained as solutions of th
quadratic equation

xeia1
1

xeia
5A2@l/eib1eib/l#, ~39!

wherea,b are given by Eq.~25!. Using, as before, the no
tation u5xeia,v5l/eib we obtain the same formal relatio
betweenu andv as in the periodic case, Eq.~27!, i.e.,

v1
1

v
5

1

A2
Fu1

1

uG . ~40!

The two solutionsu1 ,u2 satisfy u1u251, and u11u2

5A2@v11/v#. Sinceuvu5ulu,1, it follows thatu1 ,u2 do
not lie on the unit circle. In particular, they must be differe
and so the matrixT is nondegenerate. We takeuu1u.1
.uu2u to define them uniquely, and useu65x6eia. If we
setu65e6 ik, and then solve forv we obtain

v65
1

A2
@cosk6 iA11sin2k#. ~41!

Interesting solutions are those wherek is not purely real, that
is, kPC\R. We next use a simple identity for theLth power
of nondegenerate matrixT, given by

TL5
x1

L 2x2
L

x12x2
T2

x2x1
L 2x1x2

L

x12x2
I

5
e2 ia(L21)

sink
@sin~Lk!T2sin$~L21!k%I #,

to write Eq.~38! in the form

F2v2121
1

v2Gsin~L22!k5FA2v1
1

A2v
Gsin~L23!k,

~42!

wherev is one ofv6 . With the help of Eqs.~40! and~41! we
can reduce Eq.~42! to

sinLk1sink cos~L21!k1 i«A11sin2k sin~L21!k50,
~43!
0-7
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which can be further reduced to

u2L2122 sink@sink2«A11sin2k#50. ~44!

In the above equations«561 corresponds to the sign in Eq
~41!. Clearly, we can get all the possible solutions multip
ing Eq. ~44! for two different signs. This leads to a ver
simple equation,

sin2Lk1sin2k50. ~45!

The only real solutions of this equation arek5kp,kPZ,
but, as mentioned above, they must be discarded. If we w
Eq. ~45! as

sinLk5 id sink, ~46!

whered561, we can treat it as a ‘‘perturbation’’ ind of
equation sinLk50 @31#. Thus we can obtain the solutions o
interest by expandingk in powers ofd about the valuesk
5kp/L,k51, . . . ,L21, @32# and then at the end, settin
d561. This approach gives results that quickly conve
numerically, for all allowed values ofk. To apply this proce-
dure it is convenient to rewrite Eq.~46! in a polynomial
representation,

u2L212d iuL~u21/u!50. ~47!

Then, by takingu5exp@i(kp/L1da11d2a21•••)#, one can
determine the coefficientsai , and check the convergence
the series numerically. Figures 5 and 6 show the abso
values of the approximate solutions~in the first and fifth

FIG. 5. The first- and the fifth-order approximate solutions a
the numerical solutions of Eq.~46! for L5101. We took hered
51. The numerical solution is the middle curve. The fifth-ord
approximate solution is the one closer to the numerical solution

FIG. 6. The amplitude versus argument ofl in the fourth order
of approximation for the chain of lengthL5101.
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order! and the numerical solutions forL5101 sorted accord-
ing to the increasing amplitude. The first few coefficients
the expansion ofu are

a152b/L,

a252 iab/L2,

a35b3/6L1b~223b2!/2L3,

a45 i @2ab3/3L22ab~8b223!/3L4#,

where

a5cos~kp/L !, b5sin~kp/L !. ~48!

Numerical studies show rapid convergence of amplitu
and slower convergence of phases.

Next we calculate the approximate eigenvalues of
open quantum multibaker. Usingl5eibv, keepinguvu,1
solutions, to second order ind we obtain

l5
eib

A2
~a1 i«A11b2!expH 2

b2

LA11b2J
3expH 2

i«ab2~2b213!

2L2~11b2!3/2 J , ~49!

wherea,b are given by Eq.~48!, while «561 enumerates
the solutions. The nonexponential factor on the right-ha
side is the unperturbed solution. Figure 4~b! shows the abso-
lute value ofv ~in the fourth-order approximation!.

The general result and the numerical studies suggest
the value ofv that is the nearest to the unit circle occu
when k takes on one of the four values,kP$1,L21,L
11,2L21%. To get the leading term in the large-size lim
we find it convenient to use an alternative expansion of
~46!, in powers ofL21. While this leads to an asymptoti
solution forv which quickly diverges for mostk, it gives us
the correct leading-order behavior fork!L. Then the expan-
sion of the solution of Eq.~46! in powers of 1/L, as kk
5kp/L1b2 /L21b3 /L31••• for small k yields

kk'kp~1/L1 id/L221/L32 id~11k2p2/3!/L41••• !,
~50!

which gives the asymptotic formula forv(k)

v~k!5
1

A2
@coskk6 iA11sin2~kk!# ~51!

'expF6 i S p

4
1

k2p2

2L2 D Gexp
2k2p2

L3
. ~52!

The escape of probability density from an open system
ymptotically is dominated by the eigenvalue closest to
unit circle. Therefore, the escape rate

d

r

0-8
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gª2 lim
t→`

ln P~ t !

t
~53!

of the uniform quantum multibaker map is obtained from t
eigenvalue corresponding tok51,

g52 lnuv~1!u2'
2p2

L3
. ~54!

This result means that even though the motioninside the
quantum multibaker isfaster ~ballistic! than in the corre-
sponding classical system~diffusive!, the effusion~decay of
probability density! is slowerthan that for the correspondin
classical system,~ @4#; see also Sec. II B!

gclass5
p2

2L2
. ~55!

It is interesting to compare this result with those obtained
Barra and Gaspard@27# in their study of scattering reso
nances for an open, periodic chain of scatterers. In the h
energy limit they found that the logarithms of the magnitud
of the eigenvalues can be bounded above and below by f
tions that scale as 1/L. They expect that the lower bound
given by the eigenvalues in the middle of the band, sho
hold also for lower energies@33#. On the other hand, the
upper bound, which gives the escape rate, is given by
resonances near the edges of the bands which are hard
estimate at low energies. Therefore, this bound is more
ficult to control.

This reasoning is consistent with our findings. In our ca
the eigenvalues of the smallest magnitude are those
which to k'6L/2 ~the middle of the band; see@Fig. 4~b!#!.
Thus their magnitude can be estimated from Eq.~49! setting
a50,b51 and therefore their logarithms scale as 1/L. On
the other hand, the eigenvalues of largest magnitude, w
give the escape rate, lie at the edges of the band.

The discrepancy between our results is not surprising
the high-energy limit corresponds to semiclassical limit
our system, and in the present work we consider the extr
quantum case.

C. Steady state solution

Suppose now that the multibaker of lengthL is connected
at both ends to infinitely conducting leads. We suppose
there can be traveling waves in the leads moving to the r
and to the left. These waves are most conveniently descr
in terms of the momentum space representation of the w
functions, and we recall that the ‘‘bottom’’ states come fro
the left and the ‘‘top’’ states come from the right. Thus to t
left of the chain,n,0, we take the traveling waves to be

C̃b~n,t !5Aei (vt2kn), ~56!

C̃ t~n,t !5Bei (vt1kn), ~57!

and to the right of the chain,n.L21, the waves are
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C̃b~n,t !5Cei (vt2kn), ~58!

C̃ t~n,t !5Dei (vt1kn). ~59!

HereA,D are the amplitudes of the incoming waves, wh
B,C are the amplitudes of the outgoing waves. Due to
dynamics on the multibaker, we can match the incom
wave functions in the leads to the proper momentum sp
functions for the unit cells at 0 and atL21. This matching
condition is simply

C̃b~0,t !5Aeivt, ~60!

C̃ t~L21,t !5Deivtei (L21)k. ~61!

We will use a scattering approach to find the outgoing a
plitudesB,C for the steady state solution, as well as to so
the problem of the relaxation of some initial state to a stea
state~Fig. 7!. First we consider the steady state solution
the baker chain with conducting leads.

The steady state solution is defined by the condition t
the time dependence of the wave function can be incor
rated in a time-dependent phase factor. Since the dynam
takes place at discrete times, there is aṽ such that
C t,b(n,t11)5ei ṽC t,b(n,t) which implies thatC t,b(n,t)
5ei ṽtC t,b(n,0). In particular, using Eq.~60!, Cb(0,t)
5ei ṽtCb(0,0), so that ṽ[v. Writing C̃b(n,t)
5eivtC̃b(n), etc., we obtain the steady state equation

F C̃b~n11!

C̃ t~n21!
G5F f 0e2 iv 0

0 f 0e2 ivGF C l~n!

C r~n!
G . ~62!

The transmission and reflection coefficients for the ch
can be expressed in terms of the scatteringSmatrix, given by

F C̃ t~21!

C̃b~L !
G5S0,L21F C̃b~0!

C̃ t~L21!
G , ~63!

where the elements ofS matrix are

S0,L215F r 0,L21 t0,L218

t0,L21 r 0,L218
G . ~64!

Here the unprimed coefficients refer to waves incident on
left end of the chain, while the primed quantities refer to t
waves incident on the right side of the chain. The transm

FIG. 7. Scattering from a quantum multibaker.
0-9
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sion and reflection coefficients,T,T8,R,R8, respectively, are
then obtained from the elements ofS by

T5ut0,L21u2, R5ur 0,L21u2, ~65!

and similarly for the primed quantities. Unitarity ofS implies
T5T8,R5R8. In order to calculate theSmatrix, S0,L21, for
the chain, we proceed as for the absorbing case, by loo
at the transfer and scattering matrices for one cell, and bu
ing up the matrices for the chain by iteration, cell by ce
Consider the cell labeled by the indexn. TheSmatrix for the
nth cell is given by

F C̃ t~n21!

C̃b~n11!
G5SnF C̃b~n!

C̃ t~n!
G , ~66!

and the transferT matrix is

F C̃b~n11!

C̃ t~n!
G5TnF C̃b~n!

C̃ t~n21!
G . ~67!

Each of the matrices can be given in terms of the other, th

S5F r t 8

t r 8
G⇒T5F t2r 8t821r r 8t821

2t821r t 821 G , ~68!

T5Fa g

b d G⇒S5F 2d21b d21

a2gd21b gd21G . ~69!

TheSandT matrices can easily be obtained by transfor
ing the dynamical equations~62! to momentum representa
tion ~18!, so that

F C̃b~n11!

C̃ t~n21!
G5 f 0e2 ivFg00 g01

g10 g11
GF C̃b~n!

C̃ t~n!
G , ~70!

from which theS matrix follows as

Sn5
e2 iv

A2
Feipwp(12wq) eip(11wq1wp2wqwp)

e2 ipwqwp eipwq(12wp) G . ~71!

The T matrix is then given by

Tn5FA2e2 ive2 ipwqwp 2e2 ipwp

e2 ipwq A2eive2 ip(11wq1wp2wqwp)G .

~72!

The scattering matrix for the whole multibakerS0,L21 can
easily be derived fromT0,L21ªTL21•••••T1•T0. Its unitar-
ity can also be verified. For the uniform system

T0,L215TL5
x1

L 2x2
L

x12x2
T2

x2x1
L 2x1x2

L

x12x2
, ~73!

wherex6 are roots of characteristic polynomial ofT,

x65e2 ia@A2cos~b2v!6Acos 2~b2v!#, ~74!
03611
g
d-
.

s,

-

and a,b are given by Eq.~25!. Depending on the sign o
cos 2(b1v) there are two types of solutions: if the frequen
of the incident wave falls in one of the quasienergy band

cos 2~b2v!,0⇔v2bP@p/4,3p/4#ø@5p/4,7p/4#,
~75!

we have the oscillatory case with some interesting struct
Otherwise, when the frequency of the incident wave falls
the gap, we observe almost total reflection of particles co
ing from the leads to the chain, becoming total asL→` ~the
exponential case!.

~1! If cos 2(b2v),0 ~oscillatory case!, the characteristic
roots are

x65e2 ia@A2cos~b2v!6 iA2cos 2~b2v!#, ~76!

thus ux6u251. Setx65e2 iae6 ik. Then the scattering ma
trix for the chain becomes,

S0,L215
1

zL
F2sinLkei (a2pwq) sinkeiaL

sinke2 iaL 2sinLkei (a2pwp)G .
~77!

To simplify the formulas we introduce

zn[r neiwn
ªA2sinnke2 i (b2v)2sink~n21!

5coskn sink2 i« sinnkA11sin2k,

where«56 is the sign of sin(b2v). Then the transmission
and reflection coefficients are

R5
sin2Lk

sin2k1sin2Lk
5

1

11
sin2k

sin2Lk

, ~78!

T5
sin2k

sin2k1sin2Lk
5

1

11
sin2Lk

sin2k

. ~79!

Some interesting special cases occur when

~a! k5kp1p/2, L odd: T51/2;
~b! k5kp1p/2, L even:T51;
~c! k5kp: T51/(11L2);
~d! k5kp/L: T51.

We will refer to the cases whenT51 as transmission reso
nances. They occur when sinLk50. On the other hand, on
can see from Eq.~77! that theS matrix has poles when Eq
~45! is satisfied. Hence the poles of theS matrix determine
the eigenstates of open system.

~2! In the exponential case, when cos 2(b2v).0, we
have ux6u2>1, andx1x2* 51, so thatux2u51/ux1u. Then
the transmission and reflection coefficients are

R5
~ ux1uL2ux2uL!2

~ ux1uL2ux2uL!21~ ux1u2ux2u!2
~80!
0-10
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'12ux2u2(L21)'1, ~81!

T5
~ ux1u2ux2u!2

~ ux1uL2ux2uL!21~ ux1u2ux2u!2
~82!

'ux2u2(L21)'0. ~83!

D. Density profile in the steady state—violation of Fick’s law

As mentioned above, the oscillatory case provides so
interesting structures, illustrating the interference betw
waves traveling to the right and left along the chain. T
algebra is tedious but straightforward, and we do not rep
duce it here, merely stating the final results.

The wave function in the steady state is

Cb~n!5
e2 ian

zL
@zL2nCb~0!2eiaLei (a2pwp)

3sinnkC t~L21!#,

C t~n!5
e2 ia(n112L)

zL
@e2 iaLei (a2pwq)sink~n112L !

3Cb~0!1zn11C t~L21!#.

We introduce the probability densities,%L and%R , from the
left and right leads, respectively, in terms of the correspo
ing wave functions, by writingCb(0)5A%L,C t(L21)
5A%Reih, where h denotes a relative phase between
wave functions at the two ends. Then, introducing the an
w5p(wq2wp)/21aL1h, we obtain the total probability
density at celln,

%~n!5
sin2~L2n21!k1sin2~L2n!k1sin2k

uzLu2
%L

1
sin2kn1sin2k~n11!1sin2k

uzLu2
%R

2 i
A%L%R

uzLu2
$sin~L212n!k@zn11eiw2zn11* e2 iw#

2sinnk@zL2n* eiw2zL2ne2 iw#%.

At the resonance (k5kp/L) it takes the form

%~n!5S 11
sin2kn1sin2k~n11!

sin2k
D ~%L1%R!

12
A%L%R

sink
r 2n11sin~w1w2n11!. ~84!

Let us concentrate on this last expression, for simplic
Since uznu25sin2k1sin2nk, then if we write %(n)
5%1(n)(%L1%R)12%2(n)A%L%R, then 0<(u%2u/%1)
3(2A%L%R/%L1%R)<1, which implies, in particular, posi-
tivity of %. For smallk it turns out that the second term
03611
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negligible ~Fig. 8!. We can easily estimate the behavior
the probability density profile in this case. For largeL and
small k we have

%k~n!'S 11
12coskp/L

k2p2/L2
cos

kp~2n11!

L D ~%L1%R!,

~85!

which for k51 can also be approximated as

%~n!'S 11
2L2

p2
sin

p

L
~n1 1

2 !D ~%L1%R!.

Figure 8 shows the approximate solution~crosses! and the
full solution ~diamonds! as well as the probability density o
the bottom states~boxes! and the top states~circles!. For the
smallest resonance (k51) the probability distribution
achieves the maximum aroundn5L/2 where it is approxi-
mately 2L2/p2.

These results are clearly connected to the slow probab
escape}1/L3. To understand them consider a plane wa
coming from the left with a resonant frequency goin
through the open quantum multibaker. Thus at every ti
step we inject the same density inside. The wave trav
ballistically inside and when it reaches the end is mos
reflected, partially transmitted. Due to the fast motion ins
and the slow decay, the density accumulates in the mu
baker and reaches the steady state when the escape o
right balanced the injection on the left. The probability de
sity of the resulting standing wave is given by Eq.~84!.

FIG. 8. Profile of the probability density in the steady state
the smallest and the fourth resonancesk5kp/L with k51,4. Open
boxes show the approximate solution, stars stand for the full s
tion. Also shown is the probability density of the bottom~full
boxes! and the top states~open circles!. We took %L50.1,
%R50.9, h50. The horizontal axis range is@25,105#.
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This result is very striking in comparison with the clas
cal case: in the classical multibaker one obtains Fick’s
havior@4,8,9#—there is a linear profile of probability density
This is also what happens for partially integrated class
dynamics that we considered in Sec. II C. In particular,
probability density at any point inside the multibaker is b
tween the densities of the reservoirs.

We defer the complete discussion of the steady state
lutions to a further work where it will be considered togeth
with the semiclassical case in the context of transport@21#.
Here let us only mention that the approach to the steady s
can be conveniently studied as a spectral problem: The
lution equations for the quantum multibaker with two wav
scattering from left and right can be written as

Ĉ~ t !5M̂LĈ~ t21!1F0 , ~86!

whereĈ(t)ªe2 ivtC(t),M̂L is the matrix representation o
the open multibaker propagator following from the equatio

F Ĉ l~n,t !

Ĉ r~n,t !
G5G2

21
•F f 0e2 iv 0

0 f 0e2 ivGF Ĉ l~n21,t !

Ĉ r~n11,t !
G ,

~87!

and F0 denotes the steady state boundary conditio
F05@Fb(0), F t(0), . . . , Fb(L21), F t(L21)]T, Fb(0)
5A, F t(L21)5Deik(L21), Fb, t(n)50 otherwise. The so-
lution to this simple affine problem is

uĈ~ t !&5(
lk

12lk
t

12lk
uwk&^wkuF0&1(

lk

lk
t uwk&^wkuĈ~0!&,

~88!

where lk are thev-dependent eigenvalues ofM̂L and the
uwk& are the corresponding eigenvectors. In particular, if
time 0 the system is emptyC(0)50, then the solution is

uĈ~ t !&5(
lk

12lk
t

12lk
uwk&^wkuF0&. ~89!

The steady state is the time invariant part of the above s
tion,

uĈ&5(
lk

1

12lk
uwk&^wkuF0&. ~90!

The approach to the steady state is given by the eigenva
of the open multibaker~49!, thus it is as slow as the escap
of probability density, which is consistent with the accum
lation of large probability density in the system. Note that t
distribution of the absolute values of the eigenvalues ofM̂L
is v independent, yet the steady state solution does dep
on v.

V. THE CLOSED RANDOM QUANTUM MULTIBAKER
FOR NÄ2

In this section we extend our discussion of the quant
multibaker map forN52 by considering the case where th
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phaseswq,p defining the map vary randomly from cell t
cell. As expected, the random case differs considerably fr
the uniform case, since the randomness of the phases ac
a disordering mechanism producing a localization of
wave function. Unlike the uniform case, there is little th
can be done analytically for the random case, other t
making use of some known results for the properties of pr
ucts of random 232 matrices@34#, which in this case are
only of limited utility. For this reason we limit ourselves to
presentation of the results of numerical studies.

The random quantum multibaker map is, for the caseN
52, defined by the equations

C l~n,t11!5g00~n! f 0~n21!C l~n21,t !

1g01~n! f 0~n11!C r~n11,t !,

C r~n,t11!5g10~n! f 0~n21!C l~n21,t !

1g11~n! f 0~n11!C r~n11,t !,

where the phases in each of the cells are drawn rando
from some distribution. Here we use a uniform distributi
of phases in the unit interval.

The numerically obtained quasienergy spectrum is ill
trated in Fig. 9 and can be compared with that for the u
form case. The quasienergies associated with the eigens
C(t)5@C l(0),C r(0), . . . ,C l(L21),C r(L21)#, are de-
termined by the solution of the following eigenvalue equ
tion:

lF C l~n!

C r~n!
G5Fg00~n! g01~n!

g10~n! g11~n!
GF f 0~n21!C l~n21!

f 0~n11!C r~n11!
G ,

~91!

which determines the eigenvaluel. It is interesting to note
that this equation can be put into a form that is reminisc
of the Anderson model for localization~see Appen-
dix B!. If we define Ĉ(k) by Ĉ l(k)ª f 0(k)C l(k),Ĉ r(k)
ª f 0(k)C r(k), we can obtain a set of equations that defin
generalized Anderson model:

FIG. 9. Spectrum of a quantum multibaker map forL5101
cells.
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Flg10* ~n11!

f 0~n!
2

f 0~n11!g01~n!

l GĈ l~n!

5g00~n!g10* ~n11!Ĉ l~n21!

2g00* ~n11!g01~n!Ĉ l~n11!. ~92!

A similar equation holds forĈ r(n11). We rewrite this
equation so that it takes the form of a dynamical proble
where the cell indexn plays the role of the time step. That i
Ĉ l(n11)52A2eiw1sin(w3)Ĉl(n)2eiw2Ĉl(n21), or, using
transfer matrices,

F Ĉ l~n11!

Ĉ l~n!
G5F2A2eiw1sin~w3! 2eiw2

1 0
GF Ĉ l~n!

Ĉ l~n21!
G ,

~93!

where the transfer matrix can be written as

Feiw1 0

0 1GF2A2sin~w3! 21

1 0
GF1 0

0 eiw2
G . ~94!

The phases are given by

w15~p/2!@211wq~n!wp~n!2wq~n11!wp~n11!

2wq~n!2wp~n11!#,

w252p@wq~n!1wp~n11!11#,

w35k1~p/2!@wq~n!wp~n!1wq~n11!wp~n11!

2wq~n!2wp~n11!#.

It can be seen that the eigenstates are localized but
localization does not seem to be purely exponential for fin
L, as illustrated in Fig. 10, where some states are locali
over some tens of cells, while others are localized over s

FIG. 10. Four examples out of 202 eigenstates of a realizatio
the quantum random multibaker of lengthL5101 with periodic
boundary conditions. Absolute values ofC l(n),C r(n) are shown.
Notice thatuC l(n)u5uC r(n11)u, which results in particular in the
twin peak structures discussed in text.
03611
,

he
e
d

v-

eral times as many cells. In longer chains the exponen
decay of the eigenfunctions is more pronounced. The ex
nential decay of the wave function far from its peak is us
ally characterized by the inverse localization length

j0
21

ª lim
unu→`

ln
uCnu

uCn11u
. ~95!

A simple estimate can be obtained as follows: From Eq.~93!

we get uĈ l(n11)u5u2A2ei (w12w2)sin(w3)Ĉl(n)1Ĉl(n21)u.
Thus, on the average we have^uĈ l(n11)u2&54^uĈ l(n)u2&
1^uĈ l(n21)u2&. Therefore, starting from almost every in
tial conditions, on the average we should observe growth
uĈ l(n)u2 given by uĈ l(n11)u/uĈ l(n)u'A21A5'2.06.
Therefore the inverse localization length is approximat
0.72. Of course, rather than calculate the logarithm of
average we should calculate the average of the logarithm
the obtained value is not far off the numerically obtain
average, which is 0.51 for a chain of 301 cells, and 0.56
a chain of 1201 cells. Figure 11 shows the distribution of
numbersu ln(uCnu/uCn11u)u over the range of the wave functio
where it was appreciably different from 0, over all of th
eigenstates for a given realization of disorder.

This distribution reflects the generally broad distributio
associated with the properties of localized states. The dif
ence between the estimated value of the rate of growth w
the average obtained from the numerical distribution is d
to the contributions from regions where the variation in a
plitude from cell to cell is not exponential~compare with
Fig. 10!.

Next, we mention an interesting phenomenon. We fi
note that the equations connectingĈ l(n) with Ĉ l(n21) and
Ĉ l(n11) involve the same phases and are of the same f
as the equation connectingĈ r(n11) with Ĉ r(n) and
Ĉ r(n12). When the transfer matrices are given in the fo
of Eq. ~94! one can show that the two cases differ only
two random phases,w1 ,w2. However, since the equations fo
Ĉ l(n) and Ĉ r(n11) separate and have different bounda
conditions, there isa priori no connection implied betwee
the solutions to the above sets of equations. Indeed, a
solving the equations numerically for smallL we find that
there is no connection between them. Thus it may come

of

FIG. 11. Distribution of the ratiosLªu ln(uĈl(n11)u/uĈl(n)u)u for
a set of 2402 eigenstates of a realization of a quantum ran
multibaker of length 1201.
0-13
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surprise that for largeL,uĈ l(n)u5uĈ r(n11)u. This is a nu-
merical result that accounts for the double peaks in Fig.
To illustrate this equality, we show several example fra
ments of eigenstates in Fig. 12. The equality illustrated h
is satisfied to within all the allowed precision forL.100,
and is independent of the shape of the eigenfunction.

The physical explanation is actually quite simple@35#.
The probability current through the boundary between celn
and n11 is given by Jnun115uC l(n)u22uC r(n11)u2.
Therefore the difference betweenuĈ l(n)u and uĈ r(n11)u
implies nonvanishing current. While such currents can ar
in principle one expects they should be negligible in dis
dered systems, which leads to the equality that we obs
numerically.

VI. SUMMARY OF RESULTS AND DISCUSSION

With this paper we have begun our study of transp
properties for quantum multibaker maps. Our central m
vation for this study is, of course, to use a simple, classic
chaotic system with transport and entropy production and
explore the differences between the classical system, an
quantum counterpart. The multibaker map provides a con
nient model for this study.

In order to set the stage for further work, we conside
here the extreme quantum limit of the QMB where each u
cell contains just two quantum states, in either the position
momentum representation. Further work will now be d
voted to the properties of the QMB for smaller values ofh,
including a study of the semiclassical regime where Planc
constant is very small, and the transition is to the class
limit.

In order to explore a variety of versions of the QMB, w
used the fact that the Weyl quantization procedure for m
on torus allows us some freedom in the choice of phases
the quantum states. This freedom can be thought of a
freedom in the location of the quantum states in the posi

FIG. 12. The figures show plots ofboth uC l(n)u and uC r(n
11)u superimposed. Fragments of several eigenstates of var
realizations of quantum random multibakers were chosen (L5101
in the first figure,L5301 in the following figures; the parts no
shown are zero within the numerical precision!.
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and momentum representations, or as the effects of Bo
Aharonov current loops on the wave functions in each u
cell. For largeh and for the uniform QMB, we have bee
able to proceed with analytical calculations for the qua
energies, and for the quantum states for different bound
conditions. These calculations showed ballistic transpor
probability amplitudes within the chain, due to the Bloc
wave structure of the eigenstates, as well as a slow deca
probability from an open, finite chain, due to the difficul
that long-wavelength modes have in escaping through
exit channels. The random phase case exhibits localizatio
wave functions and the appropriate equations were show
be close to the basic equations of the Anderson mode
localization. All of these results show that the behavior of t
QMB for N52 is quite different from that of the classica
multibaker map, which exhibits normal, diffusive transpo
For largerN, smallerh, we should see behavior that mo
closely approximates the classical behavior, at least on
logarithmic time scale.

There are quite a large number of directions for futu
studies of the QMB. For the case ofh51/2 we have studied
only the uniform and random phase cases. One can also
sider models with periodic distribution of phases over s
eral cells, models in which there is a well-defined, system
progression of phases from one cell to the next, or where
phases in the cells are incommensurate~oscillating with irra-
tional periods!. The situation for largerN is such that there
areN quantum states in each cell, so that there will then
several transport channels in the QMB. It remains to be s
what the properties of these systems will be, both as a fu
tion of N as well as a function of the phases of the wa
functions in the cells. Ash approaches zero, one can stu
the semiclassical limit and the approach to classical, cha
behavior of the QMB. Clearly, we should obtain the diffusi
behavior independently of the distribution of phases, that
for the uniform ~ballistic! case as well as for the random
~localized! case. Such a study should reveal for this sim
system whether the diffusive behavior arises directly throu
the semiclassical limit, or whether one needs to assume
additional mechanism—such as interaction with the envir
ment, or decoherence—to regain classical properties.
QMB is simple enough to consider the clasical limit for un
form phase, random phase, and incommensurate phase
els, among others. The investigation of these questions
be the subject of further papers in this series.
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APPENDIX A: EIGENVALUES OF THE OPEN QUANTUM
MULTIBAKER LIE INSIDE THE UNIT CIRCLE

Due to the escape of probability density, the eigenval
that determine the time dependence of the probability den
in each cell move to the interior of the unit circle. A simp
proof of this fact can be given as follows. LetC(t50) be a
normalized eigenstate of the open quantum multibaker. S
the multibaker dynamics requires thatC̃b(n21,t11)
5 f 0C l(n,t),C̃ t(n11,t11)5 f 0C r(n,t), for n51, . . . ,L
22, it follows that

uC̃b~n21,t11!u21uC̃ t~n11,t11!u2

5uC l~n,t !u21uC r~n,t !u2. ~A1!

The probability of the system being in celln is given by
%(n,t):5uC l(n,t)u21uC r(n,t)u25uC̃b(n,t)u21uC̃ t(n,t)u2,
where we have used the unitarity of the transformationG2

21.
In the boundary cells we have

uC̃b~0,t11!u21uC̃ t~L21,t11!u250,

uC̃b~1,t11!u25uC l~0,t !u2, ~A2!

uC̃ t~L22,t11!u25uC r~L21,t !u2.

By adding up the equations~A1! for cells n51,2, . . . ,L
22 and~A2! we obtain

(
n50

L21

%~n,t11!5 (
n50

L21

%~n,t !2~ uC r~0,t !u21uC l~L21,t !u2!.

~A3!

But C is a normalized eigenstate att50, therefore

(
n50

L21

%~n,1!5ulu2512~ uC r~0,0!u21uC l~L21,0!u2!.

This implies 12ulu25(uC r(0,0)u21uC l(L21,0)u2)>0.
Thus 0<ulu2<1. Suppose nowulu251. Then C r(0,0)
cs

et

03611
s
ty

ce

5C l(L21,0)50. Thus, from Eq. ~18! and ~29! 0
5C̃b(0,0)5g01C l(0,0)⇒C l(0,0)5C r(0,0)50. It follows
that also C t(0,0)50. But C̃ t(0,0)5l21C̃ t(0,1)
5l21f 0C r(1,0). Thus C r(1,0)50. Also, C̃b(1,1)
5 f 0C l(0,0)505lg01C l(1,0). Therefore C l(1,0)
5C r(1,0)50, and so on. Thus the assumptionulu251 leads
to the eigenstate being identically 0, which cannot be n
malized. Therefore all the eigenvalues lie inside the u
circle 0<ulu2,1. It is easy to identify the kernel ofML
sincel50 impliesuC r(0,0)u21uC l(L21,0)u251. Thus the
kernel is spanned by vectors with 0 everywhere apart fr
C r(0) andC l(L21).

We are thus led to the conclusion that of the 2L eigen-
states exactly two span the kernel, and the eigenvalues
responding to the remaining 2L22 satisfy 0,ulu,1. Note
that the above arguments are independent of the distribu
of phases and thus apply also to the open random quan
multibaker. Generalization to arbitraryN is obvious.

APPENDIX B: ANDERSON MODEL

Consider a one-dimensional Schro¨dinger equation on a
lattice of lattice constanta @36#:

i\Ċn52
\2

2ma2
@Cn111Cn2122Cn#1VnCn . ~B1!

A time-independent equation can be written
(Ẽ2Ṽn)Cn5Cn111Cn21, where Ẽ5222ma2E/\2,Ṽn
52ma2Vn /\2. We can also write it using transfer matrice

FCn11

Cn
G5F Ẽ2Ṽn 21

1 0
G F Cn

Cn21
G , ~B2!

which has a form very similar to Eq.~93!. A general discus-
sion of one-dimensional disordered models can be found
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