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Abstract

We derive an expression for the mean square displacement (MSD) of a particle whose motion is governed by a uniform,
periodic, quantum multi-baker map. The expression is a function of both tjimed Planck’s constartt, and allows a study
of both the long time; — oo, and semi-classicak — 0, limits taken in either order. We evaluate the expression using
random matrix theory as well as numerically, and observe good agreement between both sets of results. The long time limit
shows that particle transport is generically ballistic for any fixed value of Planck’s constant. However, for fixed times, the
semi-classical limit leads to diffusion. The mean square displacement for non-zero Planck’s constant, and finite time, exhibits
a crossover from diffusive to ballistic motion, with crossover time on the order of the inverse of Planck’s constant. We argue
that these results are generic for a large class of 1D quantum random walks, similar to the quantum multi-baker, and that a
sufficient condition for diffusion in the semi-classical limit is classically chaotic dynamics in each cell. Some connections
between our work and the other literature on quantum random walks are discussed. These walks are of some interest in the
theory of quantum computation.
© 2003 Published by Elsevier B.V.
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1. Introduction

Itis well known that the quantum properties of classically chaotic systems differ considerably from their classical
versiong1-3]. The quantum dynamics of a classically chaotic system with a finite number of degrees of freedom
is considerably more regular than its classical counterpart, as indicated by the structures developed by Wigner
distributions in phase space for simple systems, and the fact that almost all definitions of the quantum mechanical
version of the Kolmogorov—Sinai rate of entropy production give the value zero for finite quantum systems that
are classically chaotic with positive Kolmogorov—Sinai entrff]y Furthermore, it is often difficult to describe the
behavior of quantum systems for both long times and for small values of Planck’s constant, i.e. in the semi-classical
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regime. This difficulty is related to the fact that the long time limit and the limit of small Planck’s constant do not
commute, in addition to analytical problems that often make explicit solutions of the equations for quantum systems
difficult. Therefore, itis of some interest to study simple models where both the quantum and classical properties are
accessible to analytic and simple numerical studies, and where the two limits can be studied in detail. One example
is the baker map. The classical version of this map is tractable analytiall§, and the quantum version is less
s0[8,9], but easily studied using numerical methods.

Itis even more challenging to study transport problems in detail. In recent years, some attention has been devotec
to connecting macroscopic transport properties with microscopic chaos, sgg'@g.gnd other contributions to this
volume. We find it of interest to study the quantum signatures of these relations and look for their appearance in
the semi-classical regime. To gain intuition about the change in the character of transport properties from quantum
to classical regime a convenient system to study is the uniform, periodic multi-baker map. Our interest in this map
is stimulated by the fact that the classical version is a chaotic system with transport, in this case, diffusion, so it
provides a model where one can study transport in the context of chaotic dynamics.

Both the classicdll0,11]and quantunfl2,13]versions of the multi-baker map are based upon the baker map,
which in its classical version is an area preserving, expanding and contracting transformation of the 2-torus onto
itself. The multi-baker map is obtained by considering a two-dimensional strip of unit heightyrdihection and
a segment of the reataxis, either of infinite length in both directions or of finite length with specified boundary
conditions[10,11] The multi-baker transformation is a combination of the baker map with a translation of points
in each unit interval to corresponding points in the nearest intervals to the right or left according to a well-defined
prescription to be given below. The quantum versions of these maps are obtained by means of a simple quantizatiot
where thex-axis is taken to correspond to position space, ang-tiieection is taken to correspond to momentum
spacg12,13] The quantum mechanics is obtained by requiring that there be an integral number of quantum states in
a unitinterval, and that the time development of these states correspond to the expanding and contracting propertie
of the classical map. Balazs and Voii@&}, and Saracen{9] were able to show that these requirements can be
satisfied by means of a unitary operation on the quantum states, provided Planck’s constant is taken to be the invers
of the number of quantum states in the unit square. Our work has been devoted to extending this quantum bake
map to a quantum multi-baker map and examining the transport properties of this quantuib2m&p Other
guantizations of multi-baker maps as well as the Kapral-Elskens coupled baker model have been dtlilied in

In this paper, we focus on the calculation of the mean square displacement (MSD) of a particle whose dynamics
is described by a quantum multi-baker map. This quantity is of importance for the description of the average
motion of a particle, since the time dependence of this quantity can distinguish between sub-diffusive, diffusive, and
super-diffusive motion. A particular example of super-diffusive motion is, of course, ballistic motion characteristic
of the motion of a free particle.

In the classical multi-baker, the MSD grows linearly in tim@\r)?) = ¢, characteristic of diffusion, for all times
greater than some microscopic time. The quantum version shows an asymptotic bid|lgtimyth for what we will
call uniform maps, which are translationally invariant. This is essentially the same as one finds in models of electron
transport in periodic solids, such as the Kronig—Penney md&gl One can find examples of non-translationally
invariant multi-bakers where the particle is localized with no asymptotic growth of the MSD with time. Here we
consider only translationally invariant models, and leave the large class of non-translationally invariant models for
future work.

The classical multi-baker mg@0,11] is a simple model for deterministic diffusion along a one-dimensional
lattice. It can easily be constructed to be isomorphic to a random walk with any given probabilities for jumping to
the right and to the left along the lattice. The quantum multi-baker[iA3]is also an example of arandom walk,
but in this case, the walk is quantum mechanical and has very different properties from the classical map due to the
interference of probability amplitudes for possible paths. The subject of quantum random walks has developed a
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literature over the past few years. Here we will also discuss the connection of the quantum multi-baker with other
models of quantum walks. We mention now that most of the previous studies by other authors have been devoted to
the so-called Hadamard wdlk6], which is a special case of the quantum multi-baker for the largest allowed value
of Planck’s constant. Thus, the multi-baker map studied here represents a generalization of the Hadamard walk to
all allowed values of Planck’s constant.

The plan of this paper is as follows. 8ection 2ve present the basic equations defining the quantum multi-baker
map and compare it to the classical versiorSéttion 3ve discuss the MSD for the quantum map, an8éation 4
we show how random matrix theory may be used to evaluate the MSD for small values of Planck’s constant, leav-
ing some technical details for a longer pafEf]. In Section 5we compare the results of random matrix theory
with numerical studies of the map, which shows that random matrix theory is quite effective in reproducing the
numerical results and in providing an expression showing the crossover from diffusive to ballistic motion for fixed,
non-zero values of Planck’s constant as the time becomes lar@ection 6we discuss the connection between
the multi-baker map and other models of quantum random walks. We conclude with a summary of results, and a
discussion of the possible implications and extensions of this work.

2. Thequantum multi-baker map

We begin with the classical multi-baker mggp10,11] It is a two-dimensional lattice system where the phase
space at each lattice site is a square and the dynamics is a combination of transport of the phase space densities ti
neighboring cells, which models the free flight, followed by a local baker map evolution within a square, which
models a collision with a fixed scatterer. That is, the multi-baker s a composition of two mapl = Bo T
transport,T, of phase points to neighboring cells, given by

n+1zx,y), for0<x<3,
T(n, x, y)=i( Y) 2

(n—121,x,y), for % <x<l],
and the baker maf, which acts on the, y coordinates of each celi, separately, according to

(n, 2%, 3), for0<x<3,

Bn,x,y) =
%) {(n,Zx—l,%(1+y)), for f<x<1

The combination of these two maps is the multi-baker map which is a time-reversible, measure preserving, chaotic
transformation, with evolution law

(n+1,2x, 3), for0<x <3,

M, x,y) =
o5 {(n—l,Zx—l,%(l+y)), for 3 <x <1

As mentioned above, this classical map represents a simple area-preserving model of simple random walk. It can
also be considered a simplified Bernoulli map for the motion of light weakly interacting particles in a gas of heavy
scatterers on regular lattice (periodic Lorentz gas).

The quantization of the multi-baker map is based upon the known quantization of the baker map on the unit
square, carried out by Balazs and Vof8k and by Saracen®]. We form the quantum multi-baker by transporting
some of the quantum states to the next cell on the right and the others to the next cell on the left, based upon the way
the transformed points are moved to neighboring cells in the classical multi-baker, and then model the scattering by
the quantum baker map acting in every single cell.

To quantize the baker map, we regard the horizontal direction of the toru$ i t)e position axis, while vertical
axis corresponds to the momentum direction. To obtain the Hilbert space we take the subspace of the wave functions
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on aline whose probability densitigg/(x)|2, |¥(p)|? are periodic in both position and momentum representations,
respectively:¥(x + 1) = exp(i2rg,)¥(x), Up+1 = exp(iZmpP)JI(p) whereg,, ¢, € [0, 1) are phases
parameterizing quantization. The quantization of the baker map requires the phase space volume to be an intege
multiple of the quantum of actid®,9,18-21] Therefore, the effective Planck’s constaritis 1/N, for a baker map
on a unit torus, wherl, an integer, is the dimension of the Hilbert space. The space and momentum representations
are connected by a discrete Fourier transfopriq;) = [Gn(@q, 0p)]k,1 = N~Y2exp(—i27Nprg;). The discrete
positions and momenta age = (I + ¢,)/N,pr = (k + ¢,)/N respectively. We takdl to be an even integer and
label the quantum states in coordinate spacg lsherej = 0,1,..., N — 1. The stateg = 0, ... ., %N —1are
called the “left” states, with collective wave functioh, , while the remaining state$,— %N, ...,N—1arecalled
the “right” states, with wave functionr. One may think offr | asN/2 component vectors.

Having constructed the Hilbert space, one looks for a family of unitary propagators parameterixed=by
1/h which approach the classical map in semi-classical limit. The quantum bakej882aj®]is then given by
a combination of two operations. The first operation takesNfe“left” states into momentum states labeled
k=0,1,...,3N -1, called “bottom” momentum states, by means of i x 1N Fourier transform matrix
Gn /2(¢q.¢p)- The “right” coordinate states are transformed to “top” momentum states in the same way. Now one
has transformelll spatial states intbl momentum states in a way that mimics the classical baker’s map. The final
step is to express thénew states in coordinate representation by means dftkev matrix, G;,l, which takesN
states in the momentum representation to their coordinate representation. The full baker transfoBnatidhe
torus is then given by the unitary transformation

G 0
B:i=Gyt| V2 1)
0 Gwp

for evenN. Other examples and discussions of issues concerning the quantization of area-preserving maps can b
found for instance if8,9,18-22]

Using this transformation as a template we can easily express the quantum multi-baker map as a transformatior
of right and left quantum states in unit squares labeled 1yl to right and left states in the unit square labeled by
n, ¥r L (n). Thatis, in the position representation, the evolution of the wave function in the quantum multi-baker is
given by the equatiors

Y (n,t+1) B G_l(n) Gny2(n) 0 U (n—1,1 @
Wr(n. 1 + 1) N 0 Gnpm) || ¥Rr+10) |
whereGy(n) is the discrete Fourier transform
Gy = LNe—2ni<k+<pp(n)>(j+<pq<n>>/1v. 3)

In principle, the Fourier transformation matiiy (n) can depend upon the cell indexHere we will consider the

case where this matrix is independent of the cell index, so that the system of equations is translationally invariant
from cell to cell. We restrict our attention here to finite systems of lehgibith periodic boundary conditions.

This condition induces Bloch states and an eventual ballistic motion of particles through the chain. We associate
L-dimensional Hilbert space with the lattice, and since the internal spat,ithe Hilbert space of the system is

the tensor produdt’ ® CV. We will work with the basis defined by, +, i), wheren is the lattice site;= denotes

1 Note that the construction we use here differs slightly from the one we studied in our previoa 2jovke change it to make the construction
consistent with the general picture that we now have as well as to make model clearer. The properties of the two versions of random model
should be the same, and the periodic model is unaffected.
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left/right half of the square, and= 0, ..., N — 1 denotes the state in the given half in the position representation.
Since the states associated with the left half of the cell go one step to the right, waweitew, , accordingly
Ur = ¥_. Then the general wave function for the multi-baker chain can be written as

¥) =" [%m), @

n e=+

where|¥,(n)) = P(n)|¥), P:(n) =), In, &, i)(n, & i| is orthogonal projection of the state vector onto the “left”
or “right” subspace at site. Thus, the inner product takes form

(@) =) Y (Be(n)|e(n)). )
n e=+

We may think of|¥,(n)) and (¥, (n)| as corresponding thl/2-component column and row vectors, respectively,
while |¥) corresponds to aNL-component vector. Since we work mostly in position basis, we\/@elimensional
vectorsy¢(n), whoseith components aré. (n, i) = (n, &, i|¥), where the index denotes the lattice site of the
cell under consideration, as above, the notatiaienotes the particular half of the unit square under consideration,
the left half indicated by moves to the cell to the right, and the right half, denoted-hymoves to the cell to
the left. The index denotes a particular quantum state in the right or left half of the unit cell, specifieddmnd

i=0,1,..., 1N — 1. The action of the quantum multi-baker map on the total wave function will be written as the
action of an operatavl defined byEq. (2)as
') =M|¥). (6)

The operatoM is the Floquet operator for the multi-baker map and will be used to determine the time dependence
of various observables for this system, as

2@ =MmTom?, @)

wheres2 is any observable of the system.

The complete specification of the model requires values for the phgses. There is a considerable amount
of freedom for choosing these phases. As mentioned above, one may choose them to vary from cell to cell. A
random variation of phases from cell to cell producessardered multi-baker map, while requiring that the phases
have constant values throughout the lattice producegusar, or uniform multi-baker map which is translationally
invariant from one cell to the next. Many other choices are possible and can be of interest. Here we consider only
the translationally invariant case. In numerical calculations we use the values for the phases chosen by Balazs and
Voros [8] with ¢, = ¢, = 0; those used by Sarace{] ¢, = ¢, = % which lead to survival of additional
classical symmetry in the model, as well as more generic values. We will see below that the Saraceno phases lead
to a non-generic behavior for the MSD.

Let us consider now the structure of eigenstates of the unitary op&atdince we consider periodic boundary
conditions every eigenstate corresponding to the eigenvatie® has a Bloch form

ixcn)W.

Wn, +) = exp(ikn) i’ ®)
VL

| _ _ o
where| . is the normalized eigenstate of a modified quantum baker operator
_ GN/ze_iK 0
Gt . ©)
0 GN/ze'K
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Periodic boundary conditions impI)‘/Ké = 1,thuswe have, = 27k/L,k =0, 1, ..., L—1.Forevery; we have
N eigenstates. We will enumerate the eigenstatéd by k, n, withn =0,..., N — 1. Thus,l]/,f is the eigenstate
given by the ansatz (8) with, = 27k/L, corresponding to the eigenvalu‘éfzeNhere phaseﬁﬁ are counted for a
givenk from 0 (including) to Z, i.e. 0< ¢f < ¢} , < 2.

3. The mean square displacement in the uniform multi-baker map

In order to formulate our calculation of the MSD for the uniform multi-baker map in the most convenient way, we
introduce two operators, v, which represent a coarse position operator and a coarse velocity operator, respectively.
These operators are coarse in the sense #iatply gives the lattice site associated with a particular quantum state,
and the coarse grained velocitys given byv = M TrM — r. We argue elsewhel@7], that for a translationally
invariant system has a very simple form with valueisl, given by the change in cell index for each quantum state.
Thus,

rln, £, i) = n|n, £, i), v|n, £, i) = |n, £, i), (10)
so that explicit expressions for the operatgrs are

r:Zn|n,5, i)(n, e, i, v:Zsln,a, i)(n,e, il (1)

n,e,i n,e,i

Suppose we prepare the system in a pure sfgtellhen, the mean square displacement of the particle starting in
this state is given by

2 —1

t—1
(AN2D)e = (MTrMT = 12)y =<<Zvr) > = D (vqvnle, (12)
=0

v 11,72=0

where(A)y = (W|A|W) = Tr(|¥)(¥|A). Depending on the original state we have a distribution of possible results.
To characterize it we can calculate its average over all the possible initial states, and the root mean square deviatiol
from the average, which quantifies the spread of the results, or the quality of the prediction based on the average. Ir
this section we find the expressions for both the equilibrium MSD as well as for the equilibrium fluctuations of this
function. In the next section we approximate the average results using random matrix theory, and then we compare
them with numerical evaluation of the exact formulas.

Since the average over all the possible pure states gives the most incoherent mixture, we obtain a simple expressio
for the equilibrium MSD as

t—1
(AR20) = Y (vgvg), (13)
71,72=0
where
1
(A) :=Tr(geqd) = mTr(A). (14)

L is the length of the chain (assume periodic boundary conditions)Ndhd dimension of the Hilbert space for a
single cell. Clearlypeq = InL/(LN) is the equilibrium state for all the QMB, that is, it is time invariant

M QeqM T = Qeq (15)
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and it maximizes the entrop§/= —Tr(eo In o). Time invariance implies that the velocity autocorrelation function
Crpry = (U vgy) = (M ToM M T20M 72 (16)

satisfiesCy, -, = Crl_,2 0 = Co,7y—r, = Cy—rp. Thus, we can write

(AP%() = Zco+ 2 Z Crpory = Cot+22(t - 1C;. (17)

11>12=0

This leads to a Green—Kubo-like formula for the diffusion coefficient

o o
D= lim %«Ar)z(r)) =3Co+ Zlcf =) Cc— 3Co,
— _
paralleling the classical case. However, here the diffusion coefficient turns out to be infinite.
Thus, the MSD is written as the sum of time correlations of the velocity just as in the classical case, but the
difference in mechanics will lead to important differences in the time development of the MSD.
The translational invariance of the system, together with the uniform equilibrium density, imply that instead of
summing over all thé&l quantum states in tHe cells, we can sum only over tiéquantum states in one cell (see
[17]). Thus, we can write

1 t t
CT:mTr[M foM T] :—Z (n=0,¢&iM""vM%vn =0, ¢, i)
i,e=+
=—Z n—Oez|MTtvM n=0,¢1i). (18)
i,e=%

Thus, we have to sum, with appropriate signs, over all the possible cyclic paths starting in a fixed cell. The next
simplification provided by the translational invariance of the model is that we can replace the unitary dderator

for the full multi-baker inEq. (18)by the operatoB acting within a unit cell. This replacement follows from the
observation that the velocity operator is diagonal in the representation based on the states in the cells, with a block
structure that is identical from one cell to the néxtherefore, the velocity operator at time stéakes on the same

value in all of quantum states that are periodic images of any state in a fixed cell. Thus, we can express the velocity
correlation functionC;, as

1
C, = NTr[BT’JBTJ], (19)
where the matrix is the velocity operator restricted to a single cell, in position representation given by
) 0
J= . (20)
0 —lN/2

Here 1y/2 is the2N x 3N unit operator.

To proceed further we must now use specific properties of the quantum bak&; muaghin particular, its spectral
properties. Sinc® is a unitary operator, its eigenvalues lie on the unit circle and define a $kpbésesyp; or
quasi-energies. We will denote the corresponding eigenstates by the Dirag)kétsus, the spectral problem for
the operatoB is

Blj) = €¥i] ). (21)

2 This would not be the case for the disordered multi-baker maps where the quantization phases vary from one cell to the next.
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Then we can express the velocity correlation functigras

C; = —Ze KT (K131 j) €47 j1d1k) = Zu k|2 gWimonr

ik
Zum +2) " [l*cosip; — pu)T | - (22)
j>k

The matrix elements af satisfy

D P =Tr¥=N= Z|J”| + ) 2112 (23)
Jik

j>k
Therefore,
1 . . 4 .
Co= < | N+ Y IpA@Wmor 4 d@mat —2) | =1 =3 (3 sin’(g; — p0)7/2). (24)
j>k j>k

We can now substitute these results iBtp (17)for the mean square displacement to obtain

t—1 t—1
4 o)
(AP =t+ Y (t—T)Cr=t+1(t - 1)—2 1912 + NZ Jjk|?D e im0, (25)
=1 J Jj>k =1

The last expression is particularly useful for averaging and will be used in the next section.
The sums over the intermediate times Eq. (25)can easily be carried out. We assume now that there is no
degeneracy in the spectrum of quasi-energies and, after some algebra, we obtain an expression for the MSD as

1 2 si?((9; — @i)t/2)
(AR2(0) =22 1P+ =) k2 =2 26
4 N; ) N; " sir (g — o) /2) #0)
so that
i ((p; — 2
(AP2(0) = Zmzs' (@, = p0t/2) (27)

Sif((¢j — ¢)/2)

Whenever two eigenphasggandy; are equal, the contribution to the sum fsﬂﬂoj — gok)t/Z)]/[Sinz((goj —o1)/2)]
must be replaced bi.

We see that there is typically a ballistic contribution coming from the diagonal and possibly some degenerate
terms. The other contributions are oscillatory and usually negligible in the long time limit. It can happen, however,
that the ballistic contribution disappears altogether and we have only oscillations which means that the particle is
localized. An example is provided iBection 5and an explanation in more general context is given in the final
section. It is interesting that the obtained result is completely independent of the length of the system. This is not
true for the fluctuations of the MSD.

Itis not easy to evaluate this expressibqg, (27) analytically. Therefore, iBection 4ve present an approximation
based on the random matrix theory, andSection 5we evaluate it numerically for some particular choices of
parameters, and compare it with the RMT averages.
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3.1. Fluctuationsin the MSD

We have computed the MSD as an equilibrium average where all eigenstates have the same weight. One might ask
about the dependence of the average square displacement for an individual quantum state. In order to say something
about the fluctuations of the average square displacement from one state to the next, we now sgndiderthe
average square displacement for the quantum BeatevhereA ¢ r2(1) = (| Ar?(r)|¥). We will try to characterize
the fluctuations of the square displacement among various quantum states by calculating, in so far as it is possible,
the mean square fluctuation afr2(r), which we denote byA?(t), where

A2(0) = ([Apr?() — (AF2(0)])w. (28)

The averageA(¥))y is defined as follows: If¥,) is an arbitrary orthonormal basis ahd := (¥, |¥) are the
complex coefficients of expansion [@F) in this basis then

_ [ Phy oS = 35 bDAW) [ dRanA()

AW : =
W [ by d2bNS(L — YN 1bg]2) [ d2an

(29)

Thus, it is an average over &l8-dimensional sphere.
Before we calculate the right-hand sidekaf. (28) we note that the equilibrium mean square displacement can
be written in a very similar way as an average over the space of all the states

(A 0)2(1) = (Agr?(D)y. (30)
Indeed, usindeq. (29)we obtain

(A)2(0) =Y (blbp) (Val AF(D)]p). (31)
a.p

Only contributions fromx = B survive due to phase averaging, and the diagonal terms carry the same contribution,
therefore(bXbg)y = 84,8/ (NL). If we insert this relation into the right-hand sideked. (31) we recoverEq. (14)
with the quantityA = Ar2(r).

Returning toEq. (28) we see that the right-hand side can be written as

t—1 LN
2
N = 3N (bibabibe (Walvon ) (B lueul®s) — [(ar2)]”. (32)
n,m,k,l=0a,B,y,6=1

Observe that if at least one phase, or equivalently one subscript, is unpaired, the aghgibs) will be zero.
Therefore, the average of the four coefficients is non-zero only if the indices are paired. This can be arranged in
three ways, so that

(b;bﬁb;b3> = 615aﬂ5yg(1 —8py) + 615a58yﬂ(1 — Sap) + 20088580y, (33)
where
c1 = (|bal?|b2?), (34)

c2 = {Ib1l%). (35)
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LetA = Y0t umva. Then

A2(1) = c1)_ (Wal AIWa) (Wl A1WB) + c1)_ (Wa| AlWp) (Wl Al W)
a#p a#p

1 2
W, | AW, (Wy | AlW,) — | —Tr A
+Zajcz< |AlW) (Wl A|Wy) [NU}
1 2
= c1(TrA)% + 1 Tr A% + Xa: (c2 — 2¢1) | (ol A|Wy) % — [mTr A:| . (36)

Since the tern} _, [(Wy|A|W,)|? is basis dependent we must hage= 2¢1. Also,

> 1balPlbpl* = <Z |ba|2|bﬁ|2> =1 (37)
a.p a.p

Since there areN quantum states, this reduces to

LN+ c1LN(LN — 1) = 1. (38)
Therefore,
1 2
-1 -2 39
TTININ+ D 2T ININ+ 1 (39)

To proceed further we need to use the results obtained earlier folldzgn(p)for the eigenstates and eigenphases

of the multi-baker operator. The eigenstates have the form of periodic Bloch states and the eigenphases appes
in L sets ofN eigenphases. After some lengthy, but straightforward calculations one finds the final result for the
fluctuations of the average square deviationgl@§

A%(1) = c1[(Tr A)? + Tr A%] —

1 1 N—1
~ L+1/NN? < 2
p,s=0

1 (TrA)? =c1|TrA?2 - i(Tr A)?
L2NZ LN

b sini(el — ¢9)1/2) sin((¢f — ¢9)1/2)
> Jad

sin((p% — ¢H1/2) sin((p? — ¢)t/2)
2

r=0

)

1 Nz‘l ¥ |2sin2<(<pn — om)t/2)
I nm

40
N SIP((gn — ¥m)/2) (40)

m,n=0

The main source for the system sikedependence of this fluctuation result is the factdrof in front of the whole
expression. This provides the usuiaf’/? decay of the root mean square fluctuation which suggests that in the large
systems the equilibrium average is typical for almost every initial, pure state. The eigenp‘pammepend on

the system size, so that in the absence of a further evaluation of the sums, one cannot precisely determine the siz
dependence ok?(t), however, it is reasonable to expect that the contributions for different Bloch vectors are of the
same order. Numerical results suggest that this expectation is correct for the quantum multi-bakers, and the final
result for the right-hand side @&q. (40)decays inversely with. This is shown irFig. 1 The picture on the left

shows the time and size dependence of the relative fluctuagiagr) / (Ar2(r)) on a log—log plot. The picture on

the right shows the same data with each curve multiplied by square rboTbE scaling is remarkable. Plots were
obtained through numerical evaluation of ex&qt (40)for N = 50, ¢, = ¢, = 0. Using the methods of random
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Fig. 1. Time and length dependence of the relative quctan'éﬂ%(t)/(ArZ(t)). The left picture shows the log—log plot of the unscaled data,
the right picture shows each curve multiplied by the square robt Bfots made foV = 50, ¢, = ¢, = 0.

matrix theory discussed in the next section, in the limit of la¥gene can replace the average over the Bloch states,
labeled by the subscript by averages over random matrix ensembles. We have not yet done this and leave it for

future work.

4. Random matrix theory for the mean squar e displacement

To proceed further we need to know the quasi-energies and eigenvectors of the dpeFatolargeN it is not
possible to determine these quantities by analytical means. Instead one uses numerical methods to dBgonalize
The results obtained this way will be discussed in the next section. Here we will show how random matrix theory
[2,23] may be used to evaluate the approximate value of the MSD. In a sense, the use of random matrix theory must
be considered to be a kind of uncontrolled approximation method since there are no theorems indicating that the
distributions of quasi-energies are described by any of the three random matrix ensembles, and there are no similar
results for the eigenvectors. However, since the classical baker map is an example of a strongly chaotic system, we
can expect that one of the two ensembles, the circular orthogonal ensemble (COE) or the circular unitary ensemble
(CUE) might provide a very good approximation when it is used to evaluate the right-hand skgs(8¥) see
[9,24]. The results obtained this way will, of course, be averages over the ensemble of random matrices, and not
characteristic of any one matrix in the ensemble, and perhaps not of the baker map itself. We will see shortly that
the numerical results for the baker map are in very good agreement with the results of random matrix theory, so the
connection between the use of random matrix methods for classically chaotic systems is supported by this work.

We begin the application of random matrix theory by determining the average values of the moduli of the matrix
elementsljx = (j|J|k) where|)), |k) indicate eigenvectors of the unitary baker oper&okVe begin with the
diagonal elements, which we first express in the position representationdfjientum states defined in the baker

cell. That is, we write

Nj2-1 2

N-1
il = 1GNP = | D Kedd > = D Heli)l?] (41)
a=0

a=N/2

where the ketgy) are basis vectors in position space. Since the eigenkets are normalized mjs’,(am 2=1,
we may sek; = Z;Vi%71|<a|j>|2 to obtain

[l = (255 — 1)? = 455 — 4s; + 1. (42)
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To get the random matrix theory average value, we observe that the joint probability of single eigenstate components
in the CUE and COE ensembles are giver{hy5]

2M-1
P({¥}) = c5(1— |¥|?) = ¢8 (1 -> |wa|2> : (43)
a=0

In the COE ensemble the eigenstates can be chosen real which impli€g{t#rd) is a uniform distribution on a
N-dimensional unit sphere, and = N/2. In the CUE ensemble the eigenstates are complex implying¢tet})
is uniform on a A-dimensional unit sphergy; |2 = (RY; )2 + Qv; )2), andM = N. These averages can be
calculated in straightforward ways and one obtaifis= 1/2 for both ensembles. However, the averagésdiffer
in the two ensembles. We obtain

2 I''M/2+2) I'(M) _ M+2

r(Mj2) IM+2) 4M+1)’
whereM = N/k with k = 2 for the COE an@ = 1 for the CUE. This leads to an evaluation of the averages needed
for the diagonal terms, with the result that
k

(44)

Jj 45
(| J%) = Nk (45)
To get the average of the off-diagonal terms, we Ege(23)which, after averaging, leads to
N
J; _ 46
(1j241%) = N DN IH’ (46)

with k given above.
4.1. The MSD in the CUE ensemble

Next we calculate the average of%e#2)7 in the CUE ensemble. To do this we need an expression for the pair
correlation functionR(¢;, i) of two angles in this ensemble. This is calculated in some detail by M28laand
we use the expression given there.

2 2 '
(ei(¢l_§02)f> — / nd(pl[ nd(pz ei((p]_—(pz)r R((pjv (Pk)
0 0 N(N — 1)

27 21 . N SIP(N(p; — 91)/2)
— d do» d@1—92)7 1— ] . 47
/0 “’1[0 v2e 4n2(N — 1) [ N2sin?((¢; — 91)/2) “n

At = 0 the first term isN/(N — 1), and it vanishes for > 0. We calculate the second term by converting the
angu!ar integral to one in the complex plane. By changing the variablest@; — ¢2, v = ¢2, and then setting
7z =€, dz = iz du, we obtain, forr > 0,

i(p1—92)Ty _ — ”T—Sinz(Nu/z) 48
€ ) 27N(N — 1)/ “e Sint(u/2) (49)
—N
ZmN(N 1) fd“ 8(2), (49)
where

2 N2 2N-2

N-1
g(2) =) apil = (sz) =Y (k+DF+ DY @N—k- D~ (50)
p k=0

k=0 k=N
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Sinceg(2) is analytic, thenexpli(p1 — ¢2)7]) = 0if T — N > 0. Otherwise, we can write

1 1
2 ?g dzz" V() = 54700, (51)
27i p!
wherep = N — r — 1, andg‘? is thepth derivative ofg, and obtain
dor—p2ty _ ——ap. 52
< ) N(N — 1) (52)
Thus, including the contribution from the first termzat 0, we obtain
1, fort =0,
(im0t cye = i, for0 <t<N, (53)
N(N — 1)
0, fort > N.

We now substitute the resulsgs. (45), (46) and (53)ito the expressioRq. (25)the for mean square displacement.
This leads to

=1
(AN?) =141 = D13 + (N = Dzl Y — (e +e77)
=1
1 2 M-1
:I+N—+1l(l—1)+m;(l—f)(f—m, (54)

whereM =t fort < N,andM = N fort > N. Carrying out the required sums we obtain the final result for the
MSD in the CUE ensemble:

+t(t_1) t-2 fort < N
N+1|3N-1 -7

(AP%() = (55)
—— Py N fort> N
N+1 3 ’

4.2. The MSD in the COE ensemble

The calculation of the MSD in the circular orthogonal ensemble proceeds in very much the same way as in the
CUE, the only difference being in the pair correlation function for the quasi-eneggidsor the COE the two-point
correlation function is (see Meh[2a3], Eq. (6.2.4), Eq. (10.3.41))

on(@)  on(@ —¢)
on(p—7)  on(0)
Here,oy is a quaternion, and det is the quaternion determinant, with
[on @ = )@ = (SN (@ — 9)* + DSy (¥ — 9)ISv (¥ — ). (56)

These quantities are given by Mehta as

Ro(8, ¢) = det[ } = [(on(0)?]Q — [(on (¥ — 9))A]©.

. N-1 N-1
1 sin(N9/2) 1 D 1 . ; d
Sy(@) = — VOS2 NNdnd pgy(9) = — g — 9g 9.
N = S einD2) 2n 2° v () 2;1;)'” a N

11
IS =-5- géqﬁ, (57)
q
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wherepy =3 — AN +k k=0,1,....,N—1,andg = £3(N + 1), £3(N +3),.... Then

i 1
d0 9 cop = ————[§ S S 58
( )coE NN = 1)[ 1(D) + S2(7) + S3(0)]. (58)
where
) N2 ) 1 N-1
S1(7) = / dw f dpe?=9T —— §(1) = — / dw / dp 7T = % " Pt ie),
472 472
k,1=0
. 1 .
S3(7) = / dw / dpd@=9T %" Pdrta—p) (59)
42 L~ ¢
P
The evaluation of these sums and integrals is relatively straightforward, and leads to
1, fort =0,
1 N N
i —— |-N+2 — -fl= , for 0 N,
@t | Tz | N2 (7 47) s ()] o< (60)

1 N+2 N N f >N
g | (re) (- g) ] e

Heref(T) is defined by

JESTED S NP U
'_k:12k—1_ 3 2T —1°

(61)

This function has at most a logarithmic dependence on its upper limit for Tafger the MSD in the COE we then
obtain

z+t(t_1) 14+ =2 +6_, fort<N
(AP2(1)) Ntz W-p] o (62)
r =
2 , N N

—t —_— ) s fort N.
N2 T3 3w T >

Heres . - are small corrections to the explicit formulae that have to be evaluated numerically. Note that the explicit
results given here for both ensembles can be combined into the single expression

11 —1) t —
o k=1 k= D8, fore < A
(AP? (1) = N+k [ * 3(N—1)} +( )8(,) fort < .
e (k —1)s forr> N,
Nik T3 T3y TETD > N.

Those results are shownliig. 2for N = 200. The COE results are two close curves, where the higher is the result
given inEq. (63)for k = 2, while in the lower curve the correctiods - have been neglected. Three asymptotic
estimates, t2/N, 2t%/N are also plotted. The inset shows the regien100 tor = 300 where the differences between

the two COE results are most pronounced. To our delight, RMT average gives classical diffusion as the short-time
prediction in both cases, the CUE average being “more classical”. Itis worth emphasizing that the classical behavior
persists up to the Heisenberg times 1 = N rather than the Ehrenfest timdn 2~1 = In N. On the other hand,

for times longer than the Heisenberg time we observe ballistic motion. The ballistic coefficient is proportional to
the effective Planck’s constant, therefore it disappears in semi-classical limit.
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Fig. 2. Log-log plot of the ensemble averages of the mean square displacement using RMT. Both CUE and COE results are plotted. The COE
results are the two close curves, where the higher one is the result giggn (@3)for k = 2, while in the lower curve the correctiodg) have

been neglected. Three asymptotic estimatédN, 2t2/N are also plotted. Inset shows the regios: 100 tor = 300 where the differences

between the two COE results are most pronounced.

In other words, fixing the time and performing semi-classical lititf co = N — oo) we obtain((Ar)2(r)) =
t, which is the classical result relevant for both the classical multi-baker and the 1D random walk, which is modeled
by the classical system. Fixing the Planck constant-£ const) and performing long time limit we observe
((Ar)2(r)) = kt?/N, which is reflection of the crystal-like structure of the system.

4.3. External properties of the MSD

To get another perspective on the above results, consider a more general class of quantum multipldt&t maps
where the local dynamics is given by a different nB@.g. a cat map, standard map, or other, replacing the baker
map. Then formula (27) is still valid, however the eigenvalues and eigenvectors are those of the rew map

Using formula (27) itis easy to see that the time-dependent mean square displacement for any quantum multiplexer
map has to satisfy

(1) ((An)?(0)) =0,
(2) ((an?D) =1,
(3) 0= ((AN2() = 2.
In fact, those results are true in both the quantum and the classical case. Moreover, it is possible to find local

dynamics which realize both of the external cases.
To see it, take as the local map a right-left exchange operator, defined classically by

x4 3y), foro<x<3,
B(n, x,y) = L .
(n,x—3,y, forz <x<Ll

and quantum mechanically by

[

(using the context o$ection 2. The dynamics is obvious: the particle jumps between the two neighboring sites,
leading to the mean square displacement having values 0 for even and 1 for odd times.
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On the other hand, taking identity as the local dynamics, we induce ballistic motion: particle starting in the state
going initially to the right will keep on going to the right, leading to the ballistic transport:

((Ar)2(r)) = 12,

Therefore, we see that the translational invariance of the coupling op&itows, in principle, for large asymptotic
freedom:

(AN%(1) o 1,

where 0< « < 2.3 An interesting question is, what can be realized in practice. While no constraints seem to be
imposed on the classical level, the structure of the quantum mean square displaé@mé2)suggests that for

fixedh only @ = 0 ora = 2 are viable. One of the questions it raises is what conditions need to be imposed on
the internal dynamics so that the semi-classical limit leads to anomalous diftustod. We interpret our RMT

result as follows: internal fully chaotic dynamics (mixing) of the classical map implies generically diffusion. We
are thus led to believe that anomalous diffusion can arise in semi-classical limit in systems with partially chaotic,
partially integrable internal dynamics. Similar observations were made often before in the context of different types
of systems and transport in phase space as opposed to the transport in real space, which we discuss here. Mo
precise results require further study.

5. Comparison of numerical results with random matrix theory predictions

We have studied numerically a number of cases of quantum multi-bakers as well as some more general system
[17]. Here we present some of those results to show the quality of prediction afforded by the random matrix theory.

Our numerical evaluation of formula (27) shows that generically, almost every choice of phases defining the
guantization (3) leads to results between the COE and CUE reBigts3 shows results obtained for the quantum
multi-baker (2) with phaseg, = 0.73,¢, = 0.11. We show the mean square displacement as a function of time for
N = 200 and forN = 2000 on log—log plot. There is a clear crossover between the diffusive and ballistic behavior
on both plotsFig. 3(c)compares the values ¢1/N)) ; (|Jjj|2) calculated for the same quantum multi-baker for
various values dfl with the predictions of random matrix theory (45). We see thaMor 50 the results lie between
the analytic values for COE and CUE ensembles.

In cases when the two phases add up to @pet- ¢, = 1, we find from our numerical work that the ballistic
coefficient(1/N)) _, (|Jjj|2> vanishes. Therefore, only the oscillating contribution remains in the expansion (26).
We still observe diffusive behavior up to Heisenberg time, although not as clearly as for generic systems. After this
transient the particle localizes and the mean square displacement oscillates irregularly around some average valu
Fig. 4 shows the mean square displacement for quantum multi-baker with phases, = 1/2[9] for N = 50
(top row) andN = 200 (bottom row). In both cases the left plot shows the short time behavior on the log—log scale.
We see the same diffusive behavior as in the generic case. The right plots are normal scale and show the oscillation
encountered on the long scale. All the plots are numerical evaluations of the exact formula (26). We suspect that
this non-generic, localized behavior will be seen whenever the phgsasdy, sum to unity, but both the proof
and a physical understanding remain to be developed.

3 A more precise statement is: there exists a constafid, 2] such that lim_, oo ((Ar2(1))/tf = oo for B < &, and limy_, o0 ((AN2(1)) /1tF = 0
fora < B.
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Fig. 3. Log-log plot of the mean square displacement in the quantum multi-baker (2) with phase®73, ¢, = 0.11 as a function of time

for N = 200 (top left) and fotv = 2000 (top right). The crossover between the diffusive and ballistic behavior is clearly visible on both plots
at the Heisenberg time= N. The bottom figure shows the vaIues(dxf’N)Zj (1Jjj 12y calculated for the same quantum multi-baker for various
values ofN with the predictions of random matrix theory (45). We see thaior 50 the results lie between the analytic values for COE and

CUE ensembles.

6. Multi-baker maps and quantum random walks

We conclude this discussion of the quantum multi-baker maps by establishing connections between our work and
some other research on quantum random walks. We restrict ourselves to discrete quantum walks on line. Continuous
guantum random walki®6—-28]and discrete quantum walks on grap8,30]are less connected to our work.

A popular model of a quantum random walk, known today asthgamard walk, was described some 10 years
ago by Godoy and Fuijitf81]. It was obtained through approximating the evolution of some special wave packets
in a Kronig—Penney type potential. A similar model was discussed by Aharonov[82hlwho considered the
motion of spin% particles in one dimension, and proposed experimental realization of the walk in the framework
of quantum optics. Further, Meyer studied quantum cellular automata for their possible applications to quantum
computing. In Section 5 dB3], Meyer obtained a quantum random walk model closely related to the Hadamard
walk, discussed later by Ambainis et HI6].

Looking for an analytically tractable model of quantum transport, we quanfizZdhe classical multi-baker
map, a deterministic model of classical random walk, obtaining a family of quantum random walk models, the
simplest case being the Hadamard walk. We studied both the translationally invariant and random versions of the
system.

Since then a number of other papers appeared on the topid84e-45] Of particular interest for our work is the
work of Brun and coworkergl6—48]who also studied the transition to classical behavior, but instead of considering
semi-classical limit they assume interaction with environment implemented in decoherent coins.
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Fig. 4. Mean square displacement for quantum multi-baker with phgsesp, = 1/2 for N = 50 (top row) andV = 200 (bottom row). The
left plots show the short-time behavior on the log—log scale. We see the same diffusive behavior as in the generic case. The right plots are norma
scale and show the oscillations encountered on the long scale. All the plots are numerical evaluations of the exact formula (26).

Much of the work on discrete quantum random walks can easily be reformulated as a special case of the multi-baker
maps (or multiplexer maps, see rgf7]) in particular, the map with the largest possible value of Planck’s constant,
h = % or equivalentlyN = 2. In order to make this connection we review, very briefly, the structure of quantum

random walks as described by much of the literature.

The simplest quantum random walk described in the literature isHummard walk. Here one considers a
collection of quantum states, which we will denotergsl]. The parameten will take on all integer values within
a prescribed range, and here we take the range &y b# integers, positive and negative. The paraméter r, /
denotes a direction, to thieght or to theleft, respectively. Next, one defines an elementary quantum transformation,
H, which takesr, d) into symmetric and anti-symmetric combinations, as

|n, r') |n, r) 1 /1 1 |n, r) (64)
=H =— . 64
n, ') In, 1) v2\1 -1/ \ im0
This step is now coupled to a translatidnof |n, r’) one unit to the right and, similarlyp,|l’) one unit to the left, as

Tin,ry=|n+1,r), Tin, ) =|n—-11). (65)

H is called theHadamard gate in quantum computing literatuf@9,50], which gives rise to the namdadamard
walk. Finally, the two operations are combined to form the operatoH = W, which describes one step of the
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Hadamard walk,

1
|n9r7t)=_ |n_19r7t_1>+|n+19lvt_1>7
73

n,l,t) = %2[|n—1,r,t—1) —|n+11t-—1).
This is identical tdeq. (2)for N = 2 for the special case that the Balazs—\Voros phigeg, = ¢, = 0, are used.
Therefore, the multi-baker map and the Hadamard walk are identical, for the Balazs—\Voros pha¥es-aid
The Hadamard equations have been solved in detail for various boundary confifigk®;34,38,45]Similarly,
the N = 2 multi-baker map has been solved for a variety of phases and boundary confi2gni$é should be
appreciated that the multi-baker maps represent generalizations of quantum random walks in a number of respects.
The inclusion of phases in the transformation equations allows one to treat a variety of maps including uniform,
periodic, quasi-periodic, and random systems, something typically not considered in the theory of quantum random
walks. Thus, one can find a range of phenomena in quantum multi-baker ranging from localization to ballistic
motion. Such phenomena show up in many condensed matter systems. Further, the use of a variable Planck’s
constant allows for several channels of motion to be taking place at once, and allows us to treat semi-classical as
well as strong quantum versions of these maps. This is what makes the multi-baker maps so appealing for studying
exact transport properties of condensed quantum systems.

One common feature of different quantum random walks and quantum multi-baker maps is the ability to include
various models of decoherence processes. In the multi-baker maps one should distinguish between quenched disorde
and annealed disorder. In quenched disorder the phasasdy,, vary randomly for cell to cell, but once values are
given for each cell, the phases keep those values for all time steps. This allows some memory to be generated by the
dynamics and results in localizatifit?]. For annealed disorder, the phases are chosen randomly for each cell and at
each time step. The phases may also be specified up to some additive noise contribution. These processes represe
the effects of random external noise and result in some degree of decohg@@dé} Further, in both quantum
random walk models and multi-baker maps one can produce decoherence by replacing the unitary matrix describing
the time evolution by @ompletely positive super-operator. This allows for both dissipation and decoherence. As
this topic requires a separate discussion, we will not pursue it here, but leave the discussion of decoherence for
further publications.

(66)

7. Discussion of theresults and other comments

This paper described calculations of important properties of the quantum multi-baker map, a simple model for
transport in quantum systems. This map is the quantum version of a well known, classically chaotic system. In
particular we were able to show, using random matrix theory, that it is possible to obtain an analytic expression
for the equilibrium mean square displacement of a particle whose motion is governed by this quantum map. This
expression is of particular importance for an understanding of transport in quantum systems because it allows us to
carefully examine the particle’s average motion both for finite times and for non-zero values of Planck’s constant.
Thus we can see how the two non-commuting limits;> oo or 1 — 0, interact with each other. While our
results are not surprising, in the sense that we already knew qualitatively the limiting forms, we did not have a
general expression for the mean square displacement even for simple quantum systems before this work was carriec
out. Moreover, the results from random matrix theory agreed very well with careful numerical evaluations of the
mean square displacement for the multi-baker map. This agreement is also very important because random matrix
theory does not really apply to any individual system, as far as one knows, but rather to the average behavior of an
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ensemble of similar systems. Thus in the absence of a rigorous justification of the use of random matrix methods,
their predictions must always be checked by comparisons with numerical studies.

It will be interesting to find other signatures of classical behavior in the quantum multi-baker map that are more
closely connected to the chaotic behavior of the classical map than the mean square displacement. For example, |
there any trace of the classical, hyperbolic dynamical behavior in the quantum version of the map? One prominent
feature of the classical multi-baker model is the formation of fractal structures on arbitrarily fine scales as an initial
non-equilibrium distribution of points relaxes to a final uniform equilibrium. This fractal structure can, in turn,
be related to a positive entropy production typical of the approach to equilibrium of a macroscopic system. The
guantum version of this phenomenon is largely unexplored and is of considerable interest to us.

Further work will also be devoted to exploring the consequences of the freedom one has in choosing phases of
the unitary operators. This freedom allows us to consider random, quasi-random, and periodic systems, each witt
its own interesting physical properties. The quenched random system has been explored to sorfipxdant
provides a simple model of localization in one-dimensional disordered systems. Here the classical limit is expected
to be recovered through a phenomenon where the localization length grows infinitely large as Planck’s constant
approaches zero, such that almost normal diffusion takes place within each localized region. This picture needs tc
be verified, and further systems still need to be explored.

We also began to establish connections between this work on quantum multi-baker maps and a body of relatec
work on quantum random walk processes. Much of that literature is, in fact, devoted to the simplest multi-baker
model, although this connection has not been recognized in the random walk literature. Here we showed that the
N = 2 quantum multi-baker process is identical to the Hadamard walk of random walk theory. Although quantum
computing is still far from being realizgd9,50], it is possible that the theory of quantum random walks may be of
some value for constructing algorithms based on quantum walks that will be faster than the current classical random
walk algorithmg27,43] Future work will be devoted to expanding the connections between the quantum random
walks and multi-baker processes for a variety of model systems.
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