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Abstract

We derive an expression for the mean square displacement (MSD) of a particle whose motion is governed by a uniform,
periodic, quantum multi-baker map. The expression is a function of both time,t, and Planck’s constant,h, and allows a study
of both the long time,t → ∞, and semi-classical,h → 0, limits taken in either order. We evaluate the expression using
random matrix theory as well as numerically, and observe good agreement between both sets of results. The long time limit
shows that particle transport is generically ballistic for any fixed value of Planck’s constant. However, for fixed times, the
semi-classical limit leads to diffusion. The mean square displacement for non-zero Planck’s constant, and finite time, exhibits
a crossover from diffusive to ballistic motion, with crossover time on the order of the inverse of Planck’s constant. We argue
that these results are generic for a large class of 1D quantum random walks, similar to the quantum multi-baker, and that a
sufficient condition for diffusion in the semi-classical limit is classically chaotic dynamics in each cell. Some connections
between our work and the other literature on quantum random walks are discussed. These walks are of some interest in the
theory of quantum computation.
© 2003 Published by Elsevier B.V.
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1. Introduction

It is well known that the quantum properties of classically chaotic systems differ considerably from their classical
versions[1–3]. The quantum dynamics of a classically chaotic system with a finite number of degrees of freedom
is considerably more regular than its classical counterpart, as indicated by the structures developed by Wigner
distributions in phase space for simple systems, and the fact that almost all definitions of the quantum mechanical
version of the Kolmogorov–Sinai rate of entropy production give the value zero for finite quantum systems that
are classically chaotic with positive Kolmogorov–Sinai entropy[4]. Furthermore, it is often difficult to describe the
behavior of quantum systems for both long times and for small values of Planck’s constant, i.e. in the semi-classical
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regime. This difficulty is related to the fact that the long time limit and the limit of small Planck’s constant do not
commute, in addition to analytical problems that often make explicit solutions of the equations for quantum systems
difficult. Therefore, it is of some interest to study simple models where both the quantum and classical properties are
accessible to analytic and simple numerical studies, and where the two limits can be studied in detail. One example
is the baker map. The classical version of this map is tractable analytically[5–7], and the quantum version is less
so[8,9], but easily studied using numerical methods.

It is even more challenging to study transport problems in detail. In recent years, some attention has been devoted
to connecting macroscopic transport properties with microscopic chaos, see e.g.[6,7] and other contributions to this
volume. We find it of interest to study the quantum signatures of these relations and look for their appearance in
the semi-classical regime. To gain intuition about the change in the character of transport properties from quantum
to classical regime a convenient system to study is the uniform, periodic multi-baker map. Our interest in this map
is stimulated by the fact that the classical version is a chaotic system with transport, in this case, diffusion, so it
provides a model where one can study transport in the context of chaotic dynamics.

Both the classical[10,11]and quantum[12,13]versions of the multi-baker map are based upon the baker map,
which in its classical version is an area preserving, expanding and contracting transformation of the 2-torus onto
itself. The multi-baker map is obtained by considering a two-dimensional strip of unit height in they-direction and
a segment of the realx-axis, either of infinite length in both directions or of finite length with specified boundary
conditions[10,11]. The multi-baker transformation is a combination of the baker map with a translation of points
in each unit interval to corresponding points in the nearest intervals to the right or left according to a well-defined
prescription to be given below. The quantum versions of these maps are obtained by means of a simple quantization
where thex-axis is taken to correspond to position space, and they-direction is taken to correspond to momentum
space[12,13]. The quantum mechanics is obtained by requiring that there be an integral number of quantum states in
a unit interval, and that the time development of these states correspond to the expanding and contracting properties
of the classical map. Balazs and Voros[8], and Saraceno[9] were able to show that these requirements can be
satisfied by means of a unitary operation on the quantum states, provided Planck’s constant is taken to be the inverse
of the number of quantum states in the unit square. Our work has been devoted to extending this quantum baker
map to a quantum multi-baker map and examining the transport properties of this quantum map[12,13]. Other
quantizations of multi-baker maps as well as the Kapral–Elskens coupled baker model have been studied in[14].

In this paper, we focus on the calculation of the mean square displacement (MSD) of a particle whose dynamics
is described by a quantum multi-baker map. This quantity is of importance for the description of the average
motion of a particle, since the time dependence of this quantity can distinguish between sub-diffusive, diffusive, and
super-diffusive motion. A particular example of super-diffusive motion is, of course, ballistic motion characteristic
of the motion of a free particle.

In the classical multi-baker, the MSD grows linearly in time,〈(�r)2〉 = t, characteristic of diffusion, for all times
greater than some microscopic time. The quantum version shows an asymptotic ballistic,t2, growth for what we will
call uniform maps, which are translationally invariant. This is essentially the same as one finds in models of electron
transport in periodic solids, such as the Krönig–Penney model[15]. One can find examples of non-translationally
invariant multi-bakers where the particle is localized with no asymptotic growth of the MSD with time. Here we
consider only translationally invariant models, and leave the large class of non-translationally invariant models for
future work.

The classical multi-baker map[10,11] is a simple model for deterministic diffusion along a one-dimensional
lattice. It can easily be constructed to be isomorphic to a random walk with any given probabilities for jumping to
the right and to the left along the lattice. The quantum multi-baker map[12,13]is also an example of a random walk,
but in this case, the walk is quantum mechanical and has very different properties from the classical map due to the
interference of probability amplitudes for possible paths. The subject of quantum random walks has developed a
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literature over the past few years. Here we will also discuss the connection of the quantum multi-baker with other
models of quantum walks. We mention now that most of the previous studies by other authors have been devoted to
the so-called Hadamard walk[16], which is a special case of the quantum multi-baker for the largest allowed value
of Planck’s constant. Thus, the multi-baker map studied here represents a generalization of the Hadamard walk to
all allowed values of Planck’s constant.

The plan of this paper is as follows. InSection 2we present the basic equations defining the quantum multi-baker
map and compare it to the classical version. InSection 3we discuss the MSD for the quantum map, and inSection 4
we show how random matrix theory may be used to evaluate the MSD for small values of Planck’s constant, leav-
ing some technical details for a longer paper[17]. In Section 5we compare the results of random matrix theory
with numerical studies of the map, which shows that random matrix theory is quite effective in reproducing the
numerical results and in providing an expression showing the crossover from diffusive to ballistic motion for fixed,
non-zero values of Planck’s constant as the time becomes large. InSection 6we discuss the connection between
the multi-baker map and other models of quantum random walks. We conclude with a summary of results, and a
discussion of the possible implications and extensions of this work.

2. The quantum multi-baker map

We begin with the classical multi-baker map[5,10,11]. It is a two-dimensional lattice system where the phase
space at each lattice site is a square and the dynamics is a combination of transport of the phase space densities to
neighboring cells, which models the free flight, followed by a local baker map evolution within a square, which
models a collision with a fixed scatterer. That is, the multi-baker map,M, is a composition of two mapsM = B ◦T :
transport,T, of phase points to neighboring cells, given by

T(n, x, y) =
{
(n+ 1, x, y), for 0 ≤ x < 1

2,

(n− 1, x, y), for 1
2 ≤ x < 1,

and the baker map,B, which acts on thex, y coordinates of each cell,n, separately, according to

B(n, x, y) =
{
(n,2x, 1

2y), for 0 ≤ x < 1
2,

(n,2x− 1, 1
2(1 + y)), for 1

2 ≤ x < 1.

The combination of these two maps is the multi-baker map which is a time-reversible, measure preserving, chaotic
transformation, with evolution law

M(n, x, y) =
{
(n+ 1,2x, 1

2y), for 0 ≤ x < 1
2,

(n− 1,2x− 1, 1
2(1 + y)), for 1

2 ≤ x < 1.

As mentioned above, this classical map represents a simple area-preserving model of simple random walk. It can
also be considered a simplified Bernoulli map for the motion of light weakly interacting particles in a gas of heavy
scatterers on regular lattice (periodic Lorentz gas).

The quantization of the multi-baker map is based upon the known quantization of the baker map on the unit
square, carried out by Balazs and Voros[8], and by Saraceno[9]. We form the quantum multi-baker by transporting
some of the quantum states to the next cell on the right and the others to the next cell on the left, based upon the way
the transformed points are moved to neighboring cells in the classical multi-baker, and then model the scattering by
the quantum baker map acting in every single cell.

To quantize the baker map, we regard the horizontal direction of the torus [0, 1)2 as the position axis, while vertical
axis corresponds to the momentum direction. To obtain the Hilbert space we take the subspace of the wave functions
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on a line whose probability densities,|Ψ(x)|2, |Ψ̃ (p)|2 are periodic in both position and momentum representations,
respectively:Ψ(x + 1) = exp(i2πϕq)Ψ(x), Ψ̃ (p + 1) = exp(i2πϕp)Ψ̃(p) whereϕp, ϕq ∈ [0,1) are phases
parameterizing quantization. The quantization of the baker map requires the phase space volume to be an integer
multiple of the quantum of action[8,9,18–21]. Therefore, the effective Planck’s constant ish = 1/N, for a baker map
on a unit torus, whereN, an integer, is the dimension of the Hilbert space. The space and momentum representations
are connected by a discrete Fourier transform〈pk|ql〉 = [GN(ϕq, ϕp)]k,l := N−1/2exp(−i2πNpkql). The discrete
positions and momenta areql = (l + ϕq)/N,pk = (k + ϕp)/N respectively. We takeN to be an even integer and
label the quantum states in coordinate space byj, wherej = 0,1, . . . , N − 1. The statesj = 0, . . . , 1

2N − 1 are
called the “left” states, with collective wave function,ΨL, while the remaining states,j = 1

2N, . . . , N−1 are called
the “right” states, with wave function,ΨR. One may think ofΨR,L asN/2 component vectors.

Having constructed the Hilbert space, one looks for a family of unitary propagators parameterized byN =
1/h which approach the classical map in semi-classical limit. The quantum baker map[8,9,19] is then given by
a combination of two operations. The first operation takes theN/2 “left” states into momentum states labeled
k = 0,1, . . . , 1

2N − 1, called “bottom” momentum states, by means of the1
2N × 1

2N Fourier transform matrix
GN/2(ϕq,ϕp). The “right” coordinate states are transformed to “top” momentum states in the same way. Now one
has transformedN spatial states intoN momentum states in a way that mimics the classical baker’s map. The final
step is to express theN new states in coordinate representation by means of theN ×N matrix,G−1

N , which takesN
states in the momentum representation to their coordinate representation. The full baker transformation,B, on the
torus is then given by the unitary transformation

B := G−1
N

[
GN/2 0

0 GN/2

]
(1)

for evenN. Other examples and discussions of issues concerning the quantization of area-preserving maps can be
found for instance in[8,9,18–22].

Using this transformation as a template we can easily express the quantum multi-baker map as a transformation
of right and left quantum states in unit squares labeled byn± 1 to right and left states in the unit square labeled by
n, ΨR,L(n). That is, in the position representation, the evolution of the wave function in the quantum multi-baker is
given by the equations1[

ΨL(n, t + 1)

ΨR(n, t + 1)

]
= G−1

N (n)

[
GN/2(n) 0

0 GN/2(n)

][
ΨL(n− 1, t)

ΨR(n+ 1, t)

]
, (2)

whereGN (n) is the discrete Fourier transform

(GN(n))kj = 1√
N

e−2πi(k+ϕp(n))(j+ϕq(n))/N. (3)

In principle, the Fourier transformation matrixGN (n) can depend upon the cell indexn. Here we will consider the
case where this matrix is independent of the cell index, so that the system of equations is translationally invariant
from cell to cell. We restrict our attention here to finite systems of lengthL with periodic boundary conditions.
This condition induces Bloch states and an eventual ballistic motion of particles through the chain. We associate
L-dimensional Hilbert space with the lattice, and since the internal space isC

N , the Hilbert space of the system is
the tensor productCL ⊗ C

N . We will work with the basis defined by|n,±, i〉, wheren is the lattice site,± denotes

1 Note that the construction we use here differs slightly from the one we studied in our previous work[12]. We change it to make the construction
consistent with the general picture that we now have as well as to make model clearer. The properties of the two versions of random model
should be the same, and the periodic model is unaffected.
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left/right half of the square, andi = 0, . . . , 1
2N− 1 denotes the state in the given half in the position representation.

Since the states associated with the left half of the cell go one step to the right, we writeΨL ≡ Ψ+, accordingly
ΨR ≡ Ψ−. Then the general wave function for the multi-baker chain can be written as

|Ψ 〉 =
∑
n

∑
ε=±

|Ψε(n)〉, (4)

where|Ψε(n)〉 := Pε(n)|Ψ 〉, Pε(n) = ∑
i |n, ε, i〉〈n, ε, i| is orthogonal projection of the state vector onto the “left”

or “right” subspace at siten. Thus, the inner product takes form

〈Φ|Ψ 〉 :=
∑
n

∑
ε=±

〈Φε(n)|Ψε(n)〉. (5)

We may think of|Ψε(n)〉 and〈Ψε(n)| as corresponding toN/2-component column and row vectors, respectively,
while |Ψ 〉 corresponds to anNL-component vector. Since we work mostly in position basis, we useN/2-dimensional
vectorsψε(n), whoseith components areΨ±(n, i) = 〈n,±, i|Ψ 〉, where the indexn denotes the lattice site of the
cell under consideration, as above, the notation± denotes the particular half of the unit square under consideration,
the left half indicated by+ moves to the cell to the right, and the right half, denoted by−, moves to the cell to
the left. The indexi denotes a particular quantum state in the right or left half of the unit cell, specified by± and
i = 0,1, . . . , 1

2N − 1. The action of the quantum multi-baker map on the total wave function will be written as the
action of an operatorM defined byEq. (2),as

|Ψ ′〉 = M|Ψ 〉. (6)

The operatorM is the Floquet operator for the multi-baker map and will be used to determine the time dependence
of various observables for this system, as

Ω(t) = M†tΩMt , (7)

whereΩ is any observable of the system.
The complete specification of the model requires values for the phasesϕq, ϕp. There is a considerable amount

of freedom for choosing these phases. As mentioned above, one may choose them to vary from cell to cell. A
random variation of phases from cell to cell produces adisordered multi-baker map, while requiring that the phases
have constant values throughout the lattice produces aregular, or uniform multi-baker map which is translationally
invariant from one cell to the next. Many other choices are possible and can be of interest. Here we consider only
the translationally invariant case. In numerical calculations we use the values for the phases chosen by Balazs and
Voros [8] with ϕq = ϕp = 0; those used by Saraceno[9] ϕq = ϕp = 1

2, which lead to survival of additional
classical symmetry in the model, as well as more generic values. We will see below that the Saraceno phases lead
to a non-generic behavior for the MSD.

Let us consider now the structure of eigenstates of the unitary operatorM. Since we consider periodic boundary
conditions every eigenstate corresponding to the eigenvalueλ = eiκ has a Bloch form

Ψ(n,±) = exp(iκn)Ψ̃±√
L

, (8)

where

[
Ψ̃+
Ψ̃−

]
is the normalized eigenstate of a modified quantum baker operator

G−1
N

[
GN/2e−iκ 0

0 GN/2eiκ

]
. (9)



228 D.K. Wójcik, J.R. Dorfman / Physica D 187 (2004) 223–243

Periodic boundary conditions imply eiκL = 1, thus we haveκk = 2πk/L, k = 0,1, . . . , L−1. For everyκk we have
N eigenstates. We will enumerate the eigenstates ofM by k, n, with n = 0, . . . , N − 1. Thus,Ψkn is the eigenstate

given by the ansatz (8) withκk = 2πk/L, corresponding to the eigenvalue eiϕkn where phasesϕkn are counted for a
givenk from 0 (including) to 2π, i.e. 0≤ ϕkn ≤ ϕkn+1 < 2π.

3. The mean square displacement in the uniform multi-baker map

In order to formulate our calculation of the MSD for the uniform multi-baker map in the most convenient way, we
introduce two operators,r, v, which represent a coarse position operator and a coarse velocity operator, respectively.
These operators are coarse in the sense thatr simply gives the lattice site associated with a particular quantum state,
and the coarse grained velocityv is given byv = M†rM − r. We argue elsewhere[17], that for a translationally
invariant systemv has a very simple form with values±1, given by the change in cell index for each quantum state.
Thus,

r|n,±, i〉 = n|n,±, i〉, v|n,±, i〉 = ±|n,±, i〉, (10)

so that explicit expressions for the operatorsr, v are

r =
∑
n,ε,i

n|n, ε, i〉〈n, ε, i|, v =
∑
n,ε,i

ε|n, ε, i〉〈n, ε, i|. (11)

Suppose we prepare the system in a pure state |Ψ 〉. Then, the mean square displacement of the particle starting in
this state is given by

〈(�r)2(t)〉Ψ = 〈(M†trMt − r)2〉Ψ =
〈(

t−1∑
τ=0

vτ

)2〉
Ψ

=
t−1∑

τ1,τ2=0

〈vτ1vτ2〉Ψ , (12)

where〈A〉Ψ := 〈Ψ |A|Ψ 〉 = Tr(|Ψ 〉〈Ψ |A). Depending on the original state we have a distribution of possible results.
To characterize it we can calculate its average over all the possible initial states, and the root mean square deviation
from the average, which quantifies the spread of the results, or the quality of the prediction based on the average. In
this section we find the expressions for both the equilibrium MSD as well as for the equilibrium fluctuations of this
function. In the next section we approximate the average results using random matrix theory, and then we compare
them with numerical evaluation of the exact formulas.

Since the average over all the possible pure states gives the most incoherent mixture, we obtain a simple expression
for the equilibrium MSD as

〈(�r)2(t)〉 =
t−1∑

τ1,τ2=0

〈vτ1vτ2〉, (13)

where

〈A〉 := Tr((eqA) = 1

LN
Tr(A). (14)

L is the length of the chain (assume periodic boundary conditions), andN the dimension of the Hilbert space for a
single cell. Clearly,(eq = 1NL/(LN) is the equilibrium state for all the QMB, that is, it is time invariant

M(eqM† = (eq (15)
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and it maximizes the entropyS = −Tr(( ln (). Time invariance implies that the velocity autocorrelation function

Cτ1,τ2 := 〈vτ1vτ2〉 = 〈M†τ1vMτ1M†τ2vMτ2〉 (16)

satisfiesCτ1,τ2 = Cτ1−τ2,0 = C0,τ1−τ2 ≡ Cτ1−τ2. Thus, we can write

〈(�r)2(t)〉 =
t−1∑
τ=0

C0 + 2
t−1∑

τ1>τ2=0

Cτ1−τ2 = C0t + 2
t−1∑
τ=1

(t − τ)Cτ. (17)

This leads to a Green–Kubo-like formula for the diffusion coefficient

D = lim
t→∞

1

2t
〈(�r)2(t)〉 = 1

2C0 +
∞∑
τ=1

Cτ =
∞∑
τ=0

Cτ − 1
2C0,

paralleling the classical case. However, here the diffusion coefficient turns out to be infinite.
Thus, the MSD is written as the sum of time correlations of the velocity just as in the classical case, but the

difference in mechanics will lead to important differences in the time development of the MSD.
The translational invariance of the system, together with the uniform equilibrium density, imply that instead of

summing over all theN quantum states in theL cells, we can sum only over theN quantum states in one cell (see
[17]). Thus, we can write

Cτ = 1

LN
Tr[M†τvMτv] = 1

N

∑
i,ε=±

〈n = 0, ε, i|M†τvMτv|n = 0, ε, i〉

= 1

N

∑
i,ε=±

ε〈n = 0, ε, i|M†τvMτ |n = 0, ε, i〉. (18)

Thus, we have to sum, with appropriate signs, over all the possible cyclic paths starting in a fixed cell. The next
simplification provided by the translational invariance of the model is that we can replace the unitary operatorM
for the full multi-baker inEq. (18)by the operatorB acting within a unit cell. This replacement follows from the
observation that the velocity operator is diagonal in the representation based on the states in the cells, with a block
structure that is identical from one cell to the next.2 Therefore, the velocity operator at time stept takes on the same
value in all of quantum states that are periodic images of any state in a fixed cell. Thus, we can express the velocity
correlation function,Cτ , as

Cτ = 1

N
Tr[B†τJBτJ], (19)

where the matrixJ is the velocity operator restricted to a single cell, in position representation given by

J =
[

1N/2 0

0 −1N/2

]
. (20)

Here 1N/2 is the 1
2N × 1

2N unit operator.
To proceed further we must now use specific properties of the quantum baker mapB, and in particular, its spectral

properties. SinceB is a unitary operator, its eigenvalues lie on the unit circle and define a set ofN phases,ϕj or
quasi-energies. We will denote the corresponding eigenstates by the Dirac kets|j〉. Thus, the spectral problem for
the operatorB is

B|j〉 = eiϕj |j〉. (21)

2 This would not be the case for the disordered multi-baker maps where the quantization phases vary from one cell to the next.
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Then we can express the velocity correlation functionCτ as

Cτ = 1

N

∑
j,k

e−iϕkτ〈k|J|j〉 eiϕjτ〈j|J|k〉 = 1

N

∑
j,k

|Jjk|2 ei(ϕj−ϕk)τ

= 1

N


∑

j

|Jjj|2 + 2
∑
j>k

|Jjk|2 cos(ϕj − ϕk)τ


 . (22)

The matrix elements ofJ satisfy∑
j,k

|Jjk|2 = Tr J2 = N =
∑
j

|Jjj|2 +
∑
j>k

2|Jjk|2. (23)

Therefore,

Cτ = 1

N


N +

∑
j>k

|Jjk|2(ei(ϕj−ϕk)τ + ei(ϕj−ϕk)τ − 2)


 = 1 − 4

N

∑
j>k

|Jjk|2 sin2((ϕj − ϕk)τ/2). (24)

We can now substitute these results intoEq. (17)for the mean square displacement to obtain

〈(�r)2(t)〉 = t +
t−1∑
τ=1

(t − τ)Cτ = t + t(t − 1)
1

N

∑
j

|Jjj|2 + 4

N

∑
j>k

|Jjk|2
t−1∑
τ=1

τRei(ϕj−ϕk)(t−τ). (25)

The last expression is particularly useful for averaging and will be used in the next section.
The sums over the intermediate timesτ in Eq. (25)can easily be carried out. We assume now that there is no

degeneracy in the spectrum of quasi-energies and, after some algebra, we obtain an expression for the MSD as

〈(�r)2(t)〉 = t2
1

N

∑
j

|Jjj|2 + 2

N

∑
j>k

|Jjk|2 sin2((ϕj − ϕk)t/2)

sin2((ϕj − ϕk)/2)
(26)

so that

〈(�r)2(t)〉 = 1

N

∑
j,k

|Jjk|2 sin2((ϕj − ϕk)t/2)

sin2((ϕj − ϕk)/2)
. (27)

Whenever two eigenphasesϕj andϕk are equal, the contribution to the sum [sin2((ϕj−ϕk)t/2)]/[sin2((ϕj−ϕk)/2)]
must be replaced byt2.

We see that there is typically a ballistic contribution coming from the diagonal and possibly some degenerate
terms. The other contributions are oscillatory and usually negligible in the long time limit. It can happen, however,
that the ballistic contribution disappears altogether and we have only oscillations which means that the particle is
localized. An example is provided inSection 5and an explanation in more general context is given in the final
section. It is interesting that the obtained result is completely independent of the length of the system. This is not
true for the fluctuations of the MSD.

It is not easy to evaluate this expression,Eq. (27), analytically. Therefore, inSection 4we present an approximation
based on the random matrix theory, and inSection 5we evaluate it numerically for some particular choices of
parameters, and compare it with the RMT averages.
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3.1. Fluctuations in the MSD

We have computed the MSD as an equilibrium average where all eigenstates have the same weight. One might ask
about the dependence of the average square displacement for an individual quantum state. In order to say something
about the fluctuations of the average square displacement from one state to the next, we now consider�Ψr

2(t), the
average square displacement for the quantum state|Ψ 〉, where�Ψr2(t) = 〈Ψ |�r2(t)|Ψ 〉. We will try to characterize
the fluctuations of the square displacement among various quantum states by calculating, in so far as it is possible,
the mean square fluctuation of�Ψr2(t), which we denote by�2(t), where

�2(t) = 〈[�Ψr2(t)− 〈�r2(t)〉]2〉Ψ . (28)

The average〈A(Ψ)〉Ψ is defined as follows: If|Ψα〉 is an arbitrary orthonormal basis andbα := 〈Ψα|Ψ 〉 are the
complex coefficients of expansion of|Ψ 〉 in this basis then

〈A(Ψ)〉/ :=
∫

d2b1 · · · d2bLNδ(1 −∑NL
α=1|bα|2)A(Ψ)∫

d2b1 · · · d2bLNδ(1 −∑NL
α=1|bα|2)

=
∫

dΩ2LNA(Ψ)∫
dΩ2LN

. (29)

Thus, it is an average over a 2LN-dimensional sphere.
Before we calculate the right-hand side ofEq. (28), we note that the equilibrium mean square displacement can

be written in a very similar way as an average over the space of all the states

〈(�r(t))2(t)〉 = 〈�Ψr2(t)〉Ψ . (30)

Indeed, usingEq. (29)we obtain

〈(�r(t))2(t)〉 =
∑
α,β

〈b∗
αbβ〉〈ψα|�r2(t)|ψβ〉. (31)

Only contributions fromα = β survive due to phase averaging, and the diagonal terms carry the same contribution,
therefore〈b∗

αbβ〉Ψ = δα,β/(NL). If we insert this relation into the right-hand side ofEq. (31), we recoverEq. (14)
with the quantityA = �r2(t).

Returning toEq. (28), we see that the right-hand side can be written as

�2(t) =
t−1∑

n,m,k,l=0

LN∑
α,β,γ,δ=1

〈b∗
αbβb

∗
γbδ〉Ψ 〈Ψα|vnvm|Ψβ〉〈Ψγ |vkvl|Ψδ〉 −

[
〈�r2(t)〉

]2
. (32)

Observe that if at least one phase, or equivalently one subscript, is unpaired, the average〈b∗
αbβb

∗
γbδ〉 will be zero.

Therefore, the average of the four coefficients is non-zero only if the indices are paired. This can be arranged in
three ways, so that

〈b∗
αbβb

∗
γbδ〉 = c1δαβδγδ(1 − δβγ)+ c1δαδδγβ(1 − δαβ)+ c2δαβδγδδαγ , (33)

where

c1 = 〈|b1|2|b2|2〉, (34)

c2 = 〈|b1|4〉. (35)
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LetA = ∑t−1
m,n=0vmvn. Then

�2(t) = c1

∑
α�=β

〈Ψα|A|Ψα〉〈Ψβ|A|Ψβ〉 + c1

∑
α�=β

〈Ψα|A|Ψβ〉〈Ψβ|A|Ψα〉

+
∑
α

c2〈Ψα|A|Ψα〉〈Ψα|A|Ψα〉 −
[

1

NL
TrA

]2

= c1(TrA)2 + c1TrA2 +
∑
α

(c2 − 2c1)|〈Ψα|A|Ψα〉|2 −
[

1

NL
TrA

]2

. (36)

Since the term
∑
α |〈Ψα|A|Ψα〉|2 is basis dependent we must havec2 = 2c1. Also,

∑
α,β

|bα|2|bβ|2 =
〈∑
α,β

|bα|2|bβ|2
〉

= 1. (37)

Since there areLN quantum states, this reduces to

c2LN + c1LN(LN − 1) = 1. (38)

Therefore,

c1 = 1

LN(LN + 1)
, c2 = 2

LN(LN + 1)
. (39)

To proceed further we need to use the results obtained earlier followingEq. (9)for the eigenstates and eigenphases
of the multi-baker operator. The eigenstates have the form of periodic Bloch states and the eigenphases appear
in L sets ofN eigenphases. After some lengthy, but straightforward calculations one finds the final result for the
fluctuations of the average square deviations as[17]

�2(t) = c1[(TrA)2 + TrA2] − 1

L2N2
(TrA)2 = c1

[
TrA2 − 1

LN
(TrA)2

]

= 1

L+ 1/N

1

N2


〈 N−1∑

p,s=0

∣∣∣∣∣
N−1∑
r=0

JaprJ
a
rs

sin((ϕap − ϕar )t/2)

sin((ϕap − ϕar )t/2)

sin((ϕar − ϕas )t/2)

sin((ϕar − ϕas )t/2)

∣∣∣∣∣
2〉
a

− 1

N


 N−1∑
m,n=0

|Jnm|2 sin2((ϕn − ϕm)t/2)

sin2((ϕn − ϕm)/2)




2

 . (40)

The main source for the system size,L, dependence of this fluctuation result is the factor ofL−1 in front of the whole
expression. This provides the usualL−1/2 decay of the root mean square fluctuation which suggests that in the large
systems the equilibrium average is typical for almost every initial, pure state. The eigenphasesϕaj also depend on
the system size, so that in the absence of a further evaluation of the sums, one cannot precisely determine the size
dependence of�2(t), however, it is reasonable to expect that the contributions for different Bloch vectors are of the
same order. Numerical results suggest that this expectation is correct for the quantum multi-bakers, and the final
result for the right-hand side ofEq. (40)decays inversely withL. This is shown inFig. 1. The picture on the left
shows the time and size dependence of the relative fluctuations

√
�2(t)/〈�r2(t)〉 on a log–log plot. The picture on

the right shows the same data with each curve multiplied by square root ofL. The scaling is remarkable. Plots were
obtained through numerical evaluation of exactEq. (40)for N = 50,ϕq = ϕp = 0. Using the methods of random
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Fig. 1. Time and length dependence of the relative fluctuations
√
∆2(t)/〈�r2(t)〉. The left picture shows the log–log plot of the unscaled data,

the right picture shows each curve multiplied by the square root ofL. Plots made forN = 50,ϕq = ϕp = 0.

matrix theory discussed in the next section, in the limit of largeN, one can replace the average over the Bloch states,
labeled by the subscripta, by averages over random matrix ensembles. We have not yet done this and leave it for
future work.

4. Random matrix theory for the mean square displacement

To proceed further we need to know the quasi-energies and eigenvectors of the operatorB. For largeN it is not
possible to determine these quantities by analytical means. Instead one uses numerical methods to diagonalizeB.
The results obtained this way will be discussed in the next section. Here we will show how random matrix theory
[2,23]may be used to evaluate the approximate value of the MSD. In a sense, the use of random matrix theory must
be considered to be a kind of uncontrolled approximation method since there are no theorems indicating that the
distributions of quasi-energies are described by any of the three random matrix ensembles, and there are no similar
results for the eigenvectors. However, since the classical baker map is an example of a strongly chaotic system, we
can expect that one of the two ensembles, the circular orthogonal ensemble (COE) or the circular unitary ensemble
(CUE) might provide a very good approximation when it is used to evaluate the right-hand sides ofEq. (27), see
[9,24]. The results obtained this way will, of course, be averages over the ensemble of random matrices, and not
characteristic of any one matrix in the ensemble, and perhaps not of the baker map itself. We will see shortly that
the numerical results for the baker map are in very good agreement with the results of random matrix theory, so the
connection between the use of random matrix methods for classically chaotic systems is supported by this work.

We begin the application of random matrix theory by determining the average values of the moduli of the matrix
elementsJjk = 〈j|J|k〉 where|j〉, |k〉 indicate eigenvectors of the unitary baker operatorB. We begin with the
diagonal elements, which we first express in the position representation of theN quantum states defined in the baker
cell. That is, we write

|Jjj|2 = |〈j|J |j〉|2 =

N/2−1∑

α=0

|〈α|j〉|2 −
N−1∑
α=N/2

|〈α|j〉|2



2

, (41)

where the kets |α〉 are basis vectors in position space. Since the eigenkets are normalized, that is,
∑N−1
α=0 |〈α|j〉|2 = 1,

we may setsj = ∑N/2−1
α=0 |〈α|j〉|2 to obtain

|Jjj|2 = (2sj − 1)2 = 4s2j − 4sj + 1. (42)
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To get the random matrix theory average value, we observe that the joint probability of single eigenstate components
in the CUE and COE ensembles are given by[2,25]

P({Ψ}) = cδ(1 − |Ψ |2) = cδ

(
1 −

2M−1∑
α=0

|Ψα|2
)
. (43)

In the COE ensemble the eigenstates can be chosen real which implies thatP({Ψ}) is a uniform distribution on a
N-dimensional unit sphere, andM = N/2. In the CUE ensemble the eigenstates are complex implying thatP({Ψ})
is uniform on a 2N-dimensional unit sphere(|Ψj|2 = (RΨj)

2 + (IΨj)
2), andM = N. These averages can be

calculated in straightforward ways and one obtains〈s〉 = 1/2 for both ensembles. However, the averages〈s2〉 differ
in the two ensembles. We obtain

〈s2〉 = Γ(M/2 + 2)

Γ(M/2)

Γ(M)

Γ(M + 2)
= M + 2

4(M + 1)
, (44)

whereM = N/k with k = 2 for the COE andk = 1 for the CUE. This leads to an evaluation of the averages needed
for the diagonal terms, with the result that

〈|Jjj|2〉 = k

N + k
. (45)

To get the average of the off-diagonal terms, we useEq. (23)which, after averaging, leads to

〈|Jj �=k|2〉 = N

(N − 1)(N + k)
, (46)

with k given above.

4.1. The MSD in the CUE ensemble

Next we calculate the average of ei(ϕ1−ϕ2)τ in the CUE ensemble. To do this we need an expression for the pair
correlation function,R(ϕj, ϕk) of two angles in this ensemble. This is calculated in some detail by Mehta[23], and
we use the expression given there.

〈ei(ϕ1−ϕ2)τ〉 =
∫ 2π

0
dϕ1

∫ 2π

0
dϕ2 ei(ϕ1−ϕ2)τ

R(ϕj, ϕk)

N(N − 1)

=
∫ 2π

0
dϕ1

∫ 2π

0
dϕ2 ei(ϕ1−ϕ2)τ

N

4π2(N − 1)

[
1 − sin2(N(ϕj − ϕk)/2)

N2 sin2((ϕj − ϕk)/2)

]
. (47)

At τ = 0 the first term isN/(N − 1), and it vanishes forτ > 0. We calculate the second term by converting the
angular integral to one in the complex plane. By changing the variables tou = ϕ1 − ϕ2, v = ϕ2, and then setting
z = eiu, dz = izdu, we obtain, forτ > 0,

〈ei(ϕ1−ϕ2)τ〉 = −1

2πN(N − 1)

∫ 2π

0
dueiuτ sin2(Nu/2)

sin2(u/2)
(48)

= −1

2πiN(N − 1)

∮
dz zτ−Ng(z), (49)

where

g(z) =
∑
p

apz
p =

(
N−1∑
k=0

zk

)2

=
N−1∑
k=0

(k + 1)zk +
2N−2∑
k=N

(2N − k − 1)zk. (50)
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Sinceg(z) is analytic, then〈exp[i(ϕ1 − ϕ2)τ]〉 = 0 if τ −N ≥ 0. Otherwise, we can write
1

2πi

∮
dz zτ−Ng(z) = 1

p!
g(p)(0), (51)

wherep = N − τ − 1, andg(p) is thepth derivative ofg, and obtain

〈ei(ϕ1−ϕ2)τ〉 = −ap
N(N − 1)

. (52)

Thus, including the contribution from the first term atτ = 0, we obtain

〈e[i (ϕj−ϕk)τ]〉CUE =




1, for τ = 0,

τ −N

N(N − 1)
, for 0<τ<N,

0, for τ ≥ N.

(53)

We now substitute the results,Eqs. (45), (46) and (53)into the expressionEq. (25)the for mean square displacement.
This leads to

〈(�r)2〉 = t + t(t − 1)〈|Jjj|2〉 + (N − 1)〈|Jj �=k|2〉
t−1∑
τ=1

(t − τ)〈eiατ + e−iατ〉

= t + 1

N + 1
t(t − 1)+ 2

(N + 1)(N − 1)

M−1∑
τ=1

(t − τ)(τ −N), (54)

whereM = t for t < N, andM = N for t ≥ N. Carrying out the required sums we obtain the final result for the
MSD in the CUE ensemble:

〈(�r)2(t)〉 =



t + t(t − 1)

N + 1

[
t − 2

3(N − 1)

]
for t ≤ N,

1

N+1
t2 + N

3
for t > N.

(55)

4.2. The MSD in the COE ensemble

The calculation of the MSD in the circular orthogonal ensemble proceeds in very much the same way as in the
CUE, the only difference being in the pair correlation function for the quasi-energies,ϕj. For the COE the two-point
correlation function is (see Mehta[23], Eq. (6.2.4), Eq. (10.3.41))

R2(ϑ, ϕ) = det

[
σN(0) σN(ϑ − ϕ)

σN(ϕ − ϑ) σN(0)

]
= [(σN(0))

2](0) − [(σN(ϑ − ϕ))2](0).

Here,σN is a quaternion, and det is the quaternion determinant, with

[(σN(ϑ − ϕ))2](0) = (SN(ϑ − ϕ))2 + DSN(ϑ − ϕ)JSN(ϑ − ϕ). (56)

These quantities are given by Mehta as

SN(ϑ) = 1

2π

sin(Nϑ/2)

sin(ϑ/2)
= 1

2π

N−1∑
k=0

eipkϑ, DSN(ϑ) = 1

2π

N−1∑
k=0

ipk eipkϑ = d

dϑ
SN(ϑ),

JSN(ϑ) = − 1

2πi

∑
q

1

q
eiqϑ, (57)
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wherepk = 1
2 − 1

2N + k, k = 0,1, . . . , N − 1, andq = ±1
2(N + 1), ±1

2(N + 3), . . . . Then

〈ei(ϑ−ϕ)τ〉COE = 1

N(N − 1)
[S1(τ)+ S2(τ)+ S3(τ)], (58)

where

S1(τ) =
∫

dϑ
∫

dϕ ei(ϑ−ϕ)τ N2

4π2
, S2(τ) = −

∫
dϑ
∫

dϕ ei(ϑ−ϕ)τ 1

4π2

N−1∑
k,l=0

ei(pk+pl)(ϑ−ϕ),

S3(τ) =
∫

dϑ
∫

dϕ ei(ϑ−ϕ)τ 1

4π2

∑
p,q

p

q
ei(p+q)(ϑ−ϕ). (59)

The evaluation of these sums and integrals is relatively straightforward, and leads to

〈e[iατ]〉COE =




1, for τ = 0,

1

N(N − 1)

[
−N + 2τ

[
f

(
N

2
+ τ

)
− f

(
N

2

)]]
, for 0< τ < N,

1

N(N − 1)

[
−N + 2τ

[
f

(
N

2
+ τ

)
− f

(
τ − N

2

)]]
, for τ ≥ N.

(60)

Heref(T) is defined by

f(T ) :=
T∑
k=1

1

2k − 1
= 1 + 1

3
+ · · · + 1

2T − 1
. (61)

This function has at most a logarithmic dependence on its upper limit for largeT. For the MSD in the COE we then
obtain

〈(�r)2(t)〉 =



t + t(t − 1)

N + 2

[
1 + t − 2

3(N − 1)

]
+ δ<, for t ≤ N,

2

N+2
t2 + N

3
− N

3(N + 2)
+ δ>, for t > N.

(62)

Hereδ<,> are small corrections to the explicit formulae that have to be evaluated numerically. Note that the explicit
results given here for both ensembles can be combined into the single expression

〈(�r)2(t)〉 =



t + t(t − 1)

N + k

[
k − 1 + t − 2

3(N − 1)

]
+ (k − 1)δ〈, 〉 for t ≤ N,

k

N+k t
2 + N

3
− N(k − 1)

3(N + k)
+ (k − 1)δ〈, 〉 for t > N.

(63)

Those results are shown inFig. 2forN = 200. The COE results are two close curves, where the higher is the result
given inEq. (63)for k = 2, while in the lower curve the correctionsδ<,> have been neglected. Three asymptotic
estimatest, t2/N, 2t2/N are also plotted. The inset shows the regiont = 100 tot = 300 where the differences between
the two COE results are most pronounced. To our delight, RMT average gives classical diffusion as the short-time
prediction in both cases, the CUE average being “more classical”. It is worth emphasizing that the classical behavior
persists up to the Heisenberg times∼h−1 = N rather than the Ehrenfest time∼ln h−1 = lnN. On the other hand,
for times longer than the Heisenberg time we observe ballistic motion. The ballistic coefficient is proportional to
the effective Planck’s constant, therefore it disappears in semi-classical limit.
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Fig. 2. Log–log plot of the ensemble averages of the mean square displacement using RMT. Both CUE and COE results are plotted. The COE
results are the two close curves, where the higher one is the result given inEq. (63)for k = 2, while in the lower curve the correctionsδ〈,〉 have
been neglected. Three asymptotic estimatest, t2/N, 2t2/N are also plotted. Inset shows the regiont = 100 to t = 300 where the differences
between the two COE results are most pronounced.

In other words, fixing the time and performing semi-classical limit (h → ∞ ≡ N → ∞) we obtain〈(�r)2(t)〉 =
t, which is the classical result relevant for both the classical multi-baker and the 1D random walk, which is modeled
by the classical system. Fixing the Planck constant (N = const) and performing long time limit we observe
〈(�r)2(t)〉 = kt2/N, which is reflection of the crystal-like structure of the system.

4.3. External properties of the MSD

To get another perspective on the above results, consider a more general class of quantum multiplexer maps[17]
where the local dynamics is given by a different mapB, e.g. a cat map, standard map, or other, replacing the baker
map. Then formula (27) is still valid, however the eigenvalues and eigenvectors are those of the new mapB.

Using formula (27) it is easy to see that the time-dependent mean square displacement for any quantum multiplexer
map has to satisfy

(1) 〈(�r)2(0)〉 = 0,
(2) 〈(�r)2(1)〉 = 1,
(3) 0 ≤ 〈(�r)2(t)〉 ≤ t2.

In fact, those results are true in both the quantum and the classical case. Moreover, it is possible to find local
dynamics which realize both of the external cases.

To see it, take as the local map a right-left exchange operator, defined classically by

B(n, x, y) :=
{
(n, x+ 1

2, y), for 0 ≤ x < 1
2,

(n, x− 1
2, y), for 1

2 ≤ x < 1.

and quantum mechanically by

B :=
[

0 1

1 0

]

(using the context ofSection 2). The dynamics is obvious: the particle jumps between the two neighboring sites,
leading to the mean square displacement having values 0 for even and 1 for odd times.
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On the other hand, taking identity as the local dynamics, we induce ballistic motion: particle starting in the state
going initially to the right will keep on going to the right, leading to the ballistic transport:

〈(�r)2(t)〉 = t2.

Therefore, we see that the translational invariance of the coupling operatorT allows, in principle, for large asymptotic
freedom:

〈(�r)2(t)〉 ∝ tα,

where 0≤ α ≤ 2.3 An interesting question is, what can be realized in practice. While no constraints seem to be
imposed on the classical level, the structure of the quantum mean square displacement,Eq. (26)suggests that for
fixed h only α = 0 or α = 2 are viable. One of the questions it raises is what conditions need to be imposed on
the internal dynamics so that the semi-classical limit leads to anomalous diffusionα �= 1. We interpret our RMT
result as follows: internal fully chaotic dynamics (mixing) of the classical map implies generically diffusion. We
are thus led to believe that anomalous diffusion can arise in semi-classical limit in systems with partially chaotic,
partially integrable internal dynamics. Similar observations were made often before in the context of different types
of systems and transport in phase space as opposed to the transport in real space, which we discuss here. More
precise results require further study.

5. Comparison of numerical results with random matrix theory predictions

We have studied numerically a number of cases of quantum multi-bakers as well as some more general systems
[17]. Here we present some of those results to show the quality of prediction afforded by the random matrix theory.

Our numerical evaluation of formula (27) shows that generically, almost every choice of phases defining the
quantization (3) leads to results between the COE and CUE results.Fig. 3shows results obtained for the quantum
multi-baker (2) with phasesϕq = 0.73,ϕp = 0.11. We show the mean square displacement as a function of time for
N = 200 and forN = 2000 on log–log plot. There is a clear crossover between the diffusive and ballistic behavior
on both plots.Fig. 3(c)compares the values of(1/N)

∑
J 〈|Jjj|2〉 calculated for the same quantum multi-baker for

various values ofN with the predictions of random matrix theory (45). We see that forN > 50 the results lie between
the analytic values for COE and CUE ensembles.

In cases when the two phases add up to one,ϕq + ϕp = 1, we find from our numerical work that the ballistic
coefficient(1/N)

∑
J 〈|Jjj|2〉 vanishes. Therefore, only the oscillating contribution remains in the expansion (26).

We still observe diffusive behavior up to Heisenberg time, although not as clearly as for generic systems. After this
transient the particle localizes and the mean square displacement oscillates irregularly around some average value.
Fig. 4shows the mean square displacement for quantum multi-baker with phasesϕq = ϕp = 1/2 [9] for N = 50
(top row) andN = 200 (bottom row). In both cases the left plot shows the short time behavior on the log–log scale.
We see the same diffusive behavior as in the generic case. The right plots are normal scale and show the oscillations
encountered on the long scale. All the plots are numerical evaluations of the exact formula (26). We suspect that
this non-generic, localized behavior will be seen whenever the phasesϕq andϕp sum to unity, but both the proof
and a physical understanding remain to be developed.

3 A more precise statement is: there exists a constant�∈[0, 2] such that limt→∞〈(�r)2(t)〉/tβ = ∞ for β < α, and limt→∞〈(�r)2(t)〉/tβ = 0
for α < β.
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Fig. 3. Log–log plot of the mean square displacement in the quantum multi-baker (2) with phasesϕq = 0.73,ϕp = 0.11 as a function of time
for N = 200 (top left) and forN = 2000 (top right). The crossover between the diffusive and ballistic behavior is clearly visible on both plots
at the Heisenberg timet = N. The bottom figure shows the values of(1/N)

∑
j 〈|Jjj|2〉 calculated for the same quantum multi-baker for various

values ofN with the predictions of random matrix theory (45). We see that forN > 50 the results lie between the analytic values for COE and
CUE ensembles.

6. Multi-baker maps and quantum random walks

We conclude this discussion of the quantum multi-baker maps by establishing connections between our work and
some other research on quantum random walks. We restrict ourselves to discrete quantum walks on line. Continuous
quantum random walks[26–28]and discrete quantum walks on graphs[29,30]are less connected to our work.

A popular model of a quantum random walk, known today as theHadamard walk, was described some 10 years
ago by Godoy and Fujita[31]. It was obtained through approximating the evolution of some special wave packets
in a Krönig–Penney type potential. A similar model was discussed by Aharonov et al.[32], who considered the
motion of spin-12 particles in one dimension, and proposed experimental realization of the walk in the framework
of quantum optics. Further, Meyer studied quantum cellular automata for their possible applications to quantum
computing. In Section 5 of[33], Meyer obtained a quantum random walk model closely related to the Hadamard
walk, discussed later by Ambainis et al.[16].

Looking for an analytically tractable model of quantum transport, we quantized[12] the classical multi-baker
map, a deterministic model of classical random walk, obtaining a family of quantum random walk models, the
simplest case being the Hadamard walk. We studied both the translationally invariant and random versions of the
system.

Since then a number of other papers appeared on the topics, e.g.[34–45]. Of particular interest for our work is the
work of Brun and coworkers[46–48]who also studied the transition to classical behavior, but instead of considering
semi-classical limit they assume interaction with environment implemented in decoherent coins.
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Fig. 4. Mean square displacement for quantum multi-baker with phasesϕq = ϕp = 1/2 forN = 50 (top row) andN = 200 (bottom row). The
left plots show the short-time behavior on the log–log scale. We see the same diffusive behavior as in the generic case. The right plots are normal
scale and show the oscillations encountered on the long scale. All the plots are numerical evaluations of the exact formula (26).

Much of the work on discrete quantum random walks can easily be reformulated as a special case of the multi-baker
maps (or multiplexer maps, see ref.[17]) in particular, the map with the largest possible value of Planck’s constant,
h = 1

2, or equivalently,N = 2. In order to make this connection we review, very briefly, the structure of quantum
random walks as described by much of the literature.

The simplest quantum random walk described in the literature is theHadamard walk. Here one considers a
collection of quantum states, which we will denote as |n, d〉. The parametern will take on all integer values within
a prescribed range, and here we take the range to beZ, all integers, positive and negative. The parameterd = r, l

denotes a direction, to theright or to theleft, respectively. Next, one defines an elementary quantum transformation,
H, which takes |n, d〉 into symmetric and anti-symmetric combinations, as

( |n, r′〉
|n, l′〉

)
= H

( |n, r〉
|n, l〉

)
= 1√

2

(
1 1

1 −1

)( |n, r〉
|n, l〉

)
. (64)

This step is now coupled to a translation,T of |n, r′〉 one unit to the right and, similarly, |n, l′〉 one unit to the left, as

T|n, r〉 = |n+ 1, r〉, T|n, l〉 = |n− 1, l〉. (65)

H is called theHadamard gate in quantum computing literature[49,50], which gives rise to the nameHadamard
walk. Finally, the two operations are combined to form the operatorT ◦ H = W, which describes one step of the
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Hadamard walk,

|n, r, t〉 = 1√
2

[|n− 1, r, t − 1〉 + |n+ 1, l, t − 1〉,

|n, l, t〉 = 1√
2

[|n− 1, r, t − 1〉 − |n+ 1, l, t − 1〉.
(66)

This is identical toEq. (2)for N = 2 for the special case that the Balazs–Voros phases[8], ϕq = ϕp = 0, are used.
Therefore, the multi-baker map and the Hadamard walk are identical, for the Balazs–Voros phases andN = 2.
The Hadamard equations have been solved in detail for various boundary conditions[12,16,34,38,45]. Similarly,
theN = 2 multi-baker map has been solved for a variety of phases and boundary conditions[12]. It should be
appreciated that the multi-baker maps represent generalizations of quantum random walks in a number of respects.
The inclusion of phases in the transformation equations allows one to treat a variety of maps including uniform,
periodic, quasi-periodic, and random systems, something typically not considered in the theory of quantum random
walks. Thus, one can find a range of phenomena in quantum multi-baker ranging from localization to ballistic
motion. Such phenomena show up in many condensed matter systems. Further, the use of a variable Planck’s
constant allows for several channels of motion to be taking place at once, and allows us to treat semi-classical as
well as strong quantum versions of these maps. This is what makes the multi-baker maps so appealing for studying
exact transport properties of condensed quantum systems.

One common feature of different quantum random walks and quantum multi-baker maps is the ability to include
various models of decoherence processes. In the multi-baker maps one should distinguish between quenched disorder
and annealed disorder. In quenched disorder the phases,ϕq andϕp vary randomly for cell to cell, but once values are
given for each cell, the phases keep those values for all time steps. This allows some memory to be generated by the
dynamics and results in localization[12]. For annealed disorder, the phases are chosen randomly for each cell and at
each time step. The phases may also be specified up to some additive noise contribution. These processes represent
the effects of random external noise and result in some degree of decoherence[36,46]. Further, in both quantum
random walk models and multi-baker maps one can produce decoherence by replacing the unitary matrix describing
the time evolution by acompletely positive super-operator. This allows for both dissipation and decoherence. As
this topic requires a separate discussion, we will not pursue it here, but leave the discussion of decoherence for
further publications.

7. Discussion of the results and other comments

This paper described calculations of important properties of the quantum multi-baker map, a simple model for
transport in quantum systems. This map is the quantum version of a well known, classically chaotic system. In
particular we were able to show, using random matrix theory, that it is possible to obtain an analytic expression
for the equilibrium mean square displacement of a particle whose motion is governed by this quantum map. This
expression is of particular importance for an understanding of transport in quantum systems because it allows us to
carefully examine the particle’s average motion both for finite times and for non-zero values of Planck’s constant.
Thus we can see how the two non-commuting limits,t → ∞ or h → 0, interact with each other. While our
results are not surprising, in the sense that we already knew qualitatively the limiting forms, we did not have a
general expression for the mean square displacement even for simple quantum systems before this work was carried
out. Moreover, the results from random matrix theory agreed very well with careful numerical evaluations of the
mean square displacement for the multi-baker map. This agreement is also very important because random matrix
theory does not really apply to any individual system, as far as one knows, but rather to the average behavior of an
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ensemble of similar systems. Thus in the absence of a rigorous justification of the use of random matrix methods,
their predictions must always be checked by comparisons with numerical studies.

It will be interesting to find other signatures of classical behavior in the quantum multi-baker map that are more
closely connected to the chaotic behavior of the classical map than the mean square displacement. For example, is
there any trace of the classical, hyperbolic dynamical behavior in the quantum version of the map? One prominent
feature of the classical multi-baker model is the formation of fractal structures on arbitrarily fine scales as an initial
non-equilibrium distribution of points relaxes to a final uniform equilibrium. This fractal structure can, in turn,
be related to a positive entropy production typical of the approach to equilibrium of a macroscopic system. The
quantum version of this phenomenon is largely unexplored and is of considerable interest to us.

Further work will also be devoted to exploring the consequences of the freedom one has in choosing phases of
the unitary operators. This freedom allows us to consider random, quasi-random, and periodic systems, each with
its own interesting physical properties. The quenched random system has been explored to some extent[12], and
provides a simple model of localization in one-dimensional disordered systems. Here the classical limit is expected
to be recovered through a phenomenon where the localization length grows infinitely large as Planck’s constant
approaches zero, such that almost normal diffusion takes place within each localized region. This picture needs to
be verified, and further systems still need to be explored.

We also began to establish connections between this work on quantum multi-baker maps and a body of related
work on quantum random walk processes. Much of that literature is, in fact, devoted to the simplest multi-baker
model, although this connection has not been recognized in the random walk literature. Here we showed that the
N = 2 quantum multi-baker process is identical to the Hadamard walk of random walk theory. Although quantum
computing is still far from being realized[49,50], it is possible that the theory of quantum random walks may be of
some value for constructing algorithms based on quantum walks that will be faster than the current classical random
walk algorithms[27,43]. Future work will be devoted to expanding the connections between the quantum random
walks and multi-baker processes for a variety of model systems.
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