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Spatiotemporal Chaos: The Microscopic Perspective
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Extended nonequilibrium systems can be studied in the framework of field theory or from the
dynamical systems perspective. Here we report numerical evidence that the sum of a well-defined number
of instantaneous Lyapunov exponents for the complex Ginzburg-Landau equation is given by a simple
function of the space average of the square of the macroscopic field. This relationship follows from an
explicit formula for the time-dependent values of almost all the exponents.
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The search for connections between theories and quan-
tities at different scales is the essence of statistical phys-
ics and condensed matter theory. In the past decade, there
has been a lot of interest in relating the dynamical char-
acteristics of the system, e.g., Lyapunov exponents,
Kolmogorov-Sinai entropy, and fractal dimensions, with
macroscopic properties, such as transport coefficients or
entropy production, in both classical and quantum systems
[1–6]. An important quantity studied in this context is the
phase space contraction rate, which in many cases can be
directly connected to the entropy production in a nonequi-
librium system [2–4]. The central goals of this new trend
are providing a better understanding of irreversibility of
microscopically reversible systems and obtaining a general
theory of systems far from equilibrium. So far, all deter-
ministic systems studied within this perspective have been
finite-dimensional. A natural question arises as to whether
similar results can be obtained for spatially extended sys-
tems. For instance, one would like to know the statistical
properties of the fluctuations of the phase space contraction
rate and of the entropy production in driven fluid systems
[7,8].

Also, in studies of turbulence and spatiotemporal
chaos, there is interest in connecting dynamical character-
istics of the system with the statistics of macroscopic
quantities such as correlation lengths; however, the em-
phasis here is put mostly on quantifying the complexity of
the dynamics. Such connections, if found, have not only a
theoretical value but also important practical consequen-
ces, because it is much easier to study macroscopic quan-
tities than to obtain dynamical characteristics, especially in
experiments [9,10].

These considerations prompted us to consider the com-
plex Ginzburg-Landau equation (CGL) and study the
fluctuation properties of its phase space contraction. The
CGL is a paradigmatic model of spatiotemporal chaos
which in a sense is intermediate between thermostated
molecular dynamics models and realistic fluid systems.
Because of its strong dissipative properties, infinite-
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dimensional CGL has a finite-dimensional attractor which
can be appropriately described in terms of low spatial
frequency Fourier modes [11].

In this Letter, we show that, even though the phase space
contraction rate in the CGL is infinite, one can consider the
contraction rate of volumes restricted to the inertial mani-
fold, which is finite-dimensional. This rate is equal to the
sum of a finite number of instantaneous Lyapunov expo-
nents. It turns out to be proportional to the macroscopic
mass of the field. Thus, we have found a direct relation
between the ‘‘microscopic’’ sum of a finite number of
instantaneous Lyapunov exponents and the ‘‘macroscopic’’
mass of the field. We explore the structure of the spectrum
of Lyapunov exponents and instantaneous Lyapunov ex-
ponents and show an approximate formula for a large part
of the spectrum of instantaneous Lyapunov exponents. The
statistical properties of the fluctuations of phase space
contraction rates and its relations to other macroscopic
entropylike quantities will be reported in a follow-up ar-
ticle [12].

We consider a one-dimensional cubic complex
Ginzburg-Landau equation on an interval of length L
with periodic boundary conditions

At � "A� �1� ic1��A� �1� ic2�jAj
2A; (1)

where "; c1; c2 are real and we set " � 1. For convenience,
let us restrict to a finite-dimensional truncation in a Fourier
base with N � 2K modes and write

A�x; t� �
XK

n��K

An�t�ei2�nx=L:

From Eq. (1), we obtain

_An � "An �
�
2�n
L

�
2
�1� ic1�An

� �1� ic2�
X

k�l�m�n

AkAlA�m: (2)

Note that AK � A�K due to periodicity. Writing An �
Bn � iCn, where Bn and Cn are real, we derive a formula
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for the phase space contraction rate � � divA _A �P
n�@ _Bn=@Bn� � �@ _Cn=@Cn� as well as the normalized

phase space contraction rate ~� :� �=Nmodes. Here
Nmodes � 2N � 4K is the number of real modes under
examination:

~� �
�

2N
� "� 2h%i �

�
2�
L

�
2 N2 � 1

12
; (3)

where h%i � �1=L�
R
L
0 dxjAj

2 �
P
kjAkj

2. Using a �
L=N, we get

~� � "� 2h%i �
�2

3a2

�
1�

1

N2

�
� "� 2h%i �

�2

3a2 :

The beauty of this result connecting the average macro-
scopic field h%i to the microscopic normalized phase space
contraction rate ~� is jeopardized by the last term, which
diverges when the spatial resolution N is increased.
However, increasing the resolution only adds high fre-
quency modes which are strongly damped. We show below
that their contribution can be isolated and removed, as in
the case of zero-temperature entropy in spin systems.

We conjecture that there is a distinguished dimension
such that the contraction rate of volumes restricted to this
dimension is always finite and connected to the space
averaged % in a simple manner. These volumes are defined
by the sum of an appropriate number of instantaneous
Lyapunov exponents. Before supporting these claims, let
us recall the definitions of Lyapunov exponents and instan-
taneous Lyapunov exponents and show how they connect
to the volume contraction rates.

Consider a continuous time dynamical system defined
by a set of differential equations _x � F�x�, x 2 Rn. The
solution of the system is given by the flow xt � �t�x0�, t 2
R. Then the growth of an infinitesimal perturbation �x0

around x0 is governed by the linearization of the flow
�xt � Dx0

�t�x0 � M�t; x0��x0. The fundamental matrix
M�t; x0� governing this growth is the solution of the equa-
tion _M�t; x0� � J�t; x0�M�t; x0�, where J�t; x0� �

@F
@x �xt� is

the Jacobi matrix of partial derivatives of the field velocity.
The Oseledec matrix �M�x0; t�

yM�x0; t��
1=2t has n positive

eigenvalues �i�x0; t�, which we order by size �1 � �2 �
. . . � �n. Lyapunov exponents �i�x0� are defined as loga-
rithms of eigenvalues of a long time limit of the Oseledec
matrix �i�x0� :� limt!1 ln��x0; t�. For an ergodic system,
they are the same for almost every initial point [13,14].

To define instantaneous Lyapunov exponents [15] �i,
consider volume Vk�t� of a parallelogram u1�x0; t� ^
u2�x0; t� ^ . . . ^ uk�x0; t�, spanned initially by k orthogonal
vectors ~ui attached at x0, traveling along the trajectory
ui 2 Rn. Its evolution is given by the fundamental matrix,
i.e., ui�x0; t� � M�x0; t�~ui. Then the k	 n matrix U �

u1; . . . ; uk� can be uniquely decomposed into a product
of a k	 n orthogonal matrix Q and an upper-diagonal k	
k matrix R (QR decomposition)
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U � QR � 
Q1; . . . ; Qk�

R11 R12 . . . Rk1

0 R22
. .

. ..
.

..

. . .
. . .

.
Rkk�1

0 . . . 0 Rkk

2
666664

3
777775:

The product of the diagonal elements of R gives the
volume spanned by ui. Its contraction rate is

�k�t� :� lim
dt!0

1

dt
ln
Vk�t� dt�
Vk�t�

�
_Vk�t�
Vk�t�

:

We define instantaneous Lyapunov exponents by �k�t� :�
�k�t� � �k�1�t�. They depend on the initial point and on
the initial vectors ~ui. However, for almost all initial vec-
tors, the first vector with time aligns along the most un-
stable direction, the first two vectors span the fastest
stretching 2d volumes, and so on. After some time, the
vectors become almost independent of the initial directions
modulo degeneracy, and, consequently, the instantaneous
Lyapunov exponents characterize the trajectory.

In practice, we propagate the vectors by finite time steps
at each time reorthogonalizing the set. Thus, starting from
Q0 � U we move to U1 � M�dt�Q0 � Q1R1. Then
Un�1 � M�dt; x�ndt; x0��Qn � Qn�1

~Rn�1. Thus, we have
R�ndt� � ~Rn . . . ~R1 and �k�ndt� �

1
dt ln
 ~Rn�kk. Time aver-

ages of �i are sorted in decreasing order and equal to the
usual Lyapunov exponents �i [13,14].

To estimate the values of the instantaneous Lyapunov
exponents, consider an initial perturbation �An tangent to a
single mode A0

n

@�An=@t � �"� �1� ic1�q2 � 2�1� ic2�h%i��An � �1

� ic2���n � i�n�A
�
n � f��A��g;

(4)

where q :� 2�n=L, f��A� is a linear function of f�Ag
independent of �An or �A�n, and �n, �n 2 R stand for
the real and imaginary parts of the time-dependent sum
�n � i�n �

PK�jnj
j���K�jnj� An�jAn�j: Rewriting Eq. (4) in

terms of real and imaginary parts of �An � �Bn � i�Cn,
we obtain a short time evolution of tangent vectors

�Bn�dt�
�Cn�dt�

� �
� 
a0I � ai�i�

�Bn�0�
�Cn�0�

� �
;

where �i are the Pauli matrices [16] and a0 �
1� �"� q2 � 2h%i�dt, ax��n�c2�n, ay � i�c1q2 �

2c2h%i�, az � �n � c2�n. Then the eigenvalues of

MyM�dt� are �
 � 1� 2�"� q2 � 2h%i� 

��������������
1� c2

2

q
	

j
PK�jnj
j���K�jnj� An�jAn�jj, which gives extreme possible val-

ues of instantaneous Lyapunov exponents

�n
 � "� q2 � 2h%i 

��������������
1� c2

2

q �����������
XK�jnj

j���K�jnj�

An�jAn�j

�����������:
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Numerically observed values depend on an initial vector

�Bn�Cn�

T and are between �n
. To find out what the
contraction rate of the 2d volumes in �An plane is, we can
consider the action of M�dt� restricted to �An on a pair of
initially orthogonal vectors 
v1; v2� in this plane. The
volume of M�dt�
v1; v2� is given by the determinant,
and, since det
v1; v2� � 1, we have

1

2
��n1 ��n2� � lim

dt!0

1

dt
ln detM�dt� � "� q2 � 2h%i:

(5)

Therefore, at any time we predict that the sum of the two
instantaneous Lyapunov exponents for perturbations in the
plane tangent to any Fourier mode should be given by the
formula above.

It is not a priori obvious that this prediction should hold
for any exponents calculated for volumes evolved over a
long time span, since we have considered the evolution
along (An; A�n) only. With time, all the modes get mixed via
the nonlinear term in (1), and evolved vectors can align
arbitrarily in phase space. However, our numerical simu-
lations show that only a finite number of modes W, which
we call ‘‘active,’’ disobey the above prediction (Fig. 1). The
remaining exponents oscillate around (5), and at every
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FIG. 1 (color online). Time dependence of all 34 ‘‘active’’ and
the largest 12 inactive instantaneous Lyapunov exponents for the
CGL with L � 10�, c1 � 4, c2 � �4. The bottom figures show
two subsets of curves from the upper plot, the first 34 (left) and
the next 12 exponents (right). Prediction (5) is also plotted.
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instant the sum of the four modes for 
n is given by (5).
To find this division, we label each exponent �k�t� with
integer k so that their time averages �k are ordered: �1 �
�2 � . . . (see Fig. 2). Then for some numberW of the form
4n� 2, the Lyapunov exponents �k for k >W come in
quadruplets given by the time average of (5) �k � "�
q2 � 2h �%i, and for k � W �k are different from this
prediction.

In all the cases we have checked, independently of the
chaoticity of the solution, we observe thatW is the smallest
number of the form 4n� 2 greater or equal to L, i.e., W �
2� 4d�L� 2�=4e. This size dependence suggests that W
measures some extensive geometric structure in the phase
space. We are aware of only two such structures for the
CGL: the inertial manifold and the attractor. But W is
larger than the Kaplan-Yorke dimension of the attractor.
This is why we believe that our procedure probes the
fluctuations of volumes on the inertial manifold, not on
the attractor, which is its subset.

These conjectures were verified in several regimes of the
CGL (Benjamin-Feir line, phase chaos, defect chaos, and
intermediate regime), for different lengths of the system
and truncations to 32, 64, 128, and 256 Fourier modes or
equivalent numbers of spatial points. We used pseudospec-
tral code and an implicit Gauss-Seidel Cranck-Nicholson
scheme to integrate the CGL. Fundamental matrix M was
calculated in both real and Fourier space representations.
For all four combinations, the obtained time-dependent
spectra were almost exactly the same in the interesting
part; noticeable differences were visible in part of the
spectrum corresponding to high frequency modes.
FIG. 2 (color online). Spectrum of Lyapunov exponents for the
CGL with L � 10�, c1 � 4, c2 � �4. There are N � 64 modes
and, thus, 128 exponents (all shown in the inset). The quadruplet
structure of the lower exponents comes from the real and
complex parts of corresponding positive and negative Fourier
modes. Crosses are time averages of (5); circles are numerical
values. There are W � 34 active exponents.
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FIG. 3 (color online). Numerical test of Eq. (6). The time
evolution of the sum of the active exponents (thick red line) is
compared with the time evolution of "� 2h%i � 
�2�W2 �
4�=12L2� (thin blue line). The thin blue line has been shifted
by �0:15.
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Figure 1 shows the time dependence of the first 46 in-
stantaneous Lyapunov exponents computed along a trajec-
tory for a representative case of the CGL with L � 10�,
c1 � 4, c2 � �4 [17] for a computation with 128 Fourier
modes; both groups of exponents are clearly visible. There
is a constant difference between theoretical prediction and
the numerical value of the order of 0.15 for the first inactive
exponents (n � 9 in this case), dropping to around 0.01 for
exponents corresponding to n � 25.

Time averages of instantaneous Lyapunov exponents
converge to the usual Lyapunov spectrum. They are shown
in Fig. 2 for the same parameter values.

Theoretical predictions (5) are marked with crosses;
circles mark numerical values. The staircase structure in
the spectrum is well approximated by Eq. (5). To separate
the changes of volumes on the inertial manifold from the
trivial contraction in the orthogonal directions, we consider
a contraction of W-dimensional volumes given by the sum
of all the nontrivial instantaneous Lyapunov exponents.
Since the sum of all the instantaneous Lyapunov exponents
in the Galerkin representation is equal to the phase space
contraction rate (3), and since the ‘‘inactive’’ exponents
oscillate around the average field (5), the relevant value is

~� active :�
1

W

XW
i�1

�i � "� 2h%i �
�2�W2 � 4�

12L2 : (6)

Since W � L and " � 1, for large L the first and last
terms are of order 1, which leads to ~�active � �2h%i.
Figure 3 compares the evolution of 0:15� 1

W

PW
i�1 �i

with "� 2h%i � 
�2�W2 � 4�=12L2�.
To summarize, we have identified a natural division of

the spectrum of instantaneous Lyapunov exponents in the
complex Ginzburg-Landau equation into a nontrivial part
corresponding to the dynamics on the inertial manifold and
a part corresponding to the modes decaying towards it. The
trivial exponents are approximately given by simple func-
tions of the square of the field (5). With this result, we
showed that the contraction rates of volumes restricted to
inertial manifold, which is the sum of the nontrivial ex-
ponents, are given by a simple function of the spatial
average of the squared modulus % of the solution (6).
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This formula bridges the gap between the dynamical sys-
tems picture of the CGL (volumes contracting in the phase
space and instantaneous Lyapunov exponents) and the
macroscopic picture (spatiotemporal solution). The pre-
sented results are of relevance for physical systems de-
scribed by the CGL [18]. We believe that such a division of
the spectrum of instantaneous Lyapunov exponents is a
generic phenomenon for a large class of systems described
by nonlinear partial differential equations with inertial
manifolds [8]. However, the connection between the phase
space contraction rate and the field must be model-
dependent. These issues are currently under study [12].
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