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Abstract. This paper presents a new paradigm for signal decomposition
and reconstruction that is based on the selection of a sparse set of basis
functions. Based on recently reported results, we note that this frame-
work is equivalent to approximating the signal using Support Vector
Machines. Two different algorithms of modeling sensory activity within
the barrel cortex of a rat are presented. First, a slightly modified ap-
proach to the Independent Component Analysis (ICA) algorithm and
its application to the investigation of Evoked Potentials (EP), and sec-
ond, an Evolutionary Algorithm (EA) for learning an overcomplete basis
of the EP components by viewing it as probabilistic model of the ob-
served data. The results of the experiments conducted using these two
approaches as well as a discussion concerning a possible utilization of
those results are also provided.

1 Introduction

The standard methods for decomposition and analysis of evoked potentials are
band pass filtering, identification of peak amplitudes and latencies, Principal
Component Analysis (PCA) and wavelet-based analysis. A common way to rep-
resent real-valued signals is using a linear superposition of basis functions. One
might roughly characterize the second-order methods (PCA and Factor Anal-
ysis) by saying that their purpose is to find a faithful representation of the



data in the sense of signal’s reconstruction (e.g. based on the mean-square error
measure) [1], [2]. In contrast, the highest-order methods (Projection Pursuit,
Blind De-convolution, Independent Component Analysis) are characterized by
their attempt of finding a meaningful representation of the signal. Of course,
meaningfulness is a task-dependant property [3], [4].

The standard wavelet analysis gives the coefficients for expressing the signal
as a linear combination of ”wavelet packets”, which can include scaled and trans-
lated versions of the father and mother wavelets, as well as scaled and translated
versions that contain additional oscillations. The wavelet coefficient is an inner
product of the wavelet and the data. Bases such as the Fourier or wavelet can
provide a useful representation of some signals, but they are limited, because
they are not specialized for the signals under consideration [5].

An alternative and more general method of signal representation uses the so-
called ”overcomplete bases” (also called overcomplete dictionaries), which allows
for a greater number of basis functions than samples in the input signals [6], [7],
[8]. Overcomplete bases are typically constructed by merging a set of complete
bases (e.g. Fourier, wavelet, Gabor) or by adding basis functions to a complete
basis (e.g. adding frequencies to a Fourier basis).

Relatively little research has been done in the area of decomposition of
Evoked Potentials (EP) using non-orthogonal components. Olshausen and Field
[9], [10] pretend that the basis functions shared many properties with neurons
in primary visual cortex, suggesting that overcomplete representations might be
a useful model (see also [11]). Under an overcomplete basis, the decomposition
of a signal is not unique, but this can be in our advantage – we have greater
flexibility in capturing structure in the data.

Subsequently, two different algorithms of modeling sensory activity within
the barrel cortex of a rat are presented. First, we slightly modify the traditional
approach to the Independent Component Analysis (ICA) and apply it to EP’s
investigation, and second, we propose a new, evolutionary algorithm-based ap-
proach to decomposition of evoked potentials. More specifically, we propose an
algorithm for learning an overcomplete basis of the EP components by viewing
it as probabilistic model of the observed data. In an overcomplete basis, the
number of basis vectors is greater than the dimensionality of the input data.
Overcomplete representation has been advocated because it has greater robust-
ness in presence of noise, it is more sparse, and has greater flexibility in matching
structure in the data [9]. From this model, we derive a simple, robust learning
algorithm by maximizing the data likelihood over the modeled data based on
the basis functions.

After surveying published work in the literature within this field, it appears
that our approach of decomposition of EP’s in terms of a set of overcomplete
basis functions and the process of learning them by evolutionary algorithm is
unique.



The paper is organized into the following sections: in Sect. 2, we discuss the
proposed data model an then, in Sect. 3, the formal learning algorithm is defined
as well as our evolutionary algorithm-based methodology used to learn the set of
basis functions. In Sect. 4, we present results of decomposition and comparison
between the proposed methods.

2 Bayesian Motivated Model

The primary step in measuring the form and variance of evoked potentials (EP)
or event-related potentials (ERP) is to decompose them into parts. Each part
has three aspects. The first one is the elementary curve. The elementary curves
are called basis functions. When a selected set of such curves is added together,
the sum should closely conform to the shape of the ERP. Second, each part has a
set of numbers or coefficients that denote its amplitude. Third, each part defines
one or more coordinates, and the set of numbers denotes distances along the axes
of a coordinate system. The number of coefficients in the set of basis functions
specifies the dimensions of the measurement space. From this point of view the
measurement of each ERP gives a vector in that space [12].

We assume that each data vector can be described with a set of basis functions
plus some additive noise:

x = Ma + ε, (1)

where x is the signal, M is the matrix of basis functions, a is the vector
of coefficients (i.e. the representation of the signal), and ε represents Gaussian
noise.

Let n denote the number of time points in each recorded EP. Let xi(t) de-
note the value of each i-th recorded EP at time t, where t = 1,2,. . . ,n, and i
= 1,2,. . . ,m. The model specifies that xi(t) is a weighted sum of unknown EP
components, where the weights depend on the EP component and each individ-
ual measurement. Let r denote the number of EP components, which is assumed
known, and let Mj(t) denote the unknown value of EP component (basis func-
tion) j at time t, where j = 1,2. . . ,r. Let aij be the unknown weight of EP
component j for individual signal i. Then we assume a model of the form:

xi(t) =
r∑

j=1

aijMj(t) + εi(t), (2)

where εi(t) represents Gaussian noise.
The unknown parameters to be estimated are aij and Mj(t). Developing

efficient algorithms to solve this equation is an active research area. A given data
point can have many possible representations, nevertheless this redundancy can
be removed by a proper choice for the prior probability of the basis coefficients:

P (aij) = exp(−S(aij)), (3)



where:

S(aij) = β log
(

1 +
(aij

σ

)2
)

, (4)

and β and σ are scaling factors.
This specifies the probability of the alternative representations. Standard

approaches to signal representation do not specify a prior for the coefficients.
Assuming zero noise, representation of a signal in this model is unique. If M is
invertible, the decomposition of the signal x is given by a = M−1x. Since M−1

is expensive to compute, the standard models use the basis matrices that are
easily inverted, by, for instance, restricting the basis functions to be orthogonal
(in PCA) or by limiting the set of basis functions to those, for which there exist
fast computational algorithms, such as Fourier or wavelet analysis. Usually, to
define a unique set of basis functions we have to impose unrealistic mathematical
constraints. For example, PCA assumes that the data distribution has a Gaus-
sian structure and fits in appropriate orthogonal basis. ICA, generalized PCA,
assumes that the coefficients have non-Gaussian structure and this allows the
basis functions to be non-orthogonal. In all of these techniques, the number of
basis vectors is equal to the number of inputs.

A more general approach is to use the information theory and the probabilis-
tic formulation of the problem [13]. Rather than making prior assumption about
the shape or form of the basis functions, those functions are adapted to the data
using an algorithm that maximizes the log-probability of the data under the
model.

The coefficients from (1) can be inferred from x by maximizing the condi-
tional probability of a given x, P(a|x, M), which can be expressed via Bayes’
rule as:

a = arg max
a

P (a|x,M) ∝ arg max
a

P (x|a,M)P (a). (5)

The first term of the right hand side of the proportion specifies the likelihood
of the signal under the model for a given state of the coefficients:

P (x|a,M) ∝ exp
(
− λ

ZσN
|x−Ma|2

)
, (6)

where ZσN is normalizing constant, λ = 1/σ2, and σ is the standard deviation
of the additive noise. The second term specifies the prior probability distribution
over the basis coefficients, where:

P (ai) =
∏

j

P (aij) . (7)

Thus, the maximization of the log-probability in (5) becomes:

aij = arg min
aij


λN

2

n∑
t=1

∣∣∣∣∣∣
xi(t)−

r∑

j=1

aijMj(t)

∣∣∣∣∣∣

2

+
r∑

j=1

S(aij)


 . (8)



This formulates the problem as one of the density estimation and is equivalent
to minimizing the Kullback-Leibler (KL) divergence between the model density
and the distribution of the data.

The functional (8) that is minimized, consists of an error term and a sparse-
ness term.

Based on recently reported results [14], we note that this framework is equiv-
alent to approximating the signal using Support Vector Machines (SVM).

In SVM we approximate the signal x(t) as:

Mi(t) = K(t; ti) ∀i = 1, . . . , l, (9)

where K(t;y) is the reproducing kernel of a Reproducing Kernel Hilbert Space
(RKHS) H and {(ti , yi)li=1} is a data set, which has been obtained by sampling,
in absence of noise, the target function xi(t) [15].

While Olshausen et al., in their overcomplete models, measure the recon-
struction error with an L2 criterion, the Support Vector Machine measures the
true distance, in the H norm, between the target function and the approximating
function. Depending on the value of the sparseness parameter, the number of
coefficients aij that differ from zero will be smaller than r (the number of basis
functions) (see (2)). The data points associated with the non-zero coefficients are
called support vectors and it is these support vectors that comprise our sparse
approximation.

3 Learning Objective

From the model presented in Sect. 2 we derive a simple and robust learning algo-
rithm by maximizing the data likelihood over the basis functions. The learning
objective is to find the most probable explanation for the input data. In other
words, we wish to develop a generative model that encodes the probabilities of
the input data. The algorithm must be able to:

– find a good matrix M for coding input data,
– infer the proper state of the coefficients a for each input signal.

In a special case of zero noise, in the data model presented in Sect. 2, and
a complete representation (i.e. M is invertible), the problem leads to the well-
known Independent Component Analysis algorithm [16]. ICA allows the learning
non-orthogonal bases for data with non-Gaussian distribution. First we proposed
to use ICA. Some data distributions, however, cannot be modeled adequately by
either PCA or ICA.

The second and more substantial method is to place sparse prior constraints
on the base probabilities of coefficient activation. This sparse coding constraint
encourages a model to use relatively few basis functions to represent any specific
input signal. If the data has certain statistical properties (it is ”sparse”), this
kind of coding leads to approximate redundancy reduction [17]. Sparse encoding
within neural networks has previously been shown to create more biologically
plausible receptive fields (Olshausen & Field).



3.1 Evolutionary Algorithm for proposed sparse coding

Some research has been done in applying genetic algorithms (GA) to the blind
source separation (BSS) and ICA in which the Kullback-Leibler entropy is com-
puted by analyzing the signals one by one and therefore needs exhausted com-
putation [18].

In our work, an evolutionary algorithm (EA) is used to solve the problem
of finding the best representation of a given signal in terms of basis functions
and coefficients. EA searches for an optimum by changing iteratively population
of temporary solutions encoded into chromosomes. Each chromosome represents
the matrix of basis functions M and the matrix of coefficients a. Fitness function
minimized in our case is based on (8) and consists of two parts: 1) error of
reconstructed signals and 2) sparse cost of the values of coefficients:

f =
m∑

i=1




n∑
t=1

∣∣∣∣∣∣
xi(t)−

r∑

j=1

aijMj(t)

∣∣∣∣∣∣
+

r∑

j=1

S(aij)


 , (10)

where xi(t) is the i-th input signal.
Genetic operators used in this algorithm are: crossover, mutation and macro-

mutation. The crossover operator replaces, with crossover probability, each gene
(number) in a chromosome with corresponding gene from another chromosome.

The mutation operator changes, with mutation probability, each number in
a chromosome, by adding to it or subtracting from it a random value from
mutation range.

The macromutation operator makes the same changes to the chromosome
as mutation, but with higher values of mutation probability and mutation range
parameters. This additional operator brings more diversty to the population and
is used when there is no improvement of the best solution found so far. The main
steps performed by EA to find the optimal set of basis functions are as follows:

Initialize the population of chromosomes
with random values from range [-1, 1]

While the best fitness value found so far is not acceptable do:
In each generation repeat:

Calculate fitness for each individual
Select best individuals

according to the roulette selection rule
Apply crossover and mutation
Find best chromosome (lowest fitness value) in generation
Save the best chromosome found so far

If the difference between best chromosome found so far and
the best chromosome found 20 generations ago equals 0,

then decrease mutation range 2 times
If mutation range is less than 0.00001,

then apply macromutation and set mutation range
to the initial value.



The algorithm can create representation of a given signal in terms of any
number of basis functions.

When the matrix of basis functions or coefficients is not square, it is impos-
sible to find an inversion of it, which would allow to compute representation of
a new signal in terms of basis functions or coefficients already obtained. Such
transformation can be done with the same evolutionary algorithm, but this time
the chromosome consists only of coefficients or basis functions – whichever are
being computed, and the fitness function is still (10).

The function in (10) is difficult to optimize due to large number of variables,
which creates huge search space for the EA. Thus the problem can be divided
into sub-problems in the following way.

Let us present (10) as:

f =
m∑

i=1




n∑
t=1

|Ej(t)|+
r∑

j=1

S(aij)


 , (11)

where:

[Ej(t)] = E = Ma− x. (12)

The signal x can be divided along time, such that:

x = [x1x2 . . .xk]T . (13)

Then, (12) can be written as:

[E1E2 . . .Ek]T = [m1m2 . . .mk]T a− [x1x2 . . .xk]T , (14)

where:

[m1m2 . . .mk] = M, (15)

[E1E2 . . .Ek] = E, (16)

and

Ei = mia− xi, i = 1, 2, . . . , k. (17)

Thus, having fixed the matrix of coefficients a, all the parts of basis functions
matrix mi’s can be computed independently. The pairs of mi and ai for each
part of the input signals xi can be computed using the evolutionary algorithm
described above. Then the basis functions Mi corresponding to each coefficients
matrices ai for the whole input signals can be computed. The pair Mi, ai, which
gives the lowest value of the fitness function (10) is the obtained representation
of the input signals. Therefore the algorithm is as follows:



Divide the signals into parts along time: x1, x2, ..., xk

For each signal part xi

Compute with EA: mi, ai

For each ai

Compute with EA basis functions for the whole signal: Mi

Choose the pair ai Mi that gives the smallest value
of fitness function (10).

4 Results and discussion

4.1 Data

In the experiments conducted at the Laboratory of Visual System, Department
of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland, a
piezoelectric stimulator was attached to a vibrissa of a rat [19], [20]. An electrical
impulse of 5 V amplitude and 1 ms duration was applied to the stimulator causing
a deflection of the vibrissa. Evoked Potentials were then registered – each of
them related to a single stimulus. Evoked potentials have been used from many
years as a measurement of dynamic events occurring in nervous systems that
accompany and are related to some defined sequences of behavior [12]. Based on
same previous work, a hypothesis about a relation between two components of
the registered evoked potentials and particular brain structures (i.e. supra- and
infra-granular pyramidal cells) was stated. In order to verify the hypothesis, two
additional types of stimuli were applied: 1) a cooling event applied to the surface
of the cortex (allowing to temporarily ”switch off” some structures of the brain),
and 2) an aversive stimulus – electrical shock applied to the rat’s ear (in order
to cope with the phenomenon of habituation). Main goal of these experiments
was to investigate those stimuli in the sense of their impact on the brain activity
represented by evoked potentials.

A single, four-level electrode positioned in the cortex of a rat collected the
data. The electrode registered brain activity in a form of evoked potentials on
four depths simultaneously as described in [19]. The channels were defined as:
channel 1 – 1.7 mm, channel 2 – 1.05 mm, channel 3 – 0.4 mm, channel 4 –
surface. Each evoked potential (lasting ≈ 50 ms and separated by a 3 second
period) was sampled with frequency of 2kHZ and thus is being described in the
database by 100 values. The data sets contain 882 evoked potentials for each
depth registered in the experiment, so the complete database consists of:

– four data sets for each channel
– 882 records in each data set
– each record described by 100 attributes (values in time)

Based on the description of the neuro-physiological experiments it is known
which records (evoked potentials) correspond to a cooling event and roughly what
the strength of this particular cooling event was.



Fig. 1. Single (here averaged) evoked potential - one record in our database.

Sample (averaged) evoked potential from the database along with its division
into three waves (two positive and one negative one) is presented in Fig. 1.

Because of the fact that the third channel’s electrode (0.4 mm) was located
in the closest position to the granular cells (laying in the middle between supra-
and infra- granular, pyramidal cells – see [19], [20], [21]) and yielded the most
representative perspective at the activity of the cortex, this level was quite of-
ten acknowledged as the most meaningful and interesting one and was given
particular attention.

4.2 Analysis

The proposed model of sensory activity (the proposed model performance was
analyzed via two methods. First, we applied the Independent Component Anal-
ysis (using the EEG/ICA Toolbox for Matlab by Scott Makeig, et al., [16]) to
all the four channels. Second, the decomposition of EP by sparse coding and EA
was analyzed.

Method 1: Averaged signals for all the four levels of the rat’s cortex were used
as an input to the algorithm (Fig. 2). Those averaged potentials were treated
as four separate channels similarly to the traditional application of ICA to EEG
data [16]. The full list of the ICA parameters is presented in Table 1.



Table 1. Independent Component Analysis parameters.

Parameter Value

Channels (sources of activation) 4
Frames (points per one record) 100
Epochs 1
Sampling rate (in Hz) 2000
Limits (in milliseconds) [0 50]

As a result, we received a 4 x 4 mixing matrix, which allowed us to decompose
the input signals into four components. The components obtained by using this
technique correspond very closely to the previous results derived from PCA (i.e.
first two components create the N1 wave and their amplitudes change over time)
[19], [20], [21]. Thus, we received a new representation of the signals in terms of:

– Time courses of activation of the Independent Components (Fig. 3)
– Independent Components (Fig. 4)

Fig. 2. Averaged signals for four separate channels.

This experiment has resulted in a new representation of the input signals in
terms of their statistically independent components. These components, yielded



Fig. 3. Time courses of activation of all four components (ordered by latency).

Fig. 4. Four independent components in the averaged 3rd channel signal.



by an alternative technique (i.e. ICA), coincided with the ones discovered in pre-
vious work (i.e. PCA). This transformation (or coding) could be simply consid-
ered a data preprocessing methodology and, based on that, some further analysis
could be performed. For instance, the values of the course of activation of the
independent components (Fig. 3) could be used as new input data instead of the
original signals and the analysis of the properties of such a new model might be
of interest. On the other hand, generation of brand new data in the domain of the
quantitative description of the ICA representation (e.g. minimum (maximum)
value of each component, number of the minimum (maximum) component, etc.)
would create another great possibility for investigation of the variability of the
model’s properties depending on the changing environment (i.e. cooling event).

Method 2: The experiment was performed in order to examine the effectiveness
of the proposed algorithm in decomposing signals into components and compare
the results with the ICA method. Normalized averaged signals for all levels of
rat’s cortex, treated as four separate channels, were used as an input to the
algorithm (as in Method 1). The input signals are shown in Fig. 3. Initial values
of the parameters of the algorithm are presented in Table 2.

Table 2. Initial values of the parameters of the proposed algorithm in this experiment.

Parameter Value

Population size (number of chromosomes) 50
Crossover probability 0.5
Mutation probability 1 / no. of elements in M
Mutation range 0.1
Macromutation mutation probability 0.5
Macromutation mutation range 0.01
Number of basis functions 10
σ parameter in (4) 0.3
β parameter in (4) 1.0

We have received 10 basis functions and 4 vectors of coefficients, which de-
compose the input signals. Three of the components of the averaged 3rd channel
signal, presented in Fig. 5 are very similar to those obtained by ICA. Slight
differences in shapes and amplitudes are due to greater number of basis func-
tions, which decompose the signals. One of those similar components seems to
correspond to N1 wave.

Then, the representations of both, the averaged normal and cooled 3rd chan-
nel signals were computed. The representation of the averaged normal and cooled
3rd channel signals in the domain of the obtained basis functions (as values of
coefficients) is presented in Fig. 6. Having more basis functions, more differ-
ences can be discovered between studied input signals. This may be very useful



in signal classification. Waves can be divided into more groups, depending on
dissimilarities, not discovered in the domain of smaller number of basis functions.

The most important advantage of this method is the fact that number of
basis functions is independent on the number of input signals.

Fig. 5. Three arbitrarily selected components in the averaged 3rd channel signal.

This evolutionary algorithm-based sparse coding of evoked potentials could
be very useful in terms of some more detailed investigation of the input signals.
For instance, it can be seen in Fig. 6 that the normal and cooled potentials
have obviously different 6th, 7th, 8th, and 10th components. Such differences can
be now thoroughly examined with some automatic data mining techniques like
classification rules discovery or pattern matching in order to find some relations
and dependencies between different kinds of evoked potentials.

5 Conclusions

On the basis of the experiments and the analysis described above we can conclude
that ICA is quite a reasonable and effective tool in terms of evoked potentials’
decomposition and transformation. The results, coherent with previous work in
terms of the signal’s main components, along with a high insensitivity of this
method to noise and other types of distortion, encourage its further application
for this type of problem. Using this clear and intuitive decomposition of signals,
one may try to perform an investigation of the behavior of the components within



Fig. 6. Coefficients for the averaged normal and cooled 3rd channel signals.

a changing environment of impulse stimuli, cooling and habituation that may be
able to answer many questions about mechanisms ruling brain function.

Overcomplete representation, on the other hand, potentially allows a basis to
better approximate the underlying statistical density of the data. It also creates
the opportunity to discover more independent signal sources than the dimension-
ality of the input data, which opens new possibilities for data analysis. Along
with the application of sparse coding constraints put on the learning algorithm,
this is definitely a methodology worth of further exploration.

Both, the ICA- and the sparse coding-based modeling of evoked potentials
seem to be a very reasonable and useful techniques for the data preprocess-
ing. Based on those transformations, further investigation and analysis of the
data via, for instance, classification or clustering algorithms is possible. Such
algorithms, in turn, may allow researchers to discover quite new rules standing
behind the mechanisms governing our brains’ function.
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